JPH1152110A - Reflection body and reflection type liquid crystal display device - Google Patents

Reflection body and reflection type liquid crystal display device

Info

Publication number
JPH1152110A
JPH1152110A JP9203637A JP20363797A JPH1152110A JP H1152110 A JPH1152110 A JP H1152110A JP 9203637 A JP9203637 A JP 9203637A JP 20363797 A JP20363797 A JP 20363797A JP H1152110 A JPH1152110 A JP H1152110A
Authority
JP
Japan
Prior art keywords
reflector
reflection
liquid crystal
crystal display
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9203637A
Other languages
Japanese (ja)
Other versions
JP3547591B2 (en
Inventor
Tomomasa Takatsuka
智正 高塚
Koichi Umagami
幸一 馬上
Masao Okita
正夫 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP20363797A priority Critical patent/JP3547591B2/en
Priority to TW087111807A priority patent/TW496992B/en
Priority to US09/123,909 priority patent/US6421106B1/en
Priority to KR1019980030306A priority patent/KR100272883B1/en
Priority to CN98117102A priority patent/CN1103937C/en
Publication of JPH1152110A publication Critical patent/JPH1152110A/en
Priority to US09/649,298 priority patent/US6429919B1/en
Application granted granted Critical
Publication of JP3547591B2 publication Critical patent/JP3547591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflection body capable of obtaining the high reflection effciency over a wide angle and to provide a reflection type liquid crystal display device whose visual angle is wide even in every direction and which has a brighter display surface. SOLUTION: Many recessed part 4 whose inner surfaces are one part of sphericalities are continuously formed on the surface of a reflection body 1. Then, depths of respective recessed parts 4 are formed at random within the range of 0.1 to 3 μm and pitches among adjacent recessed parts 4 are arranged at random within the range of 5 to 50 μm and inclinations of inner surfaces of the recessed parts 4 are set within the range of -18 to 18 degrees. Moreover, the reflection type liquid crystal display device is provided with this reflection body 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、広範囲にわたって
均一な明るさと白さを有する反射体、およびその反射体
を用いた反射型液晶表示装置に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a reflector having uniform brightness and whiteness over a wide range, and a reflection type liquid crystal display device using the reflector.

【0002】[0002]

【従来の技術】近年、ハンディタイプのコンピュータな
どの表示部として、特に消費電力が小さいことから反射
型液晶表示装置が広く利用されている。この反射型液晶
表示装置には、表示面側から入射した光を反射させて表
示を行うための反射板が備えられている。そして、従来
の反射板には、表面が鏡面状態とされた反射板や表面に
ランダムな凹凸が形成された反射板が用いられていた。
このうち、図9に示すように、ランダムな凹凸面を備え
た従来の反射板60は、例えば厚さ300ないし500
μmのポリエステルフィルム61を加熱することによっ
てその表面に高さが数μmの凹凸からなる凹凸面61a
を形成し、さらに凹凸面61a上に蒸着等の方法を用い
てアルミニウムや銀等からなる反射膜62を成膜するこ
とにより形成したものである。
2. Description of the Related Art In recent years, a reflection type liquid crystal display device has been widely used as a display unit of a handy type computer or the like because of particularly low power consumption. This reflective liquid crystal display device includes a reflector for reflecting light incident from the display surface side to perform display. As a conventional reflector, a reflector having a mirror-finished surface or a reflector having random irregularities formed on the surface has been used.
Among them, as shown in FIG. 9, a conventional reflector 60 having a random uneven surface has a thickness of 300 to 500, for example.
By heating a polyester film 61 of μm, an uneven surface 61 a having a height of several μm
And a reflective film 62 made of aluminum, silver, or the like is formed on the uneven surface 61a by a method such as vapor deposition.

【0003】この種の反射板60を用いた従来の反射型
液晶表示装置は、図10に示すように、一対のガラス基
板51、52の各々の対向面側に透明電極層53、54
を設け、さらにこれら透明電極層53、54の各々の上
に液晶の配向膜55、56を設け、これら配向膜55、
56間に液晶層57を配設した構成となっている。そし
て、ガラス基板51、52の外側にそれぞれ第1、第2
の偏光板58、59を設け、第2の偏光板59の外側に
は反射板60を反射膜62側の面を第2の偏光板59側
に向けて取り付けている。
As shown in FIG. 10, in a conventional reflection type liquid crystal display device using a reflection plate 60 of this kind, transparent electrode layers 53, 54 are provided on opposite sides of a pair of glass substrates 51, 52, respectively.
Are further provided on each of the transparent electrode layers 53 and 54, and liquid crystal alignment films 55 and 56 are provided.
A liquid crystal layer 57 is provided between the two. Then, the first and second portions are provided outside the glass substrates 51 and 52, respectively.
Are provided, and a reflection plate 60 is attached to the outside of the second polarization plate 59 with the surface on the reflection film 62 side facing the second polarization plate 59 side.

【0004】上記構成の反射型液晶表示装置50におい
て、第1の偏光板58に入射した光はこの偏光板58に
よって直線偏光され、偏光された光が液晶層57を透過
することによって楕円偏光される。そして、楕円偏光さ
れた光は第2の偏光板59によって再び直線偏光され、
この直線偏光された光が反射板60にて反射されて、再
び第2の偏光板59、液晶層57を透過して第1の偏光
板58から出射する。
In the reflection type liquid crystal display device 50 having the above-described structure, the light incident on the first polarizing plate 58 is linearly polarized by the polarizing plate 58, and the polarized light is elliptically polarized by transmitting through the liquid crystal layer 57. You. Then, the elliptically polarized light is linearly polarized again by the second polarizing plate 59, and
The linearly polarized light is reflected by the reflecting plate 60, passes through the second polarizing plate 59 and the liquid crystal layer 57, and exits from the first polarizing plate 58.

【0005】この反射板と反射型液晶表示装置は次のよ
うな反射特性を有している。例えば図9に示すように、
反射膜62上に配置した点光源からの入射光Jの入射角
度を反射膜62表面に対する法線に対して入射角度30
度に一定にし、反射光Kの反射角度θを0度から60度
に変化させた場合の反射率を測定すると、反射角度30
度での反射率をピークとして左右の反射角度20度以下
および40度以上では反射率がほぼ最低となることがわ
かった。そして、反射板単独での測定のみならず、この
反射板を備えた液晶表示装置全体として測定してもこの
傾向は同様であって、反射角度30度での反射率をピー
クとして反射角度23度以下ないし37度以上の範囲で
ほぼ0%に低下することが判明した。
The reflection plate and the reflection type liquid crystal display have the following reflection characteristics. For example, as shown in FIG.
The incident angle of the incident light J from the point light source disposed on the reflective film 62 is set to an incident angle 30 with respect to the normal to the surface of the reflective film 62.
When the reflectance is measured when the reflection angle θ of the reflected light K is changed from 0 degree to 60 degrees, the reflection angle 30
It was found that the reflectance was almost the lowest when the right and left reflection angles were 20 degrees or less and 40 degrees or more with the reflectance at the peak as the peak. This tendency is similar not only to the measurement using the reflection plate alone, but also to the measurement as a whole of the liquid crystal display device provided with this reflection plate. The reflection angle at a reflection angle of 30 degrees is a peak and the reflection angle is 23 degrees. It has been found that the temperature drops to almost 0% in the range from below to 37 degrees or more.

【0006】なお、表面を鏡面とした反射板の反射特性
に関しては、一般に、表面にランダムな凹凸を持つ反射
板と比較して、入射角度に対する特定の反射角度におい
て非常に高い反射率を示す。しかしながら、反射率の高
い反射角度の範囲が極めて狭い、すなわち視野角が狭い
という特性を持っている。
[0006] With respect to the reflection characteristics of a reflector having a mirror-finished surface, the reflectivity generally shows a very high reflectance at a specific reflection angle with respect to the incident angle, as compared with a reflector having random irregularities on the surface. However, it has the characteristic that the range of the reflection angle with high reflectance is extremely narrow, that is, the viewing angle is narrow.

【0007】[0007]

【発明が解決しようとする課題】上述したように、ラン
ダムな凹凸反射面を持つ従来の反射板は、反射効率が悪
いために全体的に反射率が低く、入射光をより広範囲の
反射角度で効率良く反射させるという反射板のニーズに
充分に応えることができなかった。したがって、この種
の反射板を用いた反射型液晶表示装置は、視野角が約2
5ないし35度の範囲と狭く、しかも表示面の明るさも
充分とはいえないという問題があった。また、反射板の
特性には明るさと同時に白さも求められるが、この種の
従来の反射板では種々の波長を持つ光が均一にバランス
良く反射しないため、反射面の白さという点でも不充分
であった。さらに、この種の反射板における反射角度や
反射光強度等の反射特性は、ランダムに形成される凹凸
によって自ずと決まってしまうものであり、光学的な設
計により制御されたものではなかった。
As described above, the conventional reflector having a random concave-convex reflecting surface has a low reflectance as a whole due to poor reflection efficiency, so that incident light can be reflected over a wider range of reflection angles. It has not been possible to sufficiently meet the need for a reflector that reflects light efficiently. Therefore, a reflection type liquid crystal display device using this type of reflector has a viewing angle of about 2
There is a problem that the range of 5 to 35 degrees is narrow and the brightness of the display surface is not sufficient. In addition, whiteness as well as brightness is required for the characteristics of the reflector, but this type of conventional reflector does not uniformly reflect light having various wavelengths in a well-balanced manner, and therefore is insufficient in terms of whiteness of the reflection surface. Met. Further, the reflection characteristics such as the reflection angle and the reflection light intensity of this type of reflection plate are determined automatically by randomly formed irregularities, and are not controlled by optical design.

【0008】そこで、これらの問題を解決するために、
表面に直線状に延びる多数のストライプ溝を形成した反
射板が提案されている。しかしながら、この反射板の場
合、ストライプ溝に垂直な方向に関しては、ある範囲の
反射角度で所望の明るさが得られるものの反射角度範囲
が狭く、さらに、ストライプ溝に垂直な方向以外の方向
に関しては、反射率がそもそも低い上に反射角度も極め
て狭いものであった。したがって、この種の反射板を液
晶表示装置に適用したところで、特にストライプ溝に平
行な方向において、視野角が狭い、表示面の明るさや白
さが不充分である、といった上記の問題が解決できなか
った。
Therefore, in order to solve these problems,
A reflector having a large number of stripe grooves extending linearly on the surface has been proposed. However, in the case of this reflector, in the direction perpendicular to the stripe groove, although a desired brightness can be obtained at a certain range of reflection angle, the reflection angle range is narrow, and further, in the direction other than the direction perpendicular to the stripe groove, The reflectivity was originally low and the reflection angle was extremely narrow. Therefore, when this type of reflector is applied to a liquid crystal display device, the above-mentioned problems such as a narrow viewing angle and insufficient brightness and whiteness of the display surface, particularly in a direction parallel to the stripe groove, can be solved. Did not.

【0009】本発明は、上記の課題を解決するためにな
されたものであって、広い角度にわたって高い反射効率
を得ることができる反射体、並びにそのような反射体を
用いることでいずれの方向においても広い視野角とより
明るい表示面を有する反射型液晶表示装置を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a reflector capable of obtaining high reflection efficiency over a wide angle, and using such a reflector in any direction. It is another object of the present invention to provide a reflective liquid crystal display device having a wide viewing angle and a brighter display surface.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の反射体は、反射体表面にその内面が球面
の一部をなす多数の凹部を連続して形成し、上記凹部の
深さを0.1ないし3μmの範囲でランダムに形成し、
隣接する凹部のピッチを5ないし50μmの範囲でラン
ダムに配置し、上記凹部内面の傾斜角を−18ないし+
18度の範囲で設定したことを特徴とするものである。
In order to achieve the above object, a reflector according to the present invention comprises a plurality of recesses whose inner surfaces form a part of a spherical surface formed continuously on a reflector surface. Is formed at a depth of 0.1 to 3 μm at random,
The pitch of the adjacent concave portions is randomly arranged in a range of 5 to 50 μm, and the inclination angle of the inner surface of the concave portion is -18 to +
It is characterized by being set within a range of 18 degrees.

【0011】本発明の反射体においては、内面を球面の
一部をなす形状とした多数の凹部を表面に形成し、しか
も凹部の深さ、隣接する凹部のピッチ等のパラメータを
上記のような範囲に設定することにより、反射光の反射
角を支配すると考えられる凹部内面の傾斜角(微小な単
位面積内での傾斜角)がある角度範囲内で一定の分布を
示すようになる。そして、凹部内面が球面状であること
から、その一定の傾斜角分布が、反射体におけるある特
定の方向だけでなく、全方向にわたって実現される。し
たがって、本発明の反射体によれば、全方向にわたって
一様に高い反射効率が得られ、種々の波長を持つ光をバ
ランス良く反射することができる。すなわち、従来の反
射体に比べて、どの方向から見てもより明るく白い反射
板を実現することができる。
In the reflector of the present invention, a large number of concave portions having an inner surface forming a part of a spherical surface are formed on the surface, and parameters such as the depth of the concave portions and the pitch between adjacent concave portions are set as described above. By setting the angle in the range, the inclination angle (inclination angle in a minute unit area) of the inner surface of the concave portion, which is considered to dominate the reflection angle of the reflected light, shows a constant distribution within a certain angle range. Since the inner surface of the concave portion has a spherical shape, the constant inclination angle distribution is realized not only in a specific direction but also in all directions in the reflector. Therefore, according to the reflector of the present invention, a high reflection efficiency can be obtained uniformly in all directions, and light having various wavelengths can be reflected with good balance. That is, it is possible to realize a brighter and whiter reflector when viewed from any direction as compared with the conventional reflector.

【0012】なお、上記の「凹部の深さ」とは反射体表
面から凹部の底部までの距離、「隣接する凹部のピッ
チ」とは平面視したときに円形となる凹部の中心間の距
離のことである。また、「凹部内面の傾斜角」とは、図
8に示すように、凹部4の内面の任意の箇所において
0.5μm幅の微小な範囲をとったときに、その微小範
囲内における斜面の水平面に対する角度θのことであ
る。角度θの正負は、反射体表面に立てた法線に対して
例えば図8における右側の斜面を正、左側の斜面を負と
定義する。
The "depth of the concave portion" is the distance from the reflector surface to the bottom of the concave portion, and the "pitch between adjacent concave portions" is the distance between the centers of the concave portions which is circular when viewed in plan. That is. Further, as shown in FIG. 8, the “inclination angle of the inner surface of the concave portion” refers to the horizontal plane of the inclined surface within the minute range when a minute range of 0.5 μm width is taken at an arbitrary position on the inner surface of the concave portion 4. Angle θ with respect to The sign of the angle θ defines, for example, the right slope in FIG. 8 as positive and the left slope in FIG. 8 as negative with respect to the normal line on the reflector surface.

【0013】上述したように、これら凹部の深さ、隣接
する凹部のピッチ、凹部内面の傾斜角に関しては、凹部
の深さを0.1ないし3μm、隣接する凹部のピッチを
5ないし50μm、凹部内面の傾斜角を−18ないし+
18度の範囲に設定することが望ましい。特に、傾斜角
分布を−18ないし+18度の範囲に設定する点、隣接
する凹部のピッチを平面全方向に対してランダムに配置
する点が重要である。なぜならば、仮に隣接する凹部の
ピッチに規則性があると、光の干渉色が出て反射光が色
付いてしまうという不具合があるからである。また、凹
部内面の傾斜角分布が−18ないし+18度の範囲を超
えると、反射光の拡散角が広がりすぎて反射強度が低下
し、明るい反射板が得られない(反射光の拡散角がエア
ー中で36度以上になり、液晶表示装置内部の反射強度
ピークが低下し、全反射ロスが大きくなる)からであ
る。また、凹部の深さが3μmを超えると、後工程で凹
部を平坦化する場合に凸部の頂上が平坦化膜で埋めきれ
ず、所望の平坦性が得られなくなる。隣接する凹部のピ
ッチが5μm未満の場合、反射体形成用母型の製作上の
制約があり、加工時間が極めて長くなる、所望の反射特
性が得られるだけの形状が形成できない、干渉光が発生
する等の問題が生じる。また、実用上、反射体形成用母
型の製作に使用し得る30〜100μm径のダイヤモン
ド圧子を用いる場合、隣接する凹部のピッチを5ないし
50μmとすることが望ましい。
As described above, regarding the depth of these recesses, the pitch between adjacent recesses, and the inclination angle of the inner surface of the recesses, the depth of the recesses is 0.1 to 3 μm, the pitch of the adjacent recesses is 5 to 50 μm, -18 to +
It is desirable to set the range to 18 degrees. In particular, it is important to set the inclination angle distribution in the range of −18 to +18 degrees, and to arrange the pitch of the adjacent concave portions at random in all directions in the plane. This is because, if the pitch of the adjacent concave portions has regularity, there is a problem that an interference color of light appears and the reflected light is colored. On the other hand, when the inclination angle distribution of the inner surface of the concave portion exceeds the range of −18 to +18 degrees, the diffusion angle of the reflected light is too wide, the reflection intensity is reduced, and a bright reflector cannot be obtained. In the liquid crystal display device, the reflection intensity peak inside the liquid crystal display device decreases, and the total reflection loss increases.) On the other hand, if the depth of the concave portion exceeds 3 μm, the top of the convex portion cannot be filled with the flattening film when the concave portion is flattened in a later step, and desired flatness cannot be obtained. When the pitch of the adjacent concave portions is less than 5 μm, there is a restriction in the production of the reflector forming matrix, the processing time becomes extremely long, a shape which can obtain desired reflection characteristics cannot be formed, and interference light is generated. Problems occur. Further, in practice, when a diamond indenter having a diameter of 30 to 100 μm that can be used for manufacturing a master for forming a reflector is used, it is preferable that the pitch between adjacent concave portions is 5 to 50 μm.

【0014】また、本発明の反射型液晶表示装置は、上
記のような反射体、すなわち反射体表面にその内面が球
面の一部をなす凹部が多数形成され、上記凹部の深さが
0.1ないし3μm、隣接する凹部のピッチが5ないし
50μm、上記凹部内面の傾斜角が−18ないし+18
度である反射体を備えたことを特徴とするものである。
なお、反射体の設置形態としては、液晶セルの外側に設
置する外付け型、あるいは液晶セルを構成する基板の内
面に設置する内蔵型のいずれのタイプとしてもよい。
Further, in the reflection type liquid crystal display device of the present invention, a large number of concave portions whose inner surface forms a part of a spherical surface are formed on the reflector, that is, the reflector surface, and the concave portion has a depth of 0.1 mm. 1 to 3 μm, the pitch between adjacent concave portions is 5 to 50 μm, and the inclination angle of the inner surface of the concave portion is −18 to +18.
It is characterized by having a reflector which is a degree.
The reflector may be installed in either an external type installed outside the liquid crystal cell or a built-in type installed inside the substrate of the liquid crystal cell.

【0015】本発明の反射型液晶表示装置によれば、反
射体自体が全方向にわたって反射効率が高く、種々の波
長を持つ光をバランス良く反射するという特性を持って
いるため、従来の反射型液晶表示装置に比べて視角が広
がり、表示面をより明るくすることができる。
According to the reflection type liquid crystal display device of the present invention, the reflector itself has high reflection efficiency in all directions and reflects light having various wavelengths in a well-balanced manner. The viewing angle is wider than that of the liquid crystal display device, and the display surface can be made brighter.

【0016】[0016]

【発明の実施の形態】以下、本発明の一実施の形態を図
1ないし図7を参照して説明する。図1は本実施の形態
の反射体を示す図である。この図に示すように、本実施
の形態の反射体1は、例えばガラス等からなる基板2上
に設けられた感光性樹脂層等からなる平板状の樹脂基材
3(反射体用基材)の表面に、その内面が球面の一部を
なす多数の凹部4が重なり合うように連続して形成さ
れ、その上に例えばアルミニウムや銀等の薄膜からなる
反射膜5が蒸着または印刷等により形成されたものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a reflector according to the present embodiment. As shown in this figure, a reflector 1 of the present embodiment is a flat resin substrate 3 (a substrate for a reflector) made of a photosensitive resin layer or the like provided on a substrate 2 made of, for example, glass. A large number of concave portions 4 whose inner surfaces are part of a spherical surface are continuously formed so as to overlap each other, and a reflective film 5 made of a thin film of, for example, aluminum or silver is formed thereon by vapor deposition or printing. It is a thing.

【0017】上記凹部4の深さを0.1ないし3μmの
範囲でランダムに形成し、隣接する凹部4のピッチを5
ないし50μmの範囲でランダムに配置し、上記凹部4
内面の傾斜角を−18ないし+18度の範囲に設定する
ことが望ましい。特に、凹部4内面の傾斜角分布を−1
8ないし+18度の範囲に設定する点、隣接する凹部4
のピッチを平面全方向に対してランダムに配置する点が
重要である。なぜならば、仮に隣接する凹部4のピッチ
に規則性があると、光の干渉色が出て反射光が色付いて
しまうという不具合があるからである。また、凹部4内
面の傾斜角分布が−18ないし+18度の範囲を超える
と、反射光の拡散角が広がりすぎて反射強度が低下し、
明るい反射板が得られない(反射光の拡散角がエアー中
で36度以上になり、液晶表示装置内部の反射強度ピー
クが低下し、全反射ロスが大きくなる)からである。ま
た、凹部4の深さが3μmを超えると、後工程で凹部4
を平坦化する場合に凸部の頂上が平坦化膜で埋めきれ
ず、所望の平坦性が得られなくなる。隣接する凹部4の
ピッチが5μm未満の場合、反射体形成用母型の製作上
の制約があり、加工時間が極めて長くなる、所望の反射
特性が得られるだけの形状が形成できない、干渉光が発
生する等の問題が生じる。また、実用上、反射体形成用
母型の製作に使用し得る30〜100μm径のダイヤモ
ンド圧子を用いる場合、隣接する凹部4のピッチを5な
いし50μmとすることが望ましい。
The depth of the concave portions 4 is randomly formed within a range of 0.1 to 3 μm, and the pitch of the adjacent concave portions 4 is 5 μm.
And randomly arranged in the range of 50 μm to 50 μm.
It is desirable to set the inclination angle of the inner surface in the range of −18 to +18 degrees. In particular, the inclination angle distribution of the inner surface of the recess 4 is -1.
Point set in the range of 8 to +18 degrees, adjacent recess 4
It is important that the pitches are randomly arranged in all directions in the plane. This is because if the pitch of the adjacent concave portions 4 is regular, there is a problem that interference colors of light appear and reflected light is colored. If the inclination angle distribution of the inner surface of the recess 4 exceeds the range of −18 to +18 degrees, the diffusion angle of the reflected light becomes too wide, and the reflection intensity decreases.
This is because a bright reflector cannot be obtained (the diffusion angle of the reflected light becomes 36 degrees or more in air, the reflection intensity peak inside the liquid crystal display device decreases, and the total reflection loss increases). If the depth of the concave portion 4 exceeds 3 μm, the concave portion 4
In the case of flattening, the tops of the projections cannot be filled with the flattening film, and desired flatness cannot be obtained. When the pitch of the adjacent recesses 4 is less than 5 μm, there is a restriction in the production of the reflector forming matrix, the processing time becomes extremely long, a shape that can obtain desired reflection characteristics cannot be formed, and interference light is not generated. And other problems arise. Further, in practice, when a diamond indenter having a diameter of 30 to 100 μm that can be used for manufacturing a reflector forming base is used, it is desirable that the pitch of the adjacent concave portions 4 is 5 to 50 μm.

【0018】次に、上記構成の反射体の製造方法を図2
ないし図5を用いて説明する。まず、図2(a)に示す
ように、例えば黄銅、ステンレス、工具鋼等からなる表
面が平坦な平板状の母型基材7を転造装置のテーブル上
に固定する。そして、先端が所定の径Rを持つ球面形状
のダイヤモンド圧子8で母型基材7の表面を押圧し、母
型基材7を水平方向に移動させてはダイヤモンド圧子8
を上下動させて押圧するという操作を多数回繰り返すこ
とにより、深さや配列ピッチが異なる多数の凹部7aを
母型基材7の表面に転造し、図2(b)に示すような反
射体形成用母型9とする。図3に示すように、ここで用
いる転造装置は、母型基材7を固定するテーブルが0.
1μmの分解能で水平面内のX方向、Y方向に移動し、
ダイヤモンド圧子8が1μmの分解能で鉛直方向(Z方
向)に移動する機能を持つものである。なお、ダイヤモ
ンド圧子8の先端の径Rは、20ないし100μm程度
であることが望ましい。例えば、凹部7aの深さを2μ
m程度とする場合、径Rが30ないし50μmのもの、
凹部7aの深さを1μm程度とする場合、径Rが50な
いし100μmのものを用いるとよい。
Next, a method of manufacturing the reflector having the above-described structure will be described with reference to FIG.
This will be described with reference to FIG. First, as shown in FIG. 2A, a flat base material 7 made of, for example, brass, stainless steel, tool steel or the like and having a flat surface is fixed on a table of a rolling device. Then, the surface of the matrix base 7 is pressed by a spherical diamond indenter 8 having a predetermined diameter R at the tip, and the matrix base 7 is moved in the horizontal direction.
Is repeatedly rolled on the surface of the matrix base member 7 by repeating the operation of vertically moving and pressing many times to form a plurality of recesses 7a having different depths and arrangement pitches on the surface of the matrix substrate 7, and a reflector as shown in FIG. The forming matrix 9 is used. As shown in FIG. 3, the rolling device used here has a table for fixing the matrix base material 7.
It moves in the X and Y directions in a horizontal plane with a resolution of 1 μm,
The diamond indenter 8 has a function of moving in the vertical direction (Z direction) with a resolution of 1 μm. The diameter R of the tip of the diamond indenter 8 is desirably about 20 to 100 μm. For example, the depth of the concave portion 7a is 2 μm.
m, a diameter R of 30 to 50 μm,
When the depth of the recess 7a is about 1 μm, it is preferable to use one having a diameter R of 50 to 100 μm.

【0019】また、ダイヤモンド圧子による転造の手順
は次の通りである。図4は転造のパターンを示す平面図
であるが、この図に示すように、横一列において隣接す
る凹部のピッチは、左から順にt1(=17μm)、t3
(=15μm)、t2(=16μm)、t3 、t4(=
14μm)、t4、t5(=13μm)、t2、t3、t3
となっている。また、縦一列において隣接する凹部のピ
ッチも上から順に同様のパターンとなっている。そし
て、深さを1.1ないし2.1μmの範囲で4種類設定
して(図中d1、d2、d3、d4 と示す )押圧すること
により、押圧後の圧痕である円形の凹部の半径もr1
(=11μm)、r2(=10μm)、r3(=9μ
m)、r4(=8μm)の4種類となる。例えば縦一列
における凹部の半径は、上から順にr1、r2、r3、r
1、r4、r2、r4、r3、r1、r4、r1 となる。
The procedure of rolling with a diamond indenter is as follows. FIG. 4 is a plan view showing a rolling pattern. As shown in FIG. 4, pitches of adjacent recesses in one horizontal row are t1 (= 17 μm) and t3 in order from the left.
(= 15 μm), t2 (= 16 μm), t3, t4 (=
14 μm), t4, t5 (= 13 μm), t2, t3, t3
It has become. In addition, the pitches of the concave portions adjacent to each other in one vertical line have the same pattern in order from the top. By pressing four different depths in the range of 1.1 to 2.1 μm (shown as d 1, d 2, d 3, and d 4 in the figure), the radius of the circular concave portion which is an indentation after the pressing is also reduced. r1
(= 11 μm), r2 (= 10 μm), r3 (= 9 μm)
m) and r4 (= 8 μm). For example, the radii of the concave portions in one vertical line are r1, r2, r3, r
1, r4, r2, r4, r3, r1, r4, r1.

【0020】また、実際の転造の順番としては、例え
ば、最上段の横の列において深さd1の凹部を飛び飛び
に全て形成した後、次に深さd2 の凹部、深さd3 の凹
部、深さd4 の凹部を形成するというように、4パター
ンの深さの転造操作を繰り返し、まず、最上段の横一列
の凹部を全て形成する。その後、上から2番目の横の列
に移動し、同様の操作を繰り返す。このようにして、パ
ターン内の全ての凹部を形成していく。なお、図4はt
=150μm四方の転造のパターンを示すものであり、
このパターンの繰り返しにより反射体全体が構成されて
いる。図4に示したように、隣接する凹部の圧痕は一部
重なるため、転造作業が全て終わった後の凹部全体の平
面形状は図5に示すようになる。
The order of the actual rolling is, for example, that after forming all the recesses of the depth d1 in the uppermost horizontal row, the recesses of the depth d2, the recesses of the depth d3, The rolling operation of four patterns of depths is repeated to form a concave portion having a depth d4, and all the concave portions in the uppermost row are formed. Then, it moves to the second horizontal row from the top and repeats the same operation. Thus, all the concave portions in the pattern are formed. FIG.
= 150 μm square showing a rolling pattern,
By repeating this pattern, the entire reflector is formed. As shown in FIG. 4, since the indentations of the adjacent concave portions partially overlap, the planar shape of the entire concave portion after all the rolling operations are completed is as shown in FIG.

【0021】その後、図2(c)に示すように、母型9
を箱形容器10に収納、配置し、容器10に例えばシリ
コーンなどの樹脂材料11を流し込んで、常温にて放
置、硬化させ、この硬化した樹脂製品を容器10から取
り出して不要な部分を切除し、図2(d)に示すよう
に、母型9の型面をなす多数の凹部と逆の凹凸形状であ
る多数の凸部を持つ型面12aを有する転写型12を作
成する。
Thereafter, as shown in FIG.
Is placed and placed in a box-shaped container 10, a resin material 11 such as silicone is poured into the container 10, left to cure at room temperature, and the cured resin product is taken out of the container 10 and unnecessary portions are cut off. As shown in FIG. 2D, a transfer mold 12 having a mold surface 12a having a large number of concave portions forming the mold surface of the matrix 9 and a large number of convex portions having the opposite concave and convex shape is formed.

【0022】次に、ガラス基板の上面に、アクリル系レ
ジスト、ポリスチレン系レジスト、アジドゴム系レジス
ト、イミド系レジスト等の感光性樹脂液をスピンコート
法、スクリーン印刷法、吹き付け法等の塗布法により塗
布する。そして、塗布終了後、加熱炉またはホットプレ
ート等の加熱装置を用いて基板上の感光性樹脂液を例え
ば80〜100℃の温度範囲で1分以上加熱するプリベ
ークを行って基板上に感光性樹脂層を形成する。ただ
し、用いる感光性樹脂の種類によってプリベーク条件は
異なるため、上記範囲外の温度と時間で処理してもよい
ことは勿論である。なお、ここで形成する感光性樹脂層
の膜厚は2〜5μmの範囲とすることが好ましい。
Next, a photosensitive resin liquid such as an acrylic resist, a polystyrene resist, an azide rubber resist, or an imide resist is applied on the upper surface of the glass substrate by a coating method such as spin coating, screen printing, or spraying. I do. After completion of the coating, the photosensitive resin liquid on the substrate is prebaked by using a heating device such as a heating furnace or a hot plate in a temperature range of, for example, 80 to 100 ° C. for 1 minute or more. Form a layer. However, since the pre-bake conditions differ depending on the type of the photosensitive resin used, it is needless to say that the treatment may be performed at a temperature and a time outside the above range. The thickness of the photosensitive resin layer formed here is preferably in the range of 2 to 5 μm.

【0023】その後、図2(e)に示すように、図2
(d)に示した転写型12を用い、この転写型12の型
面12aをガラス基板上の感光性樹脂層3に一定時間押
し付けた後、転写型12を感光性樹脂層3から外す。こ
のようにして、図2(f)に示すように、感光性樹脂層
3の表面に転写型型面12aの凸部を転写して多数の凹
部4を形成する。また、型押し時のプレス圧は用いる感
光性樹脂の種類にあった値を選択することが好ましく、
例えば30〜50kg/cm2 程度の圧力とするのがよ
い。プレス時間についても用いる感光性樹脂の種類にあ
った値を選択することが好ましく、例えば30秒〜10
分程度の時間とする。
Thereafter, as shown in FIG.
After using the transfer mold 12 shown in (d) and pressing the mold surface 12a of the transfer mold 12 against the photosensitive resin layer 3 on the glass substrate for a predetermined time, the transfer mold 12 is removed from the photosensitive resin layer 3. In this way, as shown in FIG. 2 (f), the convex portions of the transfer mold surface 12a are transferred to the surface of the photosensitive resin layer 3 to form a large number of concave portions 4. Further, it is preferable to select a value corresponding to the type of the photosensitive resin to be used for the pressing pressure at the time of embossing,
For example, the pressure is preferably about 30 to 50 kg / cm 2 . It is preferable to select a value corresponding to the type of the photosensitive resin to be used for the pressing time, for example, 30 seconds to 10 seconds.
It takes about a minute.

【0024】その後、透明なガラス基板の裏面側から感
光性樹脂層3を硬化させるための紫外線(g、h、i
線)等の光線を照射し、感光性樹脂層3を硬化させる。
ここで照射する紫外線等の光線は、上記種類の感光性樹
脂層の場合、50mJ/cm2以上の強度であれば感光
性樹脂層を硬化させるのに充分であるが、感光性樹脂層
の種類によってはこれ以外の強度で照射してもよいこと
は勿論である。そして、プリベークで用いたのと同様の
加熱炉、ホットプレート等の加熱装置を用いてガラス基
板上の感光性樹脂層3を例えば240℃程度で1分以上
加熱するポストベークを行ってガラス基板上の感光性樹
脂層3を焼成する。
Thereafter, ultraviolet rays (g, h, i) for curing the photosensitive resin layer 3 from the back side of the transparent glass substrate.
The photosensitive resin layer 3 is cured by irradiating a light beam such as a line).
In the case of a photosensitive resin layer of the above type, the intensity of 50 mJ / cm 2 or more is sufficient to cure the photosensitive resin layer. It is needless to say that the irradiation may be performed at other intensity depending on the case. Then, the photosensitive resin layer 3 on the glass substrate is post-baked by heating the photosensitive resin layer 3 on the glass substrate at, for example, about 240 ° C. for 1 minute or more by using a heating device such as a heating furnace or a hot plate used in the pre-baking. Is baked.

【0025】最後に、感光性樹脂層3の表面に例えばア
ルミニウムをエレクトロンビーム蒸着等によって成膜し
て凹部の表面に沿って反射膜1を形成することにより、
本実施の形態の反射体1が完成する。
Finally, for example, aluminum is formed on the surface of the photosensitive resin layer 3 by electron beam evaporation or the like, and the reflection film 1 is formed along the surface of the concave portion.
The reflector 1 of the present embodiment is completed.

【0026】本実施の形態の反射体1においては、内面
を球面の一部をなす形状とした多数の凹部4を表面に形
成し、しかも凹部4の深さ、隣接する凹部4のピッチ等
の値を上記の範囲に設定したことにより、凹部内面の傾
斜角がある角度範囲で一定の分布を示すようになる。一
例として、図6は本実施の形態の反射体1における凹部
内面の傾斜角の分布を示すものであり、横軸は傾斜角、
縦軸はその傾斜角が存在する頻度を示している。この図
に示すように、傾斜角は−18ないし+18度の範囲、
特に−10ないし+10度の範囲においてほぼ一定の分
布を示している。また、凹部4の内面は球面であり、全
方向に対して対称形であるから、この一定の傾斜角分布
は、反射体におけるある特定の方向だけでなく、全方向
にわたって実現される。凹部内面の傾斜角はその凹部内
面における反射光の反射角を支配すると考えられ、本実
施の形態の場合、反射体の全方向に対して傾斜角分布が
一定であることから、全方向に対して一様な反射角およ
び反射効率が得られることになり、種々の波長を持つ光
をバランス良く反射することができる。すなわち、従来
の反射体に比べて、どの方向から見てもより明るく白い
反射板を実現することができる。
In the reflector 1 of the present embodiment, a large number of recesses 4 whose inner surface forms a part of a spherical surface are formed on the surface, and the depth of the recesses 4 and the pitch of the adjacent recesses 4 are determined. By setting the value within the above range, the inclination angle of the inner surface of the concave portion shows a constant distribution in a certain angle range. As an example, FIG. 6 shows the distribution of the inclination angle of the inner surface of the concave portion in the reflector 1 of the present embodiment, where the horizontal axis represents the inclination angle,
The vertical axis indicates the frequency at which the inclination angle exists. As shown in this figure, the inclination angle ranges from -18 to +18 degrees,
In particular, it shows a substantially constant distribution in the range of -10 to +10 degrees. Further, since the inner surface of the concave portion 4 is spherical and symmetrical with respect to all directions, this constant inclination angle distribution is realized not only in a specific direction but also in all directions in the reflector. It is considered that the inclination angle of the inner surface of the concave portion governs the reflection angle of the reflected light on the inner surface of the concave portion. In the case of this embodiment, since the inclination angle distribution is constant in all directions of the reflector, As a result, uniform reflection angles and reflection efficiencies can be obtained, and light having various wavelengths can be reflected in a well-balanced manner. That is, it is possible to realize a brighter and whiter reflector when viewed from any direction as compared with the conventional reflector.

【0027】また、反射体形成用の母型9を製造する際
には、ダイヤモンド圧子8を上下動させて母型基材7の
表面を押圧するだけであるから、ダイヤモンド圧子8と
母型基材7が擦れ合うようなことがない。その結果、ダ
イヤモンド圧子8先端の表面状態が母型9側に確実に転
写され、圧子8の先端を鏡面状態としておけば母型9の
凹部内面、ひいては反射体の凹部内面も容易に鏡面状態
とすることができる。さらに、ポリエステル等の樹脂フ
ィルムを加熱することで凹凸面を形成していた従来の反
射体と異なり、本実施の形態の反射体1における凹部の
深さ、径、ピッチ等の寸法、凹部内面の表面状態等は全
て制御されたものであり、高精度の転造装置の使用によ
り反射板の凹部形状をほぼ設計通りに作成することがで
きる。したがって、本方法によれば、作成する反射板の
反射角度、反射効率等の反射特性が従来に比べてより制
御しやすいものとなり、所望の反射体を得ることができ
る。
When the master 9 for forming the reflector is manufactured, the diamond indenter 8 is simply moved up and down to press the surface of the master substrate 7. The material 7 does not rub against each other. As a result, the surface state of the tip of the diamond indenter 8 is reliably transferred to the matrix 9 side, and if the tip of the indenter 8 is mirror-finished, the inner surface of the concave portion of the mother die 9 and, consequently, the inner surface of the concave portion of the reflector can easily be mirror-finished. can do. Furthermore, unlike the conventional reflector in which the uneven surface is formed by heating a resin film such as polyester, the depth, diameter, pitch, and other dimensions of the recess in the reflector 1 of the present embodiment, and the inner surface of the recess are formed. The surface state and the like are all controlled, and the concave shape of the reflecting plate can be created almost as designed by using a high-precision rolling device. Therefore, according to the present method, the reflection characteristics such as the reflection angle and the reflection efficiency of the reflection plate to be produced become easier to control than in the past, and a desired reflector can be obtained.

【0028】なお、本実施の形態における反射体1の凹
部4の深さ、径、ピッチ等の具体的な数値や図4に示し
た凹部の転造パターンはほんの一例に過ぎず、適宜設計
変更が可能なことは勿論である。また、反射体用基材、
母型用基材等の各種基材の材料、転写型の構成材料等に
関しても適宜変更が可能である。
It should be noted that specific numerical values such as the depth, diameter and pitch of the concave portion 4 of the reflector 1 in the present embodiment and the rolling pattern of the concave portion shown in FIG. 4 are merely examples, and design changes may be made as appropriate. Is of course possible. Also, a substrate for a reflector,
The materials of various base materials such as the base material for the matrix, the constituent materials of the transfer mold, and the like can be appropriately changed.

【0029】次に、上記の反射体を備えたSTN(Supe
r Twisted Nematic )方式の反射型液晶表示装置につい
て説明する。図7に示すように、この反射型液晶表示装
置は、例えば厚さ0.7mmの一対の表示側ガラス基板
13と背面側ガラス基板14との間に液晶層15を設
け、表示側ガラス基板13の上面側にポリカーボネート
樹脂やポリアリレート樹脂等からなる1枚の位相差板1
6を設け、さらに位相差板16の上面側に第1の偏光板
17を配設している。また、背面側ガラス基板14の下
面側には、第2の偏光板18、図1に示した本実施の形
態の反射体1を順次設けている。
Next, an STN (Supe) equipped with the above-described reflector is used.
r Twisted Nematic) type reflective liquid crystal display device will be described. As shown in FIG. 7, this reflection type liquid crystal display device has a liquid crystal layer 15 provided between a pair of display side glass substrates 13 and a rear side glass substrate 14 having a thickness of, for example, 0.7 mm. One retardation plate 1 made of polycarbonate resin, polyarylate resin, etc.
6 and a first polarizing plate 17 is provided on the upper surface side of the phase difference plate 16. Further, on the lower surface side of the rear glass substrate 14, a second polarizing plate 18 and the reflector 1 of the present embodiment shown in FIG. 1 are sequentially provided.

【0030】反射体1は、第2の偏光板18の下面側に
凹部4を形成した面が対向するように取り付けられ、第
2の偏光板18と反射体1との間には、グリセリン等の
光の屈折率に悪影響を与えることのない材料からなる粘
着体19が充填されている。両ガラス基板13、14の
対向面側にはITO(インジウムスズ酸化物)等からな
る透明電極層20、21がそれぞれ形成され、透明電極
層20、21上にポリイミド樹脂等からなる配向膜2
2、23がそれぞれ設けられている。これら配向膜2
2、23等の関係により液晶層15中の液晶は240度
捻れた配置となっている。
The reflector 1 is mounted on the lower surface side of the second polarizing plate 18 such that the surfaces on which the concave portions 4 are formed face each other. Between the second polarizing plate 18 and the reflector 1, glycerin or the like is provided. An adhesive 19 made of a material that does not adversely affect the refractive index of the light is filled. Transparent electrode layers 20 and 21 made of ITO (indium tin oxide) or the like are formed on the opposing surfaces of the two glass substrates 13 and 14, respectively, and an alignment film 2 made of a polyimide resin or the like is formed on the transparent electrode layers 20 and 21.
2 and 23 are provided respectively. These alignment films 2
The liquid crystal in the liquid crystal layer 15 is twisted 240 degrees due to the relationship of 2, 23, and the like.

【0031】また、前記背面側ガラス基板14と透明電
極層21との間に、図示していないカラーフィルタを印
刷等で形成することにより、この液晶表示装置をカラー
表示できるようにしてもよい。
Further, a color filter (not shown) may be formed between the rear glass substrate 14 and the transparent electrode layer 21 by printing or the like so that the liquid crystal display device can display a color image.

【0032】本実施の形態の液晶表示装置においては、
上述したように、反射体1自体が全方向にわたって入射
光の反射角度が広く、反射効率が高いという特性を持っ
ているため、使用者が表示面をいずれの方向から見た場
合においても、従来の液晶表示装置に比べて視野角が広
がり、明るい表示面とすることができる。
In the liquid crystal display of the present embodiment,
As described above, since the reflector 1 itself has a characteristic that the angle of reflection of the incident light is wide in all directions and the reflection efficiency is high, even when the user looks at the display surface from any direction, The viewing angle is wider than that of the liquid crystal display device, and a bright display surface can be obtained.

【0033】なお、本実施の形態の反射型液晶表示装置
では、反射板を第2の偏光板の外側に配設する、いわゆ
る外付けの反射板とする例を説明したが、背面側ガラス
基板の対向面側に配設して内蔵型としてもよい。また、
液晶表示装置の例としてSTN方式のもので説明した
が、液晶層の液晶分子の捻れ角を90度に設定したTN
(Twisted Nematic )方式の液晶表示装置にも本発明の
反射体を適用し得ることは勿論である。
In the reflection type liquid crystal display device of the present embodiment, an example has been described in which the reflection plate is provided outside the second polarizing plate, that is, a so-called external reflection plate. May be disposed on the opposite surface side to form a built-in type. Also,
An example of the liquid crystal display device has been described in the case of the STN mode.
Of course, the reflector of the present invention can be applied to a (Twisted Nematic) type liquid crystal display device.

【0034】[0034]

【発明の効果】以上、詳細に説明したように、本発明の
反射体においては、内面を球面の一部をなす形状とした
多数の凹部を表面に形成し、しかも凹部の深さ、隣接す
る凹部のピッチ等を規定したことにより、反射体の全方
向に対して凹部内面の傾斜角分布がある角度範囲でほぼ
一定となるため、全方向に対して一様な反射効率が得ら
れ、種々の波長を持つ光をバランス良く反射することが
できる。すなわち、従来の反射体に比べて、どの方向か
ら見てもより明るく白い反射板を実現することができ
る。そして、本発明の反射型液晶表示装置によれば、上
記のような優れた特性を持つ反射体を備えたことによ
り、広い視野角と明るい表示面を有する液晶表示装置を
実現することができる。
As described in detail above, in the reflector of the present invention, a large number of concave portions having an inner surface which forms a part of a spherical surface are formed on the surface, and the depth of the concave portion is adjacent to that of the concave portion. By defining the pitch of the concave portions and the like, the inclination angle distribution of the inner surface of the concave portion becomes almost constant in a certain angle range with respect to all directions of the reflector. Can be reflected in a well-balanced manner. That is, it is possible to realize a brighter and whiter reflector when viewed from any direction as compared with the conventional reflector. According to the reflection type liquid crystal display device of the present invention, a liquid crystal display device having a wide viewing angle and a bright display surface can be realized by including the reflector having the above excellent characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態である反射体を示す斜
視図である。
FIG. 1 is a perspective view showing a reflector according to an embodiment of the present invention.

【図2】 同、反射体の製造過程を順を追って示したプ
ロセスフロー図である。
FIG. 2 is a process flow chart showing a manufacturing process of the reflector in order.

【図3】 同、反射体の形成に用いる母型の製造過程を
示す図であって、ダイヤモンド圧子で母型基材を押圧し
ている状態を示す図である。
FIG. 3 is a view showing a process of manufacturing a matrix used for forming the reflector, and showing a state in which the matrix substrate is pressed by a diamond indenter.

【図4】 同、母型の製造過程においてダイヤモンド圧
子による転造のパターンを示す平面図である。
FIG. 4 is a plan view showing a pattern of rolling by a diamond indenter in a manufacturing process of the matrix.

【図5】 同、転造後の凹部全体の形状を示す平面図で
ある。
FIG. 5 is a plan view showing the shape of the entire recess after rolling.

【図6】 同、反射体における凹部内面の傾斜角の分布
を示す図である。
FIG. 6 is a diagram showing a distribution of an inclination angle of an inner surface of a concave portion in the reflector.

【図7】 本発明の一実施の形態である反射型液晶表示
装置を示す断面図である。
FIG. 7 is a cross-sectional view illustrating a reflective liquid crystal display device according to an embodiment of the present invention.

【図8】 本発明に係る反射体の凹部内面の傾斜角を説
明するための図である。
FIG. 8 is a view for explaining an inclination angle of an inner surface of a concave portion of the reflector according to the present invention.

【図9】 従来の反射体の一例を示す斜視図である。FIG. 9 is a perspective view showing an example of a conventional reflector.

【図10】 従来の反射型液晶表示装置の一例を示す断
面図である。
FIG. 10 is a cross-sectional view illustrating an example of a conventional reflective liquid crystal display device.

【符号の説明】[Explanation of symbols]

1 反射体 2 基板 3 樹脂基材(反射体用基材) 4 凹部 5 反射膜 7 母型基材 8 ダイヤモンド圧子 9 反射体形成用母型 12 転写型 DESCRIPTION OF SYMBOLS 1 Reflector 2 Substrate 3 Resin base material (reflector base material) 4 Concave part 5 Reflective film 7 Base mold base 8 Diamond indenter 9 Reflector forming base mold 12 Transfer mold

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反射体表面にその内面が球面の一部をな
す多数の凹部が連続して形成され、前記凹部の深さが
0.1ないし3μmの範囲でランダムに形成され、隣接
する凹部のピッチが5ないし50μmの範囲でランダム
に配置され、前記凹部内面の傾斜角が−18ないし+1
8度の範囲で設定されたことを特徴とする反射体。
1. A plurality of recesses whose inner surface forms a part of a spherical surface are continuously formed on a surface of a reflector, and the recesses are formed at random in a depth range of 0.1 to 3 μm. Are randomly arranged in a range of 5 to 50 μm, and the inclination angle of the inner surface of the recess is −18 to +1.
A reflector characterized by being set in a range of 8 degrees.
【請求項2】 請求項1に記載の反射体を備えたことを
特徴とする反射型液晶表示装置。
2. A reflection type liquid crystal display device comprising the reflector according to claim 1.
JP20363797A 1997-07-29 1997-07-29 Reflector and reflective liquid crystal display Expired - Fee Related JP3547591B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20363797A JP3547591B2 (en) 1997-07-29 1997-07-29 Reflector and reflective liquid crystal display
TW087111807A TW496992B (en) 1997-07-29 1998-07-20 Reflector having pits and projections on a surface thereof, manufacturing method for the same, and reflection type liquid crystal display device using the same
US09/123,909 US6421106B1 (en) 1997-07-29 1998-07-28 Reflector having pits and projections on a surface thereof, manufacturing method for the same, and reflection type liquid crystal display device employing the reflector
KR1019980030306A KR100272883B1 (en) 1997-07-29 1998-07-28 Reflector having a convex and concave surface, netyhod of producing the reflector, and reflection-type lcd apparatus using the reflector
CN98117102A CN1103937C (en) 1997-07-29 1998-07-29 Reflector with convex-concave surface, mfg. method and liquid crystal display device using said reflector
US09/649,298 US6429919B1 (en) 1997-07-29 2000-08-28 Reflector having pits and projection on a surface thereof, manufacturing method for the same, and reflection-type liquid crystal display device employing the reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20363797A JP3547591B2 (en) 1997-07-29 1997-07-29 Reflector and reflective liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003171009A Division JP3595549B2 (en) 2003-06-16 2003-06-16 Reflector and reflective liquid crystal display

Publications (2)

Publication Number Publication Date
JPH1152110A true JPH1152110A (en) 1999-02-26
JP3547591B2 JP3547591B2 (en) 2004-07-28

Family

ID=16477354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20363797A Expired - Fee Related JP3547591B2 (en) 1997-07-29 1997-07-29 Reflector and reflective liquid crystal display

Country Status (1)

Country Link
JP (1) JP3547591B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022913A (en) * 2000-07-03 2002-01-23 Alps Electric Co Ltd Reflector and reflection type liquid crystal display device
JP2002022912A (en) * 2000-07-03 2002-01-23 Alps Electric Co Ltd Reflector and reflection type liquid crystal display device
KR100478574B1 (en) * 2001-06-28 2005-03-28 알프스 덴키 가부시키가이샤 Reflector and reflective liquid crystal display
JP2008168503A (en) * 2007-01-11 2008-07-24 Nikon Corp Method for manufacturing mold for manufacturing optical element, and method for manufacturing optical element
US7442330B2 (en) 2003-05-27 2008-10-28 Alps Electric Co., Ltd. Method and apparatus of manufacturing reflector
JP2013171106A (en) * 2012-02-20 2013-09-02 Mitsubishi Gas Chemical Co Inc Production method of light diffusion film

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524798A (en) * 1975-06-27 1977-01-14 Bbc Brown Boveri & Cie Liquid crystal display reflector having light diffusing surface and method of producing same
JPS53116167A (en) * 1977-03-15 1978-10-11 Habros Patenter Ab Reflex mirror
JPS56156865A (en) * 1980-05-08 1981-12-03 Suwa Seikosha Kk Liquid crystal display unit
JPS5749983A (en) * 1980-09-11 1982-03-24 Suwa Seikosha Kk Liquid crystal indicator device
JPS62168560U (en) * 1986-03-25 1987-10-26
JPH04212931A (en) * 1990-11-28 1992-08-04 Seiko Epson Corp Electro-optical device and manufacture thereof
JPH05281539A (en) * 1992-04-06 1993-10-29 Fujitsu Ltd Reflection type liquid crystal display device and its manufacture
JPH0682771A (en) * 1991-12-31 1994-03-25 American Teleph & Telegr Co <Att> Transparent display device and manufacture thereof
JPH07235470A (en) * 1994-02-23 1995-09-05 Nikon Corp Illuminator and aligner
JPH09197399A (en) * 1996-01-22 1997-07-31 Toshiba Corp Reflection plate and liquid crystal display device
JPH1114809A (en) * 1997-06-20 1999-01-22 Alps Electric Co Ltd Reflecting body and reflecting type liquid crystal display device using the body
JPH1142649A (en) * 1997-07-29 1999-02-16 Alps Electric Co Ltd Production of reflector forming matrix, production of reflector, and production of reflection type liquid crystal display apparatus
JPH1144804A (en) * 1997-07-24 1999-02-16 Alps Electric Co Ltd Reflector and reflection type liquid crystal display device
JPH1152367A (en) * 1997-06-06 1999-02-26 Sumitomo Chem Co Ltd Reflection type liquid crystal display device
JPH11101992A (en) * 1997-07-28 1999-04-13 Sharp Corp Liquid crystal display device
JP2001509642A (en) * 1997-07-11 2001-07-24 エーエスエム アメリカ インコーポレイテッド Reflection surface of CVD reactor wall

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524798A (en) * 1975-06-27 1977-01-14 Bbc Brown Boveri & Cie Liquid crystal display reflector having light diffusing surface and method of producing same
JPS53116167A (en) * 1977-03-15 1978-10-11 Habros Patenter Ab Reflex mirror
JPS56156865A (en) * 1980-05-08 1981-12-03 Suwa Seikosha Kk Liquid crystal display unit
JPS5749983A (en) * 1980-09-11 1982-03-24 Suwa Seikosha Kk Liquid crystal indicator device
JPS62168560U (en) * 1986-03-25 1987-10-26
JPH04212931A (en) * 1990-11-28 1992-08-04 Seiko Epson Corp Electro-optical device and manufacture thereof
JPH0682771A (en) * 1991-12-31 1994-03-25 American Teleph & Telegr Co <Att> Transparent display device and manufacture thereof
JPH05281539A (en) * 1992-04-06 1993-10-29 Fujitsu Ltd Reflection type liquid crystal display device and its manufacture
JPH07235470A (en) * 1994-02-23 1995-09-05 Nikon Corp Illuminator and aligner
JPH09197399A (en) * 1996-01-22 1997-07-31 Toshiba Corp Reflection plate and liquid crystal display device
JPH1152367A (en) * 1997-06-06 1999-02-26 Sumitomo Chem Co Ltd Reflection type liquid crystal display device
JPH1114809A (en) * 1997-06-20 1999-01-22 Alps Electric Co Ltd Reflecting body and reflecting type liquid crystal display device using the body
JP2001509642A (en) * 1997-07-11 2001-07-24 エーエスエム アメリカ インコーポレイテッド Reflection surface of CVD reactor wall
JPH1144804A (en) * 1997-07-24 1999-02-16 Alps Electric Co Ltd Reflector and reflection type liquid crystal display device
JPH11101992A (en) * 1997-07-28 1999-04-13 Sharp Corp Liquid crystal display device
JPH1142649A (en) * 1997-07-29 1999-02-16 Alps Electric Co Ltd Production of reflector forming matrix, production of reflector, and production of reflection type liquid crystal display apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022913A (en) * 2000-07-03 2002-01-23 Alps Electric Co Ltd Reflector and reflection type liquid crystal display device
JP2002022912A (en) * 2000-07-03 2002-01-23 Alps Electric Co Ltd Reflector and reflection type liquid crystal display device
KR100478574B1 (en) * 2001-06-28 2005-03-28 알프스 덴키 가부시키가이샤 Reflector and reflective liquid crystal display
US7442330B2 (en) 2003-05-27 2008-10-28 Alps Electric Co., Ltd. Method and apparatus of manufacturing reflector
JP2008168503A (en) * 2007-01-11 2008-07-24 Nikon Corp Method for manufacturing mold for manufacturing optical element, and method for manufacturing optical element
JP2013171106A (en) * 2012-02-20 2013-09-02 Mitsubishi Gas Chemical Co Inc Production method of light diffusion film

Also Published As

Publication number Publication date
JP3547591B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
KR100272883B1 (en) Reflector having a convex and concave surface, netyhod of producing the reflector, and reflection-type lcd apparatus using the reflector
TW594218B (en) Reflector and reflective liquid crystal display device
JPH11242105A (en) Matrix for forming reflector and its production and reflector and its production as well as reflection type liquid crystal display device
JP2005321610A (en) Reflective bistable nematic liquid crystal display device
KR100367897B1 (en) Reflection type liquid crystal display device
JP3547591B2 (en) Reflector and reflective liquid crystal display
JP3612177B2 (en) Method for manufacturing reflector forming mother die, method for manufacturing reflector, and method for manufacturing reflective liquid crystal display device
JP3748761B2 (en) Reflector and reflective liquid crystal display device
JP3621226B2 (en) REFLECTOR, MANUFACTURING METHOD THEREOF, AND REFLECTIVE LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP3595549B2 (en) Reflector and reflective liquid crystal display
JP2000121802A (en) Antireflection film and its production as well as image display device
JPH1144804A (en) Reflector and reflection type liquid crystal display device
JP3694220B2 (en) Reflector and reflective liquid crystal display device
JP3653164B2 (en) Reflector, method of manufacturing the same, and reflective liquid crystal display device
JP4028290B2 (en) Liquid crystal display device and manufacturing method thereof
JP2006030254A (en) Bistable nematic liquid crystal display device
JP4307799B2 (en) Reflector and reflective liquid crystal display device
JP2005055762A (en) Reflective body, liquid crystal display device, and method for manufacturing reflective body
JPH10311906A (en) Reflector and its production as well as reflection type liquid crystal display device formed by using the same
JP2005274676A (en) Reflection coating and liquid crystal display device
JP2001272672A (en) Reflective liquid crystal display device and its manufacturing method
JP2003014913A (en) Reflector and method for manufacturing the same, and liquid crystal display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees