JPH1153942A - Anisotropic conductive composition - Google Patents

Anisotropic conductive composition

Info

Publication number
JPH1153942A
JPH1153942A JP21146197A JP21146197A JPH1153942A JP H1153942 A JPH1153942 A JP H1153942A JP 21146197 A JP21146197 A JP 21146197A JP 21146197 A JP21146197 A JP 21146197A JP H1153942 A JPH1153942 A JP H1153942A
Authority
JP
Japan
Prior art keywords
powder
particles
resin
anisotropic conductive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21146197A
Other languages
Japanese (ja)
Other versions
JP3660787B2 (en
Inventor
Akinori Yokoyama
明典 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP21146197A priority Critical patent/JP3660787B2/en
Publication of JPH1153942A publication Critical patent/JPH1153942A/en
Application granted granted Critical
Publication of JP3660787B2 publication Critical patent/JP3660787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Abstract

PROBLEM TO BE SOLVED: To enable a pressurized connection of low pressure to act as a sufficient high-conductivity connection by constituting a composition of an organic binder and a specific rate of conductive metallic particles having a specified deformation rate. SOLUTION: A composition comprises an organic binder and 0.1 to 25 vol.% of conductive metallic particles ranging from 3 to 9 μm in diameter whose deformation rate per particle under 1 gf load is 8 to 60%. Preferably, the conductive metallic particles are crystalline particles within 80 to 5000 Å-sized crystal grains exist in the particles, and metallic powder composed of one or more kinds selected from among silver, copper and tin is suitable. Such metallic powder is desirable being prepared by combining atomized powder, electrolytically plated powder, non-electrolytically plated powder, chemically reduced powder, vapor deposited powder, mechanical alloying powder, CVD powder, and metallic powder is by heat treatment and the like. As the organic binder, epoxy resin, phenol resin, silicone resin, urethane resin, or the like is used. Preferably, the anisotropic conductive composition thus acquired is applied as coating to a base film for forming an anisotropic conductive film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は異方導電性組成物に
関し、液晶ディスプレイ、プラズマディスプレイ、EL
ディスプレイ等のパネル、携帯電話、パーソナルコンピ
ュータ、テレビ、モニター、カーナビゲーションシステ
ム、PCMCIA、ICカード、フォトダイオードやM
CM、プリント基板、フレキシブル基板へのLSI実装
などに利用することができる。
The present invention relates to an anisotropic conductive composition, and relates to a liquid crystal display, a plasma display, and an EL.
Panels such as displays, mobile phones, personal computers, televisions, monitors, car navigation systems, PCMCIA, IC cards, photodiodes and M
It can be used for LSI mounting on CMs, printed boards, and flexible boards.

【0002】[0002]

【従来の技術】従来から、多くの異方導電性フィルムが
開示されてきた。例えば、特開平7−197001号公
報、特開平4−242001号公報には、樹脂ボール上
に金属メッキを施した導電性粒子を用いた異方導電性フ
ィルムが開示されている。また、例えば、特開昭61ー
55809号公報、特開平5−40402号公報、特開
平7−73740号公報、特開平7−65028号など
には、ニッケル粉、はんだ粉、金メッキニッケル粉など
の金属粉を用いた異方導電性フィルムが開示されてい
る。
2. Description of the Related Art Many anisotropic conductive films have been disclosed. For example, JP-A-7-197001 and JP-A-4-242001 disclose anisotropic conductive films using conductive particles obtained by plating metal on a resin ball. Further, for example, JP-A-61-55809, JP-A-5-40402, JP-A-7-73740, JP-A-7-65028 and the like include nickel powder, solder powder, gold-plated nickel powder and the like. An anisotropic conductive film using metal powder is disclosed.

【0003】[0003]

【発明が解決しようとする課題】樹脂ボール上に金属メ
ッキを施した導電粒子を用いた場合には、熱応力の緩和
に対して効果は発揮されるが、加圧接続時に圧力が数百
本はある接続端子に均一にかかるものではなく、端子に
よっては、導電粒子に過度に圧力がかかることがあり、
このために、圧力がかかりすぎた端子においては樹脂ボ
ールが破壊してしまい接続が安定して得られず、環境性
は悪くなる。
In the case of using conductive particles obtained by plating a metal on a resin ball, the effect of reducing the thermal stress is exhibited, but the pressure is several hundreds at the time of pressure connection. Is not uniformly applied to a certain connection terminal, and depending on the terminal, excessive pressure may be applied to the conductive particles,
For this reason, the resin ball is broken in the terminal where the pressure is applied too much, and the connection cannot be stably obtained, and the environmental property is deteriorated.

【0004】ニッケル粉や金メッキニッケル粉の場合に
は、硬すぎて、変形しずらく、十分な接触面積が得られ
ない。そのため、ガラス基板への接続などにもちいた場
合には、かなりの圧力が必要であり、ガラス基板が壊れ
てしまうことがしばしばあった。接続する条件として
は、これまでは180℃以上を必要としていたが、最近
のファインピッチ接続の流れの中では熱膨張差によるピ
ッチずれの問題が顕在化してきており、低温度化が叫ば
れている。また、圧力に関しては、パネルの大型化の流
れの中で、従来のNi紛のような30kg/cm2以上
の圧力ではロードセルが大きくなりすぎて限界にきてい
る。そのため低圧化が必要とされている。
In the case of nickel powder or gold-plated nickel powder, the powder is too hard to be easily deformed and a sufficient contact area cannot be obtained. Therefore, when used for connection to a glass substrate or the like, considerable pressure is required, and the glass substrate is often broken. Until now, 180 ° C or higher was required as a connection condition. However, in the recent flow of fine pitch connection, the problem of pitch deviation due to a difference in thermal expansion has become apparent, and lower temperature has been called for. I have. As for the pressure, the load cell has become too large at a pressure of 30 kg / cm 2 or more, such as the conventional Ni powder, in the trend of increasing the size of the panel, and has reached its limit. Therefore, lower pressure is required.

【0005】[0005]

【課題を解決するための手段】そこで本発明は、前述し
た課題を解決するためになされたものであり、有機バイ
ンダーと0.2〜25体積%の導電性金属粒子とからな
り、該導電性粒子は、3〜20μ粒子の加重1gfにお
ける変形率(変位量/変形前の粒径)が8〜60%であ
ることを特徴とする異方導電性組成物を提供するもので
ある。
The present invention has been made to solve the above-mentioned problems, and comprises an organic binder and 0.2 to 25% by volume of conductive metal particles. The particles provide an anisotropic conductive composition characterized in that a deformation ratio (displacement amount / particle size before deformation) of 3 to 20 μ particles at a weight of 1 gf is 8 to 60%.

【0006】本発明で用いることのできる導電性金属粒
子は有機バインダーに対して0.3〜25体積%含有す
るが、0.2未満であると、接続に寄与する導電性粒子
の数が少なすぎて安定した接続抵抗が得られない。ま
た、25体積%を越える場合には、導電金属粒子の数が
多すぎて、隣接電極間での絶縁性が低下する。好ましく
は、0.2〜15体積%である。
The conductive metal particles that can be used in the present invention are contained in an amount of 0.3 to 25% by volume based on the organic binder. If the amount is less than 0.2, the number of conductive particles contributing to connection is small. It is not possible to obtain a stable connection resistance. On the other hand, if it exceeds 25% by volume, the number of conductive metal particles is too large, and the insulation between adjacent electrodes is reduced. Preferably, it is 0.2 to 15% by volume.

【0007】本発明で用いる導電性金属粒子は、3〜9
μの大きさの粒子において、加重1gfをかけて押しつ
ぶしたときの粒子の変位量/変形前の粒径が8〜60%
であることを特徴とする。このときの加重としては、島
津製作所製微小圧縮試験機MCTMを用いて平面圧子5
0ミクロン径を用いて速度0.79g/sでガラス板上
に分散させた導電性金属粒子の一つを圧縮変形させたと
きの変形量を圧縮前の粒子径の変形率、すなわち圧縮で
変形した粒径の変形量/圧縮前の粒子径を測定したもの
である。このとき、加重1gfでの変形率が8%未満で
あると、10〜20kgf/cm2の低圧力においても
導電粒子の十分な変形が得られず、電極との接触面積が
不足する。
The conductive metal particles used in the present invention are 3 to 9
For particles having a size of μ, the amount of displacement of the particles when crushed by applying a load of 1 gf / the particle size before deformation is 8 to 60%
It is characterized by being. The weight at this time was determined using a flat indenter 5 using a micro compression tester MCTM manufactured by Shimadzu Corporation.
The amount of deformation when one of the conductive metal particles dispersed on a glass plate is compressed and deformed at a speed of 0.79 g / s using a 0 micron diameter is determined by the deformation ratio of the particle diameter before compression, that is, by compression. The ratio of the amount of deformation of the obtained particle size / the particle size before compression is measured. At this time, if the deformation rate under a load of 1 gf is less than 8%, sufficient deformation of the conductive particles cannot be obtained even at a low pressure of 10 to 20 kgf / cm 2 , and the contact area with the electrode becomes insufficient.

【0008】逆に、変形率が60%を越える場合には、
異方導電性組成物の仮圧着時に導電性金属粒子の変形が
起こり、仮付け後の本圧着時に、有機バインダーの排除
性不足や電極との接続面が不安定になりやすくなる。好
ましくは、9〜40%であり、さらに好ましくは、12
〜35%である。このとき用いる導電性金属粒子として
は、接続に最も寄与しやすい3〜9μの範囲の導電性粒
子に関するものであるが、好ましくは3〜8μ、さらに
好ましくは、4〜8μである。最も好ましくは、4.5
〜7μ粒子に関する値である。
Conversely, when the deformation ratio exceeds 60%,
Deformation of the conductive metal particles occurs at the time of temporary compression of the anisotropic conductive composition, and at the time of final compression after the temporary attachment, insufficient removal of the organic binder and instability of the connection surface with the electrode are likely to occur. Preferably, it is 9 to 40%, and more preferably, 12 to 40%.
~ 35%. The conductive metal particles used at this time relate to conductive particles in the range of 3 to 9 μ which most easily contribute to connection, but are preferably 3 to 8 μ, more preferably 4 to 8 μ. Most preferably, 4.5
These are values for ~ 7μ particles.

【0009】また、導電性金属粒子も粒子分布を有して
いることが好ましい。つまり、圧接時には、圧接ヘッド
の平衡度にバラツキが有り、粒度分布が有るとヘッドの
平衡度がずれても、かならず端子に接続できるため、端
子間のバラツキが無くなり、且つ、圧接されていく過程
で、小粒子径の粉末でヘッドのクッションになりヘッド
のバラツキ性が押さえられる利点がある。粒度分布とし
ては、平均粒子径±2μの範囲のものが30%以上存在
する場合が好ましい。さらに好ましくは、最小粒子径/
最大粒子径比が0.001〜0.49で有ることが好ま
しい。ここで言う最大粒子径とは、体積積算粒度分布に
おいて3%積算値時の粒子径を最小粒子径、97%積算
値時の粒子径を最大粒子径と言う。ここで言う平均粒子
径とは、体積積算平均粒子径であり、測定は、レーザー
回折型測定装置RODOS SR型(SYMPATEC
HEROS&RODOS)を用いた。
Preferably, the conductive metal particles also have a particle distribution. In other words, during pressure welding, there is variation in the degree of balance of the pressure welding head, and if there is a particle size distribution, even if the balance of the head deviates, the head can always be connected to the terminals. Thus, there is an advantage that the powder having a small particle diameter serves as a cushion for the head and suppresses the dispersion of the head. As the particle size distribution, it is preferable that 30% or more of particles having an average particle diameter of ± 2 μm exist. More preferably, the minimum particle size /
It is preferable that the maximum particle diameter ratio is 0.001 to 0.49. As used herein, the term “maximum particle diameter” refers to the minimum particle diameter when the integrated value is 3% and the maximum particle diameter when the integrated value is 97% in the volume integrated particle size distribution. The average particle diameter referred to here is a volume-integrated average particle diameter, and the measurement is performed by using a laser diffraction type measuring device RODOS SR type (SYMPATEC).
(HEROS & RODOS) was used.

【0010】また、本発明で用いる導電性金属粒子は、
十分な導電性を確保するために金属銀、金、銅、はん
だ、すず、鉛、インジウムより選ばれた1種類以上の成
分を有する金属粉(合金を含む)が好ましい。この場合
には、アトマイズ粉、電解メッキ粉、無電解メッキ粉、
化学還元粉、蒸着粉、メカニカルアロイニング粉、CV
D粉及び熱処理などを組み合わせ調製される金属粉が好
ましい。
The conductive metal particles used in the present invention are:
In order to secure sufficient conductivity, a metal powder (including an alloy) having at least one component selected from metallic silver, gold, copper, solder, tin, lead, and indium is preferable. In this case, atomized powder, electrolytic plating powder, electroless plating powder,
Chemical reduction powder, evaporation powder, mechanical alloying powder, CV
D powder and metal powder prepared by combining heat treatment and the like are preferable.

【0011】さらに、導電性金属粉としては、固溶体
層、金属間化合物層を含んでいても構わない。本発明で
用いる導電性金属粒子により、適度の加圧力で変形性を
有するために、圧接時に適度に変形して電極との接触面
積が充分にとれる。そのため、ガラス基板の破壊が起こ
らなく、また、柔らかい有機基板などを用いる場合、硬
い粒子でおこる基板を変形するなどの問題が少ない利点
がある。特に大型のパネルにおける接続では、ロードセ
ルの負担を少なくすることができ、圧着ずれや基板ダメ
ージを少なくできる。
Further, the conductive metal powder may include a solid solution layer and an intermetallic compound layer. Since the conductive metal particles used in the present invention have deformability under a suitable pressing force, they can be appropriately deformed at the time of press-contact and have a sufficient contact area with the electrode. Therefore, there is an advantage that the glass substrate is not broken, and when a soft organic substrate or the like is used, problems such as deformation of the substrate caused by hard particles are reduced. In particular, in connection with a large panel, the load on the load cell can be reduced, and the displacement of press bonding and damage to the substrate can be reduced.

【0012】また、本発明で用いる導電性金属粒子の場
合には、導電粒子内に結晶粒界を有している状態が好ま
しく、すなわち圧接時に粒界に沿ってスムーズに変形し
やすくなるためである。結晶粒の大きさは、80〜50
00Å程度であるのが好ましい。さらに、80〜300
0Å、100〜2000Åがより好ましい。結晶粒の大
きさは、導電性金属粒子の断面の電子顕微鏡観察におい
ての観察によって得られるものである。結晶粒径は最大
結晶ピークについてのX線回折による結晶ピークの高さ
と半値幅の関係から求めた。
Further, in the case of the conductive metal particles used in the present invention, it is preferable that the conductive particles have crystal grain boundaries, that is, the particles are easily deformed along the grain boundaries when pressed. is there. The size of crystal grains is 80-50
It is preferably about 00 °. In addition, 80-300
0 ° and 100 to 2000 ° are more preferable. The size of the crystal grain is obtained by observing the cross section of the conductive metal particle with an electron microscope. The crystal grain size was determined from the relationship between the height of the crystal peak by X-ray diffraction and the half width of the maximum crystal peak.

【0013】80Å未満であると、結晶粒界が少なく加
圧時の変形性が悪い。5000Åを越える場合には、粒
界が大きすぎて変形性のスムーズ性が無くなる。本発明
で用いる導電性金属粉末の調製法としては、例えば、前
記の様に、所定量組成の金属成分を混合して、高温度
(融点より100℃以上)で溶解する。溶融金属をヘリ
ウム、窒素、水素、アルゴンガスを吹き付けて微粉末化
しながら急冷凝固する。急冷凝固をさせすぎると、結晶
の成長が抑制されるため、適度な急冷速度を選ぶことが
需要である。これは、融液と冷却ガスとの供給速度量で
コントロールし、さらに、急冷凝固後に熱処理するのが
好ましい。本発明で用いる急冷凝固の好ましい条件とし
ては、融液の噴出速度に対して、冷却ガス噴出速度が
0.05〜10重量比であることが好ましい。あまり冷
却しすぎると結晶径が小さくなりすぎる。冷却ガスは、
融液との衝突前に150℃以下でコントロールしている
と、冷却能力を充分にとれることになる。
When the angle is less than 80 °, the crystal grain boundaries are small and the deformability under pressure is poor. If it exceeds 5000 °, the grain boundaries are too large and the smoothness of the deformability is lost. As a method for preparing the conductive metal powder used in the present invention, for example, as described above, a predetermined amount of a metal component is mixed and dissolved at a high temperature (100 ° C. or more from the melting point). The molten metal is rapidly cooled and solidified while spraying helium, nitrogen, hydrogen, and argon gas into fine powder. If the rapid solidification is excessively performed, the growth of the crystal is suppressed. Therefore, it is necessary to select an appropriate rapid cooling rate. This is preferably controlled by the supply rate of the melt and the cooling gas, and furthermore, heat treatment is performed after rapid solidification. As preferable conditions of the rapid solidification used in the present invention, it is preferable that the cooling gas ejection speed is 0.05 to 10 weight ratio to the melt ejection speed. If the cooling is too much, the crystal diameter becomes too small. The cooling gas is
If the temperature is controlled at 150 ° C. or lower before collision with the melt, sufficient cooling capacity can be obtained.

【0014】また、急冷凝固後に熱処理するのがさらに
好ましい。得られた導電性金属粉末を凝固後に不活性ガ
ス雰囲気中(例えば、窒素、ヘリウム、アルゴン中で)
50℃まで1〜5時間かけて徐冷させて結晶をある程度
成長させることが必要である。そのために、冷却ガスを
凝固後にすぐに新鮮な不活性ガスでパージすることな
く、粉末との熱交換で暖まった不活性ガスを系内に封入
しておくことが大事である。このとき、凝固粉末を捕集
容器中で堆積させて、熱を保存しながら徐冷すると均一
な結晶性を持つ導電性粒子が得られる。あまり、早く冷
却しすぎると結晶内のひずみが残留したままであり、異
方導電性組成物として加熱圧縮接続したときに、スムー
ズな変形が得られない。
Further, it is more preferable to perform heat treatment after rapid solidification. After solidifying the obtained conductive metal powder, in an inert gas atmosphere (for example, in nitrogen, helium, or argon)
It is necessary to gradually cool to 50 ° C. over 1 to 5 hours to grow crystals to some extent. For this reason, it is important that the inert gas warmed by heat exchange with the powder be enclosed in the system without purging the cooling gas with fresh inert gas immediately after solidification. At this time, the solidified powder is deposited in a collection container, and gradually cooled while storing heat to obtain conductive particles having uniform crystallinity. If the cooling is performed too quickly, the strain in the crystal remains, and when the connection is heated and compressed as an anisotropic conductive composition, smooth deformation cannot be obtained.

【0015】熱処理後に導電性金属粉末の表面にメッキ
をかけても構わない。メッキとしては、無電解、電解メ
ッキなどの組み合わせを用いることができる。メッキ成
分としては、金、スズ、はんだ、ニッケル、銀、インジ
ウムを用いることができる。メッキ層の厚みとしては、
10〜3000Å程度が好ましい。また、本発明で用い
る導電性金属粉末は、粒子表面に酸化性が少ない成分を
多く含んでいることが好ましい。例えば、金、銀などが
好ましく、これらの成分が平均組成より高濃度に粒子表
面に存在するとさらに、マイグレーション性、耐環境性
を向上できる。たとえば、銅銀合金系で粒子表面に銀濃
度が高い粉末や、金濃度が高い銅合金粉末などである。
粒子表面の銀濃度や金濃度は、XPS(X線光電子分光
分析法)で各元素の最も高強度が得られるピークで測定
される値で構わない。仕込みの濃度は、ICP(高周波
誘導結合型プラズマ分析計)で粉末を完全に溶解して測
定されるのが好ましい。
After the heat treatment, the surface of the conductive metal powder may be plated. As the plating, a combination of electroless plating and electrolytic plating can be used. As a plating component, gold, tin, solder, nickel, silver, and indium can be used. As the thickness of the plating layer,
It is preferably about 10 to 3000 °. Further, the conductive metal powder used in the present invention preferably contains a large amount of a component having low oxidizability on the particle surface. For example, gold, silver, and the like are preferable. When these components are present on the particle surface at a higher concentration than the average composition, migration properties and environmental resistance can be further improved. For example, a copper-silver alloy-based powder having a high silver concentration on the particle surface, a copper alloy powder having a high gold concentration, or the like is used.
The silver concentration or the gold concentration on the particle surface may be a value measured by a peak at which the highest intensity of each element is obtained by XPS (X-ray photoelectron spectroscopy). The charged concentration is preferably measured by completely dissolving the powder with an ICP (high frequency inductively coupled plasma analyzer).

【0016】本発明で用いることができる有機バインダ
ーとしては、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹
脂、電子線硬化性樹脂から選ばれた1種類以上の樹脂を
含むものである。これらの樹脂としては、例えば、エポ
キシ樹脂、フェノール樹脂、シリコーン樹脂、ウレタン
樹脂、アクリル樹脂、ポリイミド樹脂、フェノキシ樹
脂、ポリビニルブチラール樹脂、SBR、SBS、NB
R、ポリエーテルスルフォン樹脂、ポリエーテルテレフ
タレート樹脂、ポリフェニレンスルフィド樹脂、ポリア
ミド樹脂、ポリエーテルオキシド樹脂、ポリアセタール
樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリイソ
ブチレン樹脂、アルキルフェノール樹脂、スチレンブタ
ジエン樹脂、カルボキシル変性ニトリル樹脂、ポリフェ
ニレンエーテル樹脂、ポリカーボネート樹脂、ポリエー
テルケトン樹脂等又はそれらの変性樹脂が挙げられる。
特に基板との接着性を必要とする場合には、エポキシ樹
脂を含むことが好ましい。エポキシ樹脂を用いる場合に
は、必要に応じてリペアー性を持たせるために、フェノ
キ樹脂、ポリエステル樹脂、アクリルゴム、SBR、N
BR、シリコーン樹脂、ポリビニルブチラール樹脂、ウ
レタン樹脂、ポリアセタール樹脂、メラミン樹脂、ポリ
アミド樹脂、ポリイミド樹脂、SBS、シアノアクリレ
ート、カルボキシル基、ヒドロシキシル基、ビニル基、
アミノ基などの官能基を含有するゴム、エラストマー類
を混合して用いることが好ましい。
The organic binder that can be used in the present invention contains at least one resin selected from thermosetting resins, thermoplastic resins, photocurable resins, and electron beam curable resins. These resins include, for example, epoxy resin, phenol resin, silicone resin, urethane resin, acrylic resin, polyimide resin, phenoxy resin, polyvinyl butyral resin, SBR, SBS, NB
R, polyether sulfone resin, polyether terephthalate resin, polyphenylene sulfide resin, polyamide resin, polyether oxide resin, polyacetal resin, polystyrene resin, polyethylene resin, polyisobutylene resin, alkylphenol resin, styrene butadiene resin, carboxyl-modified nitrile resin, polyphenylene Examples thereof include an ether resin, a polycarbonate resin, a polyether ketone resin, and the like, and modified resins thereof.
In particular, when adhesiveness to a substrate is required, it is preferable to include an epoxy resin. When an epoxy resin is used, phenoki resin, polyester resin, acrylic rubber, SBR, N
BR, silicone resin, polyvinyl butyral resin, urethane resin, polyacetal resin, melamine resin, polyamide resin, polyimide resin, SBS, cyanoacrylate, carboxyl group, hydroxyyl group, vinyl group,
It is preferable to mix and use rubbers and elastomers containing a functional group such as an amino group.

【0017】エポキシ樹脂としては、ビスフェノールA
型、ビスフェノールF型、ビスフェノールS型、ノボラ
ック型、脂環式、複素環式、アルキル多価フェノール
型、フェニルグリシジルエーテル型、多官能ポリエーテ
ル型、臭素化フェノールノボラック型、ナフタレン型、
変性ビスフェノールS型、ジグリシジルアニリン型、ジ
グリシジルオルソトルイジン型、ウレタン変性型、ゴム
変性型、シリコーン変性型、鎖状変性タイプなどのエポ
キシ樹脂を用いることが好ましい。
As the epoxy resin, bisphenol A
Type, bisphenol F type, bisphenol S type, novolak type, alicyclic, heterocyclic, alkyl polyphenol type, phenylglycidyl ether type, polyfunctional polyether type, brominated phenol novolak type, naphthalene type,
It is preferable to use an epoxy resin such as a modified bisphenol S type, a diglycidyl aniline type, a diglycidyl ortho toluidine type, a urethane modified type, a rubber modified type, a silicone modified type, and a chain modified type.

【0018】本発明の異方導電性組成物は、有機バイン
ダーに対して導電性粒子0.1〜25体積%含有するこ
とを特徴とするが、好ましくは0.2〜15体積%、さ
らに好ましくは0.2〜10体積%である。0.1体積
%未満の場合には、接続に寄与する導電粒子の数が足り
なくて、端子のバラツキが生じる。25体積%を越える
場合には、端子間での電流リークの問題が発生する。
The anisotropic conductive composition of the present invention is characterized by containing 0.1 to 25% by volume of conductive particles with respect to an organic binder, preferably 0.2 to 15% by volume, more preferably 0.2 to 15% by volume. Is 0.2 to 10% by volume. If the amount is less than 0.1% by volume, the number of conductive particles contributing to the connection is insufficient, and the terminals vary. If it exceeds 25% by volume, a problem of current leakage between terminals occurs.

【0019】有機バインダーとしてエポキシ樹脂を用い
る場合には、硬化剤として潜在性硬化剤を用いるのが好
ましい。潜在性硬化剤としては、ホウ素化合物、ヒドラ
ジド、3級アミン、イミダゾール、ジシアンジアミド、
無機酸、カルボン酸無水物、チオール、イソシアネー
ト、ホウ素錯塩及びそれらの誘導体が好ましい。潜在性
硬化剤の中でも、マイクロカプセル型の硬化剤が好まし
い。マイクロカプセル型硬化剤は、前記硬化剤の表面を
熱可塑性樹脂などでコーテイングしたもので、接続作業
時の温度や圧力でマイクロカプセルが破壊され、硬化剤
が有機バインダー中に急速に拡散して硬化促進する。マ
イクロカプセル型潜在性硬化剤の中でもマイクロカプセ
ル型イミダゾール誘導体エポキシ化合物がより好まし
い。
When an epoxy resin is used as the organic binder, it is preferable to use a latent curing agent as the curing agent. As the latent curing agent, boron compounds, hydrazide, tertiary amine, imidazole, dicyandiamide,
Preference is given to inorganic acids, carboxylic anhydrides, thiols, isocyanates, boron complexes and their derivatives. Among the latent curing agents, a microcapsule-type curing agent is preferable. The microcapsule-type curing agent is obtained by coating the surface of the curing agent with a thermoplastic resin or the like.The microcapsules are broken by the temperature and pressure during the connection work, and the curing agent is rapidly diffused into the organic binder and cured. Facilitate. Among the microcapsule-type latent curing agents, microcapsule-type imidazole derivative epoxy compounds are more preferable.

【0020】マイクロカプセル型イミダゾール誘導体エ
ポキシ化合物としては、イミダゾール誘導体とエポキシ
化合物との反応生成物を粉砕等により微粉末としたもの
をさらに、例えばイソシアネート化合物などと反応して
カプセル化し、常温での安定性を高めたものである。イ
ミダゾール誘導体としては、イミダゾール、2−メチル
イミダゾール、2−エチルイミダゾール、2−エチル−
4メチルイミダゾール、2−フェニルイミダゾール、2
−フェニル−4メチルイミダゾール、1−ベンジル−2
−メチルイミダゾール、1−ベンジル−2エチルイミダ
ゾール、1−ベンジル−2−エチル−5−メチルイミダ
ゾール、2−フェニル−4−メチル−5ヒドロキシメチ
ルイミダゾール、2−フェニル−4,5−ジヒドロキシ
メチルイミダゾール等が挙げられる。
As the microcapsule type imidazole derivative epoxy compound, a product obtained by pulverizing a reaction product of the imidazole derivative and the epoxy compound into fine powder is further reacted with, for example, an isocyanate compound or the like, and encapsulated. It is a thing that raised the character. Examples of the imidazole derivative include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-
4-methylimidazole, 2-phenylimidazole, 2
-Phenyl-4 methyl imidazole, 1-benzyl-2
-Methylimidazole, 1-benzyl-2-ethylimidazole, 1-benzyl-2-ethyl-5-methylimidazole, 2-phenyl-4-methyl-5hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole and the like Is mentioned.

【0021】また、これらの硬化剤を用いる場合には、
エポキシ化合物としては、ビスフェノールA型、ビスフ
ェノールF型、フェノールノボラック型、臭化ビスフェ
ノールA等のグリシジルエーテル型エポキシ樹脂、ダイ
マー酸ジグリシジルエステル、フタル酸ジグリシジルエ
ステル、ナフタレン型等が挙げられる。これらのエポキ
シ樹脂を用いる場合には、マイクロカプセル型硬化剤
は、エポキシ樹脂100重量部に対して、5〜250重
量部の量で用いることができる。マイクロカプセル型硬
化剤が5重量部未満であると硬化不足になりやすく、2
50重量部を越える場合には、保存安定性が不足する。
When these curing agents are used,
Examples of the epoxy compound include glycidyl ether type epoxy resins such as bisphenol A type, bisphenol F type, phenol novolac type, and bisphenol A bromide, diglycidyl dimer acid ester, diglycidyl phthalate ester, and naphthalene type. When these epoxy resins are used, the microcapsule-type curing agent can be used in an amount of 5 to 250 parts by weight based on 100 parts by weight of the epoxy resin. If the amount of the microcapsule type curing agent is less than 5 parts by weight, curing tends to be insufficient, and 2
If it exceeds 50 parts by weight, storage stability is insufficient.

【0022】マイクロカプセル型硬化剤の粒子径は、平
均粒子径で1〜10μで有ることが好ましい。平均粒子
径が10μを越える場合には、異方導電性組成物のフィ
ルム化した場合(異方導電性フィルムと呼ぶ)、塗膜の
厚みムラを生じる。本発明の異方導電性組成物を塗布す
る場合には、必要に応じて適当な溶剤を用いることがで
きる。マイクロカプセル型硬化剤に損傷を与えない溶剤
が好ましい。例えば、MEK、トルエン、ベンゼン、キ
シレン、メチルイソブチルケトン、酢酸エチル、酢酸ブ
チル、芳香族系炭化水素、エーテル、ケトン、エステル
などが好ましい。
The average particle diameter of the microcapsule type curing agent is preferably 1 to 10 μm. When the average particle size exceeds 10 μm, when the anisotropic conductive composition is formed into a film (referred to as an anisotropic conductive film), thickness unevenness of the coating film occurs. When applying the anisotropic conductive composition of the present invention, an appropriate solvent can be used as necessary. Solvents that do not damage the microcapsule curing agent are preferred. For example, MEK, toluene, benzene, xylene, methyl isobutyl ketone, ethyl acetate, butyl acetate, aromatic hydrocarbon, ether, ketone, ester and the like are preferable.

【0023】本発明の異方導電性組成物には、導電粒子
の分散性と接続後の耐湿度性を向上させるために、公知
のシランカプリング剤、チタンカップリング剤、アルミ
カップリング剤等を配合することができる。カップリン
グ剤を用いるときには、導電粒子100重量部に対し
て、5重量部まで添加することができる。好ましくは、
導電粒子を予めカップリング剤で処理しておくことが好
ましい。
The anisotropic conductive composition of the present invention contains a known silane coupling agent, titanium coupling agent, aluminum coupling agent and the like in order to improve the dispersibility of the conductive particles and the moisture resistance after connection. Can be blended. When a coupling agent is used, it can be added up to 5 parts by weight based on 100 parts by weight of the conductive particles. Preferably,
It is preferable that the conductive particles are previously treated with a coupling agent.

【0024】本発明の異方導電性組成物は以下のように
作成される。導電粒子及び有機バインダ−(必要に応じ
て溶剤に溶解させた状態)、必要に応じて硬化剤を適量
混合する。混合には、プラネタリーミキサー、三本ロー
ル、ニーダー、脱泡機、羽根付き撹拌機、ボールミルな
ど公知の装置を用いて混合する。このとき導電粒子を充
分分散させることが好ましい。こうして得られた言う異
方導電性組成物は、粘度1000CPS〜20万CPS
程度であるのが好ましいが、必ずしもこの範囲である必
要はない。得られた異方導電性組成物は、このまま接続
基板上の電極や端子上にディスペンサーやスクリーン印
刷等の印刷法で塗布することもできる。また、異方導電
性組成物をベ−スフィルム上にコートした状態のフィル
ム状(異方導電性フィルムという)のものでも構わな
い。ベースフィルム上にコートする場合には、ブレー
ド、ダイコーター等の公知の方法を用いることができ
る。塗布された異方導電性フィルムが溶剤を含んでいる
場合には、充分に乾燥するのが好ましい。乾燥温度とし
ては室温から80℃までの範囲で調整されるのが好まし
い。 異方導電性フィルムの厚みとしては、5〜500
μ程度であり、幅は特に制限はない。異方導電性フィル
ムを接続に用いる場合には、これをスリッテイングして
用いることができる。例えば、0.2〜200mm幅程
度の異方導電性フィルムをリール巻きにした状態から引
き出して基板の接続端子上に貼り付けて用いるのが好ま
しい。
The anisotropic conductive composition of the present invention is prepared as follows. An appropriate amount of conductive particles and an organic binder (dissolved in a solvent if necessary) and, if necessary, a curing agent are mixed. Mixing is performed using a known device such as a planetary mixer, a three-roller, a kneader, a defoamer, a stirrer with blades, and a ball mill. At this time, it is preferable to sufficiently disperse the conductive particles. The thus obtained anisotropic conductive composition has a viscosity of 1000 CPS to 200,000 CPS.
The degree is preferably, but not necessarily, within this range. The obtained anisotropic conductive composition can be applied as it is on electrodes or terminals on the connection substrate by a printing method such as dispenser or screen printing. Further, the film may be in the form of a film in which an anisotropic conductive composition is coated on a base film (referred to as an anisotropic conductive film). When coating on a base film, a known method such as a blade or a die coater can be used. When the applied anisotropic conductive film contains a solvent, it is preferable to dry it sufficiently. The drying temperature is preferably adjusted in the range from room temperature to 80 ° C. The thickness of the anisotropic conductive film is 5 to 500
It is about μ, and the width is not particularly limited. When an anisotropic conductive film is used for connection, it can be slit and used. For example, it is preferable that an anisotropic conductive film having a width of about 0.2 to 200 mm is drawn from a state of being wound on a reel and is attached to connection terminals of a substrate for use.

【0025】本発明の異方導電性組成物は、これまでに
硬すぎて圧接時の導電性粒子が変形しづらく、導通面積
が充分とれなかったことで、大型パネルへの応用ができ
なかった問題や、樹脂粒子のように、変形性は良いが、
金属配線等の酸化皮膜を破壊できなかった問題が無く、
適度な硬度を有し、圧接過程でうまく圧力を緩和でき、
ガラスなどの破壊を防止でき充分な接触面積を有し、金
属配線上の酸化皮膜を塑性変形時に削り取り、配線の金
属成分との安定なコンタクトを有する利点を持つもので
ある。また、さらに平均粒子径が2〜15μであり、粒
度分布を有していると、圧力の緩衝性が良好で圧力の偏
りがある時でも緩衝効果を有する。さらに、最大粒子径
と最小粒子径が少なくとも1μ以上差が有ることが電極
間ギャップ(圧力の変位)をうまく埋め合わせることが
でき好ましい。
The anisotropic conductive composition of the present invention has not been applied to a large-sized panel because the conductive particles are so hard that the conductive particles are not easily deformed at the time of pressure welding and the conductive area is not sufficient. Deformability is good, like problems and resin particles,
There was no problem that the oxide film such as metal wiring could not be destroyed.
It has moderate hardness and can relieve the pressure well during the welding process.
It has an advantage that it has a sufficient contact area that can prevent the destruction of glass and the like, and that the oxide film on the metal wiring is scraped off at the time of plastic deformation to provide stable contact with the metal component of the wiring. Further, when the average particle diameter is 2 to 15 μ and the particle size distribution is provided, the buffering property of the pressure is good, and the buffering effect is obtained even when the pressure is uneven. Further, it is preferable that the difference between the maximum particle diameter and the minimum particle diameter is at least 1 μm because the gap between electrodes (displacement of pressure) can be successfully compensated.

【0026】本発明の異方導電性組成物及び異方導電性
フィルムは、基板上端子同士の接続や、チップ電極と基
板端子との接続にも用いることができる。接続基板とし
ては、液晶ディスプレイ(アモルファスシリコン、高温
ポリシリコン、低温ポリシリコン)、プラズマディスプ
レイ、エレクトロルミネッサンス等のパネル、プリント
基板、ICカード基板、ビルドアップ基板(絶縁層、導
体回路層を交互あるいは一括して多層化した基板)、低
温焼成用基板の電気配線が施されている基板などを用い
ることができる。被接続基板または被接続チップとして
は、フレキシブルまたは硬質な配線基板、コンデンサ
ー、磁気センサー、抵抗器、LSIチップ、コイルや、
LSIパッケージ(QFP、DIP、SOP、BGA、
CSP等)などが挙げられる。
The anisotropically conductive composition and the anisotropically conductive film of the present invention can be used for connection between terminals on a substrate and for connection between chip electrodes and substrate terminals. Connection substrates include liquid crystal displays (amorphous silicon, high-temperature polysilicon, low-temperature polysilicon), plasma displays, panels such as electroluminescence, printed boards, IC card boards, and build-up boards (insulating layers and conductive circuit layers alternately or alternately). A substrate provided with electrical wiring such as a low-temperature baking substrate can be used. As a connected substrate or a connected chip, a flexible or hard wiring substrate, a capacitor, a magnetic sensor, a resistor, an LSI chip, a coil,
LSI packages (QFP, DIP, SOP, BGA,
CSP etc.).

【0027】接続基板又は被接続基板の材質は特に制限
はなく、材質としては例えば、ポリイミド、ガラスエポ
キシ、感光性エポキシ、紙フェノール、ポリエステル、
ガラス、シリコン、石英、ポリフェニレンエーテル、ポ
リエーテルイミド、ポリエーテルケトン、ポリエチレン
テレフタレート、ポリフェニレンスルフォン、アルミ
ナ、窒化アルミナ、ポリアミドイミド、テトラフルオロ
エチレン、ポリフェニレンテレフタレート、BTレジン
や、それらに誘導体、単層、積層板(ビルドアップ基
板)、セラミックス基板等が挙げられる。
The material of the connection board or the board to be connected is not particularly limited. Examples of the material include polyimide, glass epoxy, photosensitive epoxy, paper phenol, polyester,
Glass, silicon, quartz, polyphenylene ether, polyetherimide, polyetherketone, polyethylene terephthalate, polyphenylene sulphone, alumina, alumina nitride, polyamide imide, tetrafluoroethylene, polyphenylene terephthalate, BT resin, and derivatives, single layers and laminates thereof Plate (build-up substrate), ceramic substrate and the like.

【0028】接続基板あるいは被接続基板上に形成され
ている接続用電極(端子)の導体は特に制限はなく、そ
の例としては、ITO、IO、銅、銀、銅銀合金、銀パ
ラジウム、金、白金、ニッケル、アルミニウム、銀白
金、すず鉛はんだ、すず銀はんだ、スズ、クロム、イン
ジウム合金及びこれらに導体上に金メッキ、すずメッ
キ、ニッケルメッキ、スズ鉛メッキ、クロムメッキなど
のメッキを施した導体等の公知の導体が挙げられる。導
体の形成は、公知の方法により作成する事ができる。例
えば、導体はメッキ、蒸着、リフロー、導体ペースト、
ワイヤーボンデイング、フォトリソグラフで作製され
る。
The conductor of the connection electrode (terminal) formed on the connection substrate or the substrate to be connected is not particularly limited, and examples thereof include ITO, IO, copper, silver, copper-silver alloy, silver palladium, and gold. , Platinum, nickel, aluminum, silver platinum, tin-lead solder, tin-silver solder, tin, chromium, indium alloy, and conductors plated with gold, tin, nickel, tin-lead, chrome, etc. Known conductors such as conductors may be used. The conductor can be formed by a known method. For example, for conductors, plating, evaporation, reflow, conductor paste,
It is manufactured by wire bonding and photolithography.

【0029】本発明の異方導電性組成物及び異方導電性
フィルムは、リペアーする場合には、不良の接続基板
(例えばTAB等)やチップを機械的にはがし、基板上
に残存する異方導電性組成物又は異方導電性フィルムの
一部を溶剤を用いて繰り返し剥ぎ取る。接続端子上の異
方導電性組成物又は異方導電性フィルムがある程度除去
さるまで繰り返し行う。
When the anisotropically conductive composition and the anisotropically conductive film of the present invention are repaired, a defective connection substrate (for example, TAB or the like) or a chip is mechanically peeled off and an anisotropic conductive film remaining on the substrate is repaired. A part of the conductive composition or the anisotropic conductive film is repeatedly peeled off using a solvent. The process is repeated until the anisotropic conductive composition or the anisotropic conductive film on the connection terminal is removed to some extent.

【0030】接続条件は、従来では、温度に関しては、
180℃を越えることが多く、熱膨張率の差により接続
ムラが生じたりして低温度化が必要であった。圧力もN
i紛を導電性粉末とする場合などには30kg/cm2
以上の圧力を必要とし、今後期待されている大型パネル
などの接続にはロードセルの限界を越えるようになって
きたため、低圧化に対応できる異方導電性フィルムが必
要になってきている。これに対して、本発明の異方導電
性組成物及び異方導電子フィルムは、適度な変形性と、
硬さを合わせ持つために、低圧でも充分な高導電性接続
可能な優れて特性を発揮できるものであり、且つ酸化皮
膜を有する導体の酸化皮膜も充分に破ることで、接続信
頼性にも優れる。
Conventionally, connection conditions are as follows:
In many cases, the temperature exceeds 180 ° C., and uneven connection occurs due to a difference in coefficient of thermal expansion. Pressure is also N
30kg / cm 2 when using i powder as conductive powder
Since the above pressure is required, and the connection of large panels and the like, which is expected in the future, has come to exceed the limit of the load cell, an anisotropic conductive film that can cope with low pressure is required. On the other hand, the anisotropic conductive composition and the anisotropic conductive film of the present invention have moderate deformability,
It has excellent hardness that can be connected with a sufficiently high conductivity even at low pressure because it has the same hardness, and also has excellent connection reliability by sufficiently breaking the oxide film of the conductor having an oxide film. .

【0031】[0031]

【発明の実施の形態】以下に本発明の異方導電性組成物
及び異方導電性フィルムの実施例を示し、更に詳細に本
発明を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the anisotropically conductive composition and anisotropically conductive film of the present invention are shown below, and the present invention will be described in more detail.

【0032】[0032]

【実施例】実施例及び比較例で用いる導電性金属粉末を
表1に示す。また、表2の異方導電性組成物及び異方導
電性フィルムを示す。常温で固形の樹脂については、溶
剤を加えて酢酸エチル、トルエン混合溶液で調製した。
異方導電性フィルムについては、ベースフィルムとして
はPETフィルム上に塗工した。塗工後、60℃で連続
炉で乾燥した。表3に異方導電性組成物及びフィルムの
評価結果を示す。導通性については、4端子抵抗測定
し、接続抵抗値が200mオーム以下を○とした。20
0〜500mオームを△、それを越える場合を×とし
た。
EXAMPLES Table 1 shows conductive metal powders used in Examples and Comparative Examples. Further, the anisotropic conductive composition and the anisotropic conductive film in Table 2 are shown. The resin solid at room temperature was prepared by adding a solvent and adding a mixed solution of ethyl acetate and toluene.
The anisotropic conductive film was coated on a PET film as a base film. After coating, it was dried in a continuous furnace at 60 ° C. Table 3 shows the evaluation results of the anisotropic conductive composition and the film. Regarding the continuity, four-terminal resistance was measured, and a connection resistance value of 200 mOhm or less was evaluated as ○. 20
0 to 500 mOhm was rated as Δ, and exceeding the rating was rated as x.

【0033】バラツキについては、接続抵抗値が10端
子測定して接続抵抗の平均値に対して3倍以上の値が無
い場合を○とし、3倍を越える端子がある場合を×とし
た。環境性については、−55〜125℃(各30分)
1000ヒートサイクルで抵抗値が5倍を越える場合を
×、2〜5倍を△、2倍未満を○とした。絶縁性につい
ては、端子と端子間で絶縁抵抗1015オーム以上を○と
し、それ以下を×とした。表4に比較例に用いた異方導
電性組成物を示す。表5に比較例の評価例を示す。
Regarding the variation, when the connection resistance value was measured at 10 terminals and there was no value more than 3 times the average value of the connection resistance, it was evaluated as ○, and when there was a terminal exceeding 3 times as much as ×. For environmental properties, -55 to 125 ° C (30 minutes each)
The case where the resistance value exceeded 5 times in 1000 heat cycles was evaluated as X, the case where the resistance value was 2 to 5 times as Δ, and the case where the resistance value was less than 2 times as O. Regarding the insulating property, a symbol “○” indicates an insulation resistance of 10 15 ohms or more between terminals, and a symbol “×” indicates an insulation resistance between terminals. Table 4 shows the anisotropic conductive compositions used in Comparative Examples. Table 5 shows an evaluation example of the comparative example.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】[0039]

【発明の効果】本発明の異方導電性組成物は、これまで
に硬すぎて圧接時の導電性粒子が変形しづらく、導通面
積が充分とれなかったことで、大型パネルへの応用がで
きなかった問題や、樹脂粒子のように、変形性は良い
が、金属配線等の酸化皮膜を破壊できなかった問題がな
く、適度な硬度を有し、圧接過程でうまく圧力を緩和で
き、ガラスなどの破壊を防止でき充分な接触面積を有
し、金属配線上の酸化皮膜を塑性変形時に削り取り、配
線の金属成分との安定なコンタクトを有する利点を持つ
ものである。さらに、適度の結晶粒子、粒界を含むため
に、圧接時に低圧でもうまく粒径に沿って変形が進み、
圧接ムラが少ないものである。
Industrial Applicability The anisotropic conductive composition of the present invention can be applied to a large-sized panel because the conductive particles are so hard that the conductive particles are not easily deformed at the time of pressure welding and the conductive area cannot be sufficiently obtained. There was no problem that did not exist, and there was no problem that the oxide film of metal wiring etc. could not be destroyed, as in the case of resin particles, but there was no problem. This has the advantage of having a sufficient contact area, preventing the oxide film on the metal wiring from being scraped off during plastic deformation, and having a stable contact with the metal component of the wiring. Furthermore, to include moderate crystal grains and grain boundaries, deformation proceeds well along the grain size even at low pressure during pressure welding,
There is little unevenness in pressure contact.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機バインダーと0.1〜25体積%の
導電性金属粒子とからなり、該導電性金属粒子は、3〜
9μの範囲の粒子1個の加重1gfにおける変形率(変
位量/変形前の粒径)が8〜60%であることを特徴と
する異方導電性組成物。
1. An organic binder comprising 0.1 to 25% by volume of conductive metal particles, wherein the conductive metal particles are 3 to
An anisotropic conductive composition, wherein a deformation ratio (displacement amount / particle size before deformation) of one particle in a range of 9 μm with a weight of 1 gf is 8 to 60%.
【請求項2】 導電性金属粒子が結晶性粒子であり、導
電性金属粒子内部に存在する結晶粒の大きさが80〜5
000Åであることを特徴とする請求項1記載の異方導
電性組成物。
2. The conductive metal particles are crystalline particles, and the size of the crystal grains present inside the conductive metal particles is 80 to 5
2. The anisotropically conductive composition according to claim 1, wherein said composition is 000 °.
【請求項3】 導電性金属粒子が、銅、銀、金、スズか
ら選ばれた1種類以上の成分を有する金属粉末であるこ
とを特徴とする請求項1又は2記載の異方導電性組成
物。
3. The anisotropic conductive composition according to claim 1, wherein the conductive metal particles are a metal powder having at least one component selected from copper, silver, gold, and tin. Stuff.
【請求項4】 請求項1〜3のいずれかに記載の異方導
電性組成物よりなる異方導電性フィルム。
4. An anisotropic conductive film comprising the anisotropic conductive composition according to claim 1.
JP21146197A 1997-08-06 1997-08-06 Anisotropic conductive composition Expired - Fee Related JP3660787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21146197A JP3660787B2 (en) 1997-08-06 1997-08-06 Anisotropic conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21146197A JP3660787B2 (en) 1997-08-06 1997-08-06 Anisotropic conductive composition

Publications (2)

Publication Number Publication Date
JPH1153942A true JPH1153942A (en) 1999-02-26
JP3660787B2 JP3660787B2 (en) 2005-06-15

Family

ID=16606331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21146197A Expired - Fee Related JP3660787B2 (en) 1997-08-06 1997-08-06 Anisotropic conductive composition

Country Status (1)

Country Link
JP (1) JP3660787B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261778A (en) * 2000-03-15 2001-09-26 Harima Chem Inc Electroconductive silver paste for making flexible circuit board
JP2002270641A (en) * 2001-03-12 2002-09-20 Asahi Kasei Corp Anisotropic conductive film for bare chip
JP2005175160A (en) * 2003-12-10 2005-06-30 Sanyo Electric Co Ltd Photovoltaic device
KR100523841B1 (en) * 2002-09-16 2005-10-26 주식회사 엠피코 Compound of Conductive sheet and method for preparing it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261778A (en) * 2000-03-15 2001-09-26 Harima Chem Inc Electroconductive silver paste for making flexible circuit board
JP4558882B2 (en) * 2000-03-15 2010-10-06 ハリマ化成株式会社 Conductive silver paste for flexible circuit board formation
JP2002270641A (en) * 2001-03-12 2002-09-20 Asahi Kasei Corp Anisotropic conductive film for bare chip
KR100523841B1 (en) * 2002-09-16 2005-10-26 주식회사 엠피코 Compound of Conductive sheet and method for preparing it
JP2005175160A (en) * 2003-12-10 2005-06-30 Sanyo Electric Co Ltd Photovoltaic device
US7947895B2 (en) 2003-12-10 2011-05-24 Sanyo Electric Co., Ltd. Photovoltaic device

Also Published As

Publication number Publication date
JP3660787B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US6190578B1 (en) Anisotropic conductive composition
TW516979B (en) Functional alloy particles
US5001542A (en) Composition for circuit connection, method for connection using the same, and connected structure of semiconductor chips
EP1586604B1 (en) Process for producing a conductive silver paste and conductive film
KR100801401B1 (en) Adhesives and Adhesive Films
US20080064849A1 (en) Adhesive film for circuit connection, and circuit connection structure
WO1996024938A1 (en) Composite conductive powder, conductive paste, method of producing conductive paste, electric circuit and method of fabricating electric circuit
KR20110116034A (en) Circuit connecting adhesion film and circuit connecting structure
JPH07157720A (en) Film having anisotropic electrical conductivity
WO2007099965A1 (en) Circuit connecting material, connection structure for circuit member using the same, and method for producing such connection structure
JPH1021740A (en) Anisotropic conductive composition and film
JP3660787B2 (en) Anisotropic conductive composition
EP1657725B1 (en) Insulation-coated electroconductive particles
JPH1021741A (en) Anisotropic conductive composition and film
JP3519100B2 (en) Anisotropic conductive adhesive composition
WO2016140326A1 (en) Method for manufacturing conductive particles, anisotropically conductive adhesive, and method for mounting component
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP3449889B2 (en) Anisotropic conductive adhesive
JP4108161B2 (en) Anisotropic conductive composition and film
JPH02288019A (en) Anisotropic conductive film
JP2680430B2 (en) Anisotropic conductive film
JP3614228B2 (en) Anisotropic conductive composition
WO2022092047A1 (en) Electrically conductive adhesive, anisotropic electrically conductive film, connection structure, and method for producing connection structure
JP2001202830A (en) Anisotropy conductive film and electrical connection body using it
JP2002270641A (en) Anisotropic conductive film for bare chip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050318

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees