JP2005274676A - Reflection coating and liquid crystal display device - Google Patents

Reflection coating and liquid crystal display device Download PDF

Info

Publication number
JP2005274676A
JP2005274676A JP2004084462A JP2004084462A JP2005274676A JP 2005274676 A JP2005274676 A JP 2005274676A JP 2004084462 A JP2004084462 A JP 2004084462A JP 2004084462 A JP2004084462 A JP 2004084462A JP 2005274676 A JP2005274676 A JP 2005274676A
Authority
JP
Japan
Prior art keywords
liquid crystal
reflective film
crystal display
rough surface
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004084462A
Other languages
Japanese (ja)
Inventor
Katsumasa Yoshii
克昌 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004084462A priority Critical patent/JP2005274676A/en
Publication of JP2005274676A publication Critical patent/JP2005274676A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide reflection coating capable of efficiently reflecting irradiated light without unevenness and a liquid crystal display device using the same. <P>SOLUTION: The reflection coating 12 is laminated on the surface of organic film 11. A recessed part 31 is formed on the reflection coating 12 by a recessed part formed on the surface of the organic film 11. As for the recessed part 31, for example, an opening surface 31a is circularly formed and recessed in the thickness direction. The recessed part 31 is formed between the adjacent recessed parts 31 at an interval of t1. In a gap formed between the mutually adjacent recessed parts 31, a rough surface 32 on the surface of which fine irregularity is formed is formed. Such rough surface 32 for filling the openings 31a of the recessed part 31 is constituted of irregularity extremely smaller than depth (gap) and width of the recessed part 31. Such rough surface 32 irregularly reflects light made incident on the rough surface 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面に微細な凹部又は凸部が多数形成された反射膜およびこれを備えた液晶表示装置に関するものである。   The present invention relates to a reflective film having a large number of fine concave portions or convex portions formed on the surface, and a liquid crystal display device including the same.

例えば反射型液晶表示装置は、入射した外光を液晶表示パネルに向けて反射させる反射膜を備えている。こうした反射膜は、例えばAl薄膜など高反射性の材料で形成され、更に、入射した外光をムラ無く拡散反射させるために、表面に微細な凹部や凸部を形成したものが知られている(例えば、特許文献1参照)。
特開2003−14912号公報
For example, a reflective liquid crystal display device includes a reflective film that reflects incident external light toward a liquid crystal display panel. Such a reflective film is formed of a highly reflective material such as an Al thin film, and further has a surface in which fine concave portions and convex portions are formed in order to diffusely reflect incident external light without unevenness. (For example, refer to Patent Document 1).
JP 2003-14912 A

図8に表面に微細な凹部を形成した反射膜を示す。反射膜101は、全体が例えばAl薄膜など高反射性の材料で形成され、表面に微細な凹部102が多数形成されている。凹部102は、開口面102aが例えば六角形を成しており、互いに隣接する凹部102同士は、隙間なく密に形成されている。こうした微細な凹部102を備えることによって、反射膜101に入射した光をムラ無く拡散反射することができる。   FIG. 8 shows a reflective film having fine concave portions formed on the surface. The reflective film 101 is entirely formed of a highly reflective material such as an Al thin film, and a large number of fine concave portions 102 are formed on the surface. In the recess 102, the opening surface 102a has a hexagonal shape, for example, and the recesses 102 adjacent to each other are densely formed without a gap. By providing such a fine recess 102, the light incident on the reflective film 101 can be diffusely reflected without unevenness.

しかしながら、上述したような従来の反射膜101は、図9に示すように、互いに隣接する凹部102同士が隙間無く密に形成されていたため、隣接する凹部102同士の頂上部102bが極めて狭くなり、凹部102の形成時にこの頂上部102bが崩れてしまい易かった。このため、図9中の点線Rで示す設計上の凹部の断面と比較して、実際に形成される凹部102の形状が崩れてしまい、目的の反射特性を得ることが困難であった。   However, as shown in FIG. 9, the conventional reflective film 101 as described above is formed so that the recesses 102 adjacent to each other are densely formed without gaps, so that the top portions 102b of the adjacent recesses 102 become extremely narrow, When the concave portion 102 was formed, the top portion 102b easily collapsed. For this reason, as compared with the cross section of the designed concave portion indicated by the dotted line R in FIG. 9, the shape of the actually formed concave portion 102 is broken, and it is difficult to obtain the desired reflection characteristics.

本発明は、上記の事情に鑑みてなされたものであって、入射した光をムラ無く効率的に反射することが可能な反射膜およびこれを備えた液晶表示装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reflective film capable of efficiently reflecting incident light without unevenness and a liquid crystal display device including the same. .

上記の目的を達成するために、本発明によれば、光反射性材料の表面に微細な凹部又は凸部が多数形成された反射膜であって、前記凹部又は凸部は、隣接する凹部又は凸部との間に一定の間隔を開けて形成されるとともに、互いに隣接する凹部又は凸部の間に粗面を形成したことを特徴とする反射膜が提供される。   In order to achieve the above object, according to the present invention, there is provided a reflective film in which a large number of fine concave portions or convex portions are formed on the surface of a light reflective material, and the concave portions or convex portions are adjacent concave portions or convex portions. There is provided a reflective film characterized in that it is formed with a certain interval between the convex portions and a rough surface is formed between the concave portions or the convex portions adjacent to each other.

前記粗面は、前記凹部又は凸部のギャップよりも小さい凹凸が形成された微小凹凸面であればよい。前記凹部又は凸部の隙間を、前記凹部又は凸部の平均最長直径の0〜3分の1の範囲に設定するのが好ましい。前記粗面の最大傾斜角を、前記凹部又は凸部の最大傾斜角と同じになるように設定してもよい。そして、こうした反射膜、および液晶表示パネルとを備えた液晶表示装置によれば、高輝度で鮮明な表示が可能な液晶表示装置を提供することができる。   The rough surface may be a minute uneven surface on which unevenness smaller than the gap between the recesses or the protrusions is formed. It is preferable to set the gap between the concave portion or the convex portion in a range of 0 to 1/3 of the average longest diameter of the concave portion or the convex portion. You may set the maximum inclination angle of the said rough surface so that it may become the same as the maximum inclination angle of the said recessed part or a convex part. And according to the liquid crystal display device provided with such a reflective film and a liquid crystal display panel, a liquid crystal display device capable of high-intensity and clear display can be provided.

このような反射膜によれば、反射膜に形成される凹部同士を一定の間隔を開けることによって、反射膜に凹部を形成する際に、隣接する凹部同士が繋がって頂上部分が崩れてしまうことが防止される。従って、凹部を設計どおりの精度で形成することができ、目的の反射特性を得ることできる。   According to such a reflective film, when the concave portions formed in the reflective film are spaced apart from each other, when the concave portions are formed in the reflective film, the adjacent concave portions are connected to each other and the top portion collapses. Is prevented. Therefore, the recess can be formed with the accuracy as designed, and the desired reflection characteristics can be obtained.

また、互いに隣接する凹部同士の間に形成された隙間に粗面を形成することにより、隣接する凹部31同士の隙間部分が鏡面になって、ここに入射した光が一方向に強く反射して液晶表示装置の視認性を低下させることを防止する。隣接する凹部同士の隙間に形成された粗面は、入射した光を乱反射させて、液晶表示装置の輝度を均一に保つ。   In addition, by forming a rough surface in the gap formed between the adjacent recesses, the gap between the adjacent recesses 31 becomes a mirror surface, and the incident light is strongly reflected in one direction. This prevents the visibility of the liquid crystal display device from being lowered. A rough surface formed in a gap between adjacent concave portions diffuses incident light to keep the luminance of the liquid crystal display device uniform.

更にまた、隣接する凹部同士の隙間に形成される小さな凹凸の粗面は、母型の形成時において、マスタブランクスの表面を予めこの粗面に相当する粗さで加工した後、所定の範囲の深さの微小凹部(凸部)を形成することにより、鏡面が残らずにマスタブランクスの表面を埋めていくことができるので、凹凸の作成時間を短くすることができる。   Furthermore, the rough surface of the small unevenness formed in the gap between the adjacent recesses is a predetermined range after processing the surface of the master blank with a roughness corresponding to this rough surface in advance when forming the master block. By forming a minute concave portion (convex portion) having a depth, the surface of the master blank can be filled without leaving a mirror surface, so that the time for forming the concave and convex portions can be shortened.

以下、本発明の実施の形態として、半透過反射型の液晶表示装置に本発明の反射膜を適用した例を説明するが、本発明は以下の実施の形態に限定されるものではない。図1は本発明の反射膜を備えた半透過反射型液晶表示装置の端部を含む部分断面構造を模式的に示した図である。図1において、液晶表示装置1を構成する液晶表示パネル2は、液晶層30を挟持して対向する透明なガラスなどからなる第1の基板10と、第2の基板20とをこれら2枚の基板10、20の周縁部に環状に設けられたシール材40で接着一体化した構成である。   Hereinafter, an example in which the reflective film of the present invention is applied to a transflective liquid crystal display device will be described as an embodiment of the present invention, but the present invention is not limited to the following embodiment. FIG. 1 is a diagram schematically showing a partial cross-sectional structure including an end portion of a transflective liquid crystal display device provided with a reflective film of the present invention. In FIG. 1, a liquid crystal display panel 2 constituting a liquid crystal display device 1 includes a first substrate 10 and a second substrate 20 made of transparent glass that are opposed to each other with a liquid crystal layer 30 interposed therebetween. In this configuration, the peripheral portions of the substrates 10 and 20 are bonded and integrated with a sealing material 40 provided in an annular shape.

第1の基板10の液晶層30側には順に、反射膜12に微細な凹部31を与えるための有機膜11と、液晶表示装置1に入射した光を反射させるための反射膜12と、カラー表示を行うためのカラーフィルタ13と、有機膜12と反射膜13を被覆して保護するとともに有機膜11やカラーフィルタによる凹凸を平坦化するためのオーバーコート膜14と、液晶層30を駆動するための電極層15と、液晶層30を構成する液晶分子の配向を制御するための配向膜16とが積層形成されている。また、第2の基板20の液晶層30側には順に、電極層25、オーバーコート膜24、配向膜26が積層形成されている。   On the liquid crystal layer 30 side of the first substrate 10, in order, an organic film 11 for giving a fine recess 31 to the reflective film 12, a reflective film 12 for reflecting light incident on the liquid crystal display device 1, and a color The color filter 13 for displaying, the organic film 12 and the reflective film 13 are covered and protected, the overcoat film 14 for flattening the unevenness due to the organic film 11 and the color filter, and the liquid crystal layer 30 are driven. An electrode layer 15 for forming the liquid crystal layer 30 and an alignment film 16 for controlling the alignment of the liquid crystal molecules constituting the liquid crystal layer 30 are laminated. In addition, an electrode layer 25, an overcoat film 24, and an alignment film 26 are sequentially stacked on the liquid crystal layer 30 side of the second substrate 20.

第1の基板10の液晶層30側と反対側(第1の基板10の外面側)に、偏光板18が設けられており、第2の基板20の液晶層30側と反対側(第2の基板20の外面側)には、位相差板27と、偏光板28がこの順で積層されている。 また、第1の基板10の偏光板18の外側には、液晶表示装置1において透過表示を行うための光源としてのバックライト5が配設されている。   A polarizing plate 18 is provided on the side opposite to the liquid crystal layer 30 side of the first substrate 10 (the outer surface side of the first substrate 10), and the side opposite to the liquid crystal layer 30 side of the second substrate 20 (second side). The phase difference plate 27 and the polarizing plate 28 are laminated in this order on the outer surface side of the substrate 20. In addition, a backlight 5 as a light source for performing transmissive display in the liquid crystal display device 1 is disposed outside the polarizing plate 18 of the first substrate 10.

有機膜11は、その上に形成されている反射膜12に凹部31を形成して反射光を効率よく散乱させるために設けられているものである。このように反射膜12に凹部31を形成することにより、液晶表示装置1に入射する光を効率よく反射することができるため、反射モードにおける明るい表示を実現することができる。   The organic film 11 is provided in order to efficiently scatter reflected light by forming a recess 31 in the reflective film 12 formed thereon. By forming the concave portion 31 in the reflective film 12 in this manner, light incident on the liquid crystal display device 1 can be efficiently reflected, so that bright display in the reflection mode can be realized.

図2は、本発明の反射膜の詳細な構造を示す部分拡大斜視図であり、図3はその拡大断面図である。有機膜11の表面には反射膜12が積層されている。有機膜11の表面に形成された凹部によって、反射膜12には凹部31が形成される。凹部31は、例えば開口面31aが円形に形成されており、厚み方向に窪んでいる。こうした開口面31aは円形以外にも、例えば六角形や矩形などであってもよい。凹部31は、隣接する凹部31との間に間隔t1を開けて形成されている。こうした凹部31同士の間隔t1は、例えば凹部31の平均最長直径の0〜3分の1程度に設定されるのが好ましい。   FIG. 2 is a partially enlarged perspective view showing the detailed structure of the reflective film of the present invention, and FIG. 3 is an enlarged sectional view thereof. A reflective film 12 is laminated on the surface of the organic film 11. A recess 31 is formed in the reflective film 12 by the recess formed on the surface of the organic film 11. For example, the recess 31 has a circular opening surface 31a and is recessed in the thickness direction. Such an opening surface 31a may be, for example, hexagonal or rectangular other than circular. The recess 31 is formed with an interval t1 between the adjacent recesses 31. The interval t1 between the recesses 31 is preferably set to about 0 to 1/3 of the average longest diameter of the recesses 31, for example.

互いに隣接する凹部31同士の間に形成された隙間は、表面に微細な凹凸が形成された粗面32を形成している。この粗面32平均的な深さ(高さ)は、0.1〜1μmであり、その全体に対する面積割合は0.4〜49%に設定される。このような粗面32は、この粗面32に入射した光を乱反射させる。   The gap formed between the recesses 31 adjacent to each other forms a rough surface 32 having fine irregularities formed on the surface. The average depth (height) of the rough surface 32 is 0.1 to 1 μm, and the area ratio relative to the entire surface is set to 0.4 to 49%. Such a rough surface 32 diffusely reflects light incident on the rough surface 32.

このように、反射膜12に形成される凹部31同士を間隔t1だけ開けることによって、反射膜12に凹部31を形成する際に、隣接する凹部31同士が繋がって頂上部分が崩れてしまうことが防止される。しかし、t1部に形成された粗面32の凹凸深さは小さいので反射特性への影響度合いを小さくすることができる。従って、凹部31を設計どおりの精度で形成することができ、目的の反射特性を得ることできる。   In this way, by forming the recesses 31 formed in the reflection film 12 by the interval t1, when forming the recesses 31 in the reflection film 12, the adjacent recesses 31 are connected to each other, and the top portion may collapse. Is prevented. However, since the unevenness depth of the rough surface 32 formed in the portion t1 is small, the degree of influence on the reflection characteristics can be reduced. Accordingly, the recess 31 can be formed with the accuracy as designed, and the desired reflection characteristics can be obtained.

また、凹部31同士を間隔t1だけ開け、この隙間に粗面32を形成することによって、隣接する凹部31同士の隙間部分が鏡面になって、ここに入射した光が一方向に強く反射して液晶表示装置1の視認性を低下させることを防止する。隣接する凹部31同士の隙間に形成された粗面32は、入射した光を乱反射させて、液晶表示装置1の輝度を均一に保つ。   In addition, by opening the recesses 31 by a distance t1 and forming a rough surface 32 in this gap, the gap between adjacent recesses 31 becomes a mirror surface, and the incident light is strongly reflected in one direction. The visibility of the liquid crystal display device 1 is prevented from being lowered. The rough surface 32 formed in the gap between the adjacent recesses 31 diffuses the incident light to keep the luminance of the liquid crystal display device 1 uniform.

凹部31は、例えば深さを0.1μm〜3μmの範囲でランダムに形成し、隣接する凹部31のピッチを5μm〜50μmの範囲でランダムに配置し、凹部31内面の傾斜角を−30度〜+30度の範囲に設定することが望ましい。特に、凹部31の内面の傾斜角分布を−30度〜+30度の範囲に設定する点、および隣接する凹部31のピッチを平面全方向に対してランダムに配置する点が特に重要である。なぜならば、仮に隣接する凹部31のピッチに規則性があると、光の干渉色が出て反射光が色付いてしまうという不具合があるからである。   For example, the recesses 31 are randomly formed with a depth in the range of 0.1 μm to 3 μm, the pitches of the adjacent recesses 31 are randomly arranged in the range of 5 μm to 50 μm, and the inclination angle of the inner surface of the recess 31 is −30 degrees to It is desirable to set in the range of +30 degrees. In particular, it is particularly important that the inclination angle distribution of the inner surface of the recess 31 is set in a range of −30 degrees to +30 degrees and that the pitch of the adjacent recesses 31 is randomly arranged in all directions in the plane. This is because, if the pitch between the adjacent recesses 31 is regular, there is a problem that the interference color of light is emitted and the reflected light is colored.

また、凹部31の内面の傾斜角分布が−30度〜30度の範囲を超えると、反射光の拡散角が広がりすぎて反射強度が低下し、明るい表示が得られない(反射光の拡散角が空気中で36度以上になり、液晶表示装置内部の反射強度ピークが低下し、全反射ロスが大きくなるからである。)からである。さらに、凹部31の深さが3μmを超えると、後工程で凹部31を平坦化する場合に凸部の頂上が平坦化膜(オーバーコート膜14)で埋めきれず、所望の平坦性が得られなくなり、表示ムラの原因となる。   On the other hand, if the inclination angle distribution on the inner surface of the recess 31 exceeds the range of -30 degrees to 30 degrees, the diffusion angle of the reflected light is excessively widened, the reflection intensity is lowered, and a bright display cannot be obtained (the diffusion angle of the reflected light). This is because it becomes 36 degrees or more in the air, the reflection intensity peak inside the liquid crystal display device decreases, and the total reflection loss increases. Furthermore, when the depth of the concave portion 31 exceeds 3 μm, when the concave portion 31 is planarized in a subsequent process, the top of the convex portion cannot be filled with the planarizing film (overcoat film 14), and a desired flatness can be obtained. This will cause display unevenness.

隣接する凹部31のピッチが5μm未満の場合、有機膜11を形成するために用いる転写型の製作上の制約があり、加工時間が極めて長くなる、所望の反射特性が得られるだけの形状が形成できない、干渉光が発生する等の問題が生じる。また、実用上、前記転写型の製作に使用しうる30μm〜100μm径のダイヤモンド圧子を用いる場合、隣接する凹部31のピッチを5μm〜50μmとすることが望ましい。   When the pitch of the adjacent recesses 31 is less than 5 μm, there is a restriction on the production of a transfer mold used for forming the organic film 11, and the processing time is extremely long, and a shape capable of obtaining desired reflection characteristics is formed. Inability to generate interference light occurs. In practice, when a diamond indenter having a diameter of 30 μm to 100 μm that can be used for manufacturing the transfer mold is used, it is desirable that the pitch of the adjacent recesses 31 be 5 μm to 50 μm.

図4は、良好な反射特性を示す凹凸形状の例である。反射膜12に形成される凹部31の特定縦断面Xにおける内面形状は、凹部31の一の周辺部S1から最深点Dに至る第1曲線Aと、この第1曲線Aに連続して凹部31の最深点Dから他の周辺部S2に至る第2曲線Bとからなる曲線形状である。これらの曲線A,Bは、凹部31の最深点Dにおいて、ともに平坦面Sに対する傾斜角がゼロとなり、互いに接続されている。   FIG. 4 is an example of a concavo-convex shape showing good reflection characteristics. The inner surface shape of the concave portion 31 formed in the reflective film 12 in the specific longitudinal section X includes a first curve A from one peripheral portion S1 of the concave portion 31 to the deepest point D, and the concave portion 31 continuously to the first curve A. It is a curve shape consisting of the second curve B extending from the deepest point D to the other peripheral portion S2. These curves A and B are connected to each other at the deepest point D of the recess 31 so that the inclination angle with respect to the flat surface S is zero.

第1曲線Aの平坦面Sに対する傾斜角は、第2曲線Bの傾斜角よりも急であって、最深点Dは、凹部31の中心Oからx方向にずれた位置にある。すなわち、第1曲線Aの平坦面Sに対する傾斜角の絶対値の平均値は、第2曲線Bの平坦面Sに対する傾斜角の絶対値の平均値より大きくなっている。本実施形態においても、複数形成された各々の凹部31を構成する第1曲線Aの傾斜角の絶対値の平均値は、1〜89°の範囲で互いに不規則にばらついていることが好ましい。また、各々の凹部31の第2曲線Bの傾斜角の絶対値の平均値も、0.5〜88°の範囲で互いに不規則にばらついていることが好ましい。   The inclination angle of the first curve A with respect to the flat surface S is steeper than the inclination angle of the second curve B, and the deepest point D is at a position shifted from the center O of the recess 31 in the x direction. That is, the average value of the absolute value of the inclination angle of the first curve A with respect to the flat surface S is larger than the average value of the absolute value of the inclination angle of the second curve B with respect to the flat surface S. Also in this embodiment, it is preferable that the average value of the absolute values of the inclination angles of the first curve A constituting each of the plurality of formed recesses 31 varies irregularly within a range of 1 to 89 °. Moreover, it is preferable that the average value of the absolute value of the inclination angle of the second curve B of each recess 31 also varies irregularly within a range of 0.5 to 88 °.

上記両曲線A,Bの傾斜角は、凹部31の周辺部から最深点Dに至るまでなだらかに変化しているので、図4,5に示す第1曲線Aの最大傾斜角δaは(絶対値)は、第2曲線Bの最大傾斜角δbよりも大きくなっている。また、第1曲線Aと、第2曲線Bとが接する最深点Dの平坦面Sに対する傾斜角はゼロとなっており、この最深点Dにおいて傾斜角の正負が異なる両曲線A,Bがなだらかに連続している。   Since the inclination angles of both the curves A and B change gently from the periphery of the recess 31 to the deepest point D, the maximum inclination angle δa of the first curve A shown in FIGS. ) Is larger than the maximum inclination angle δb of the second curve B. Moreover, the inclination angle with respect to the flat surface S of the deepest point D where the first curve A and the second curve B are in contact with each other is zero, and the curves A and B having different inclination angles at the deepest point D are gentle. It is continuous.

例えば、各々の凹部31の最大傾斜角δaは、2〜90°の範囲内で不規則にばらついている。しかし、多くの凹部31は最大傾斜角δaが4〜35°の範囲内で不規則にばらついている。また、図4,5に示す凹部31は、その凹面が単一の極小点(傾斜角がゼロとなる曲面上の点)Dを有している。そしてこの極小点Dと平坦面Sとの距離が凹部31の深さdを形成し、この深さdは、多数形成された凹部31についてそれぞれ1〜3μmの範囲内で不規則にばらついている。   For example, the maximum inclination angle δa of each recess 31 varies irregularly within a range of 2 to 90 °. However, many of the recesses 31 vary irregularly within a range of the maximum inclination angle δa of 4 to 35 °. 4 and 5 has a single minimal point (a point on the curved surface where the inclination angle is zero) D. The distance between the local minimum point D and the flat surface S forms the depth d of the recess 31. The depth d varies irregularly within a range of 1 to 3 μm for each of the formed recesses 31. .

複数の凹部31の第1曲線Aは、単一の方向に配向されていることが好ましい。このような構成とすることで、反射膜12で反射された反射光の方向を、正反射の方向から特定の方向へずらすこともできる。その結果、特定縦断面の総合的な反射特性としては、第2曲線B周辺の面によって反射される方向の反射率が増加したものとなり、特定の方向に反射光を集中させた反射特性とすることもできる。図6に、上記凹部31の第1曲線Aを単一の方向に配向させた半透過反射膜に入射角30°で外光を照射し、受光角を平坦面Sに対する正反射の方向である30°を中心として半透過反射膜の垂線位置(0°)から60°まで振った時の受光角(θ°)と明るさ(反射率)との関係を示す。   The first curves A of the plurality of recesses 31 are preferably oriented in a single direction. By setting it as such a structure, the direction of the reflected light reflected by the reflecting film 12 can also be shifted to the specific direction from the direction of regular reflection. As a result, the overall reflection characteristic of the specific longitudinal section is one in which the reflectance in the direction reflected by the surface around the second curve B is increased, and the reflection characteristic is obtained by concentrating the reflected light in the specific direction. You can also. In FIG. 6, the semi-transmissive reflective film in which the first curve A of the concave portion 31 is oriented in a single direction is irradiated with external light at an incident angle of 30 °, and the light receiving angle is the direction of regular reflection with respect to the flat surface S. The relationship between the light receiving angle (θ °) and the brightness (reflectance) when swung from the perpendicular position (0 °) to 60 ° of the transflective film around 30 ° is shown.

図6から明らかなように、上記第1曲線Aが単一方向に配向された半透過反射膜では、反射特性が20°〜50°と広い範囲で高く、しかも平坦面Sに対する正反射の角度である30°より小さい受光角における反射率の積分値が、正反射の角度より大きい受光角における反射率の積分値より大きくなっている。すなわち、受光角20°付近においてより大きな反射強度を得ることができる。   As is clear from FIG. 6, in the transflective film in which the first curve A is oriented in a single direction, the reflection characteristic is high in a wide range of 20 ° to 50 °, and the angle of regular reflection with respect to the flat surface S The integrated value of the reflectance at the light receiving angle smaller than 30 ° is larger than the integrated value of the reflectance at the light receiving angle larger than the regular reflection angle. That is, a larger reflection intensity can be obtained in the vicinity of a light receiving angle of 20 °.

なお、上述した実施形態では、反射膜に凹部を形成しているが、これ以外にも、例えば図7に示すように、反射膜71の表面に微細な凸部72を一定の隙間t2を開けて多数形成し、この凸部72同士の隙間に粗面73を形成しても良い。   In the embodiment described above, the concave portion is formed in the reflective film. However, in addition to this, for example, as shown in FIG. 7, a fine convex portion 72 is formed on the surface of the reflective film 71 with a certain gap t2. The rough surface 73 may be formed in a gap between the convex portions 72.

本出願人は、本発明の反射膜の効果を検証した。検証にあたって、図10の模式図に示すディンプルKを多数形成した反射膜を用いた。ディンプルKの曲率半径は25μm、深さは15μm、最大傾斜角度を17.5°に設定した。そして、隣接するディンプルK同士の間隔dを0,5,10μmにそれぞれ設定した複数のサンプルを用いて、受光角と相対反射強度との関係を測定した。こうした検証結果を図11に示す。   The present applicant verified the effect of the reflective film of the present invention. In the verification, a reflective film in which a large number of dimples K shown in the schematic diagram of FIG. 10 was formed was used. The dimple K has a radius of curvature of 25 μm, a depth of 15 μm, and a maximum inclination angle of 17.5 °. Then, using a plurality of samples in which the distance d between adjacent dimples K was set to 0, 5, and 10 μm, the relationship between the light receiving angle and the relative reflection intensity was measured. Such verification results are shown in FIG.

図11に示す検証結果によれば、ディンプルK同士の間隔dを5μm以下に設定することで、受光角10°〜50°の範囲において、相対反射強度をほぼ90%以上にできることが可能であることが確認された。   According to the verification result shown in FIG. 11, by setting the distance d between the dimples K to 5 μm or less, it is possible to make the relative reflection intensity almost 90% or more in the light receiving angle range of 10 ° to 50 °. It was confirmed.

また、表1に、間隔dと相対反射強度との関係を示す。表1からも、間隔dを0〜5μmの範囲に保てば、相対反射強度を100〜90%の範囲にできることが確認された。   Table 1 shows the relationship between the distance d and the relative reflection intensity. Also from Table 1, it was confirmed that the relative reflection intensity could be in the range of 100 to 90% if the distance d was kept in the range of 0 to 5 μm.

Figure 2005274676
Figure 2005274676

図1は、本発明の反射膜を備えた液晶表示装置を示す斜視図である。FIG. 1 is a perspective view showing a liquid crystal display device provided with the reflective film of the present invention. 図2は、図1に示す反射膜の部分拡大斜視図である。FIG. 2 is a partially enlarged perspective view of the reflective film shown in FIG. 図3は、図2に示す反射膜の部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view of the reflective film shown in FIG. 図4は、反射膜に形成された凹部を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing a recess formed in the reflective film. 図5は、図4に示す凹部の縦断面Xにおける内面形状を示す断面図である。FIG. 5 is a cross-sectional view showing the inner surface shape in the vertical cross section X of the recess shown in FIG. 図6は、半透過反射膜の反射特性例を示すグラフである。FIG. 6 is a graph showing an example of the reflection characteristics of the transflective film. 図7は、本発明の他の実施形態を示す部分拡大断面図である。FIG. 7 is a partially enlarged cross-sectional view showing another embodiment of the present invention. 図8は、従来の反射膜を示す部分拡大斜視図である。FIG. 8 is a partially enlarged perspective view showing a conventional reflective film. 図9は、従来の反射膜を示す説明図である。FIG. 9 is an explanatory view showing a conventional reflective film. 図10は、本発明の検証に用いた反射膜を示す模式図である。FIG. 10 is a schematic diagram showing a reflective film used for verification of the present invention. 図11は、本発明の検証結果を示すグラフである。FIG. 11 is a graph showing the verification results of the present invention.

符号の説明Explanation of symbols

1 液晶表示装置
2 液晶表示パネル
12 反射膜
31 凹部
32 粗面
72 凸部
DESCRIPTION OF SYMBOLS 1 Liquid crystal display device 2 Liquid crystal display panel 12 Reflective film 31 Concave part 32 Rough surface 72 Convex part

Claims (5)

光反射性材料の表面に微細な凹部又は凸部が多数形成された反射膜であって、
前記凹部又は凸部は、隣接する凹部又は凸部との間に一定の間隔を開けて形成されるとともに、互いに隣接する凹部又は凸部の間に粗面を形成したことを特徴とする反射膜。
A reflective film in which a number of fine recesses or protrusions are formed on the surface of the light reflective material,
The concave portion or the convex portion is formed with a certain interval between the adjacent concave portion or convex portion, and a rough surface is formed between the adjacent concave portions or convex portions. .
前記粗面は、前記凹部又は凸部の隙間よりも小さい凹凸が形成された微小凹凸面であることを特徴とする請求項1に記載の反射膜。   2. The reflective film according to claim 1, wherein the rough surface is a minute uneven surface on which unevenness smaller than a gap between the concave portion or the convex portion is formed. 前記凹部又は凸部の隙間を、前記凹部又は凸部の平均最長直径の0〜3分の1の範囲に設定したことを特徴とする請求項1または2に記載の反射膜。   The reflective film according to claim 1 or 2, wherein a gap between the concave portion or the convex portion is set in a range of 0 to 1/3 of an average longest diameter of the concave portion or the convex portion. 前記粗面の最大傾斜角を、前記凹部又は凸部の最大傾斜角と同じになるように設定したことを特徴とする請求項1ないし3のいずれか1項に記載の反射膜。   The reflective film according to claim 1, wherein a maximum inclination angle of the rough surface is set to be the same as a maximum inclination angle of the concave portion or the convex portion. 請求項1ないし4のいずれか1項に記載の反射膜と、液晶表示パネルとを備えたことを特徴とする液晶表示装置。

A liquid crystal display device comprising the reflective film according to claim 1 and a liquid crystal display panel.

JP2004084462A 2004-03-23 2004-03-23 Reflection coating and liquid crystal display device Withdrawn JP2005274676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084462A JP2005274676A (en) 2004-03-23 2004-03-23 Reflection coating and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084462A JP2005274676A (en) 2004-03-23 2004-03-23 Reflection coating and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2005274676A true JP2005274676A (en) 2005-10-06

Family

ID=35174459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084462A Withdrawn JP2005274676A (en) 2004-03-23 2004-03-23 Reflection coating and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP2005274676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871620A (en) * 2010-06-07 2010-10-27 友达光电股份有限公司 Optical membrane, backlight module comprising the optical membrane and display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871620A (en) * 2010-06-07 2010-10-27 友达光电股份有限公司 Optical membrane, backlight module comprising the optical membrane and display
CN101871620B (en) * 2010-06-07 2013-04-10 友达光电股份有限公司 Backlight module and display

Similar Documents

Publication Publication Date Title
KR100425348B1 (en) Reflector and reflective liquid crystal display
KR100300367B1 (en) Reflective Liquid Crystal Display
JP6873050B2 (en) Light extraction feature Glass articles including structures and their manufacturing methods
JP6839095B2 (en) Optical film
TW201423167A (en) Optical diffusing films and methods of making same
KR20020021998A (en) Liquid crystal display and semi-transmissive reflector
JPH11242105A (en) Matrix for forming reflector and its production and reflector and its production as well as reflection type liquid crystal display device
TW201622930A (en) A method of forming an uneven structure on a substrate and a method of mold-making
JP2005321610A (en) Reflective bistable nematic liquid crystal display device
JP4181905B2 (en) Liquid crystal display panel and liquid crystal display device
JP3974787B2 (en) Reflective liquid crystal display
KR100367897B1 (en) Reflection type liquid crystal display device
JP2003202563A (en) Liquid crystal display device
JP3748761B2 (en) Reflector and reflective liquid crystal display device
JP3612177B2 (en) Method for manufacturing reflector forming mother die, method for manufacturing reflector, and method for manufacturing reflective liquid crystal display device
JP2005274676A (en) Reflection coating and liquid crystal display device
JP4028290B2 (en) Liquid crystal display device and manufacturing method thereof
JPH1144804A (en) Reflector and reflection type liquid crystal display device
JP2004252396A (en) Optically reflective structure, its manufacturing method, photomask, and display device
KR100694900B1 (en) Reflector and the liquid crystal display using it
KR20060098141A (en) One-bodied-patterned light guiding plates including reflective layer
TWM336439U (en) Diffuser capable of light condensing
KR20110107694A (en) Nano wire grid polarizing plate and lcd device including the nano wire grid polarizing plate
JP2009140743A (en) Light guide plate, and surface light-emitting device using the same
JPH06242320A (en) Light guiding plate device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605