JPH1151866A - Air fuel ratio detector of internal combustion engine - Google Patents

Air fuel ratio detector of internal combustion engine

Info

Publication number
JPH1151866A
JPH1151866A JP21430997A JP21430997A JPH1151866A JP H1151866 A JPH1151866 A JP H1151866A JP 21430997 A JP21430997 A JP 21430997A JP 21430997 A JP21430997 A JP 21430997A JP H1151866 A JPH1151866 A JP H1151866A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
combustion chamber
extinction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21430997A
Other languages
Japanese (ja)
Other versions
JP3250491B2 (en
Inventor
Kiyomi Kawamura
清美 河村
Tetsunori Suzuoki
哲典 鈴置
Akinori Saito
昭則 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP21430997A priority Critical patent/JP3250491B2/en
Publication of JPH1151866A publication Critical patent/JPH1151866A/en
Application granted granted Critical
Publication of JP3250491B2 publication Critical patent/JP3250491B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To precisely detect an air fuel ratio even in the case where fuel different in an absorption coefficient is used for an internal combustion engine. SOLUTION: The detector is provided with a device 7 for projecting light of wavelength in which fuel vapor is selectively absorbed from the light emission side of the air fuel ratio measuring part of a combustion chamber to the light receiving side, and detecting intensity of light transmitting the fuel vapor of the combustion chamber, and a calculation means 15 for finding an air fuel ratio prior to ignition on the basis of output of the device 7 and the absorption coefficient of fuel. A detector 23 for detecting the absorption coefficient of fuel on use, and a correction device 25 for replacing the absorption coefficient on use in the calculation device 15 with the same or substantially the same as the absorption coefficient newly detected by the detector 23 are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガソリン機関のよ
うな内燃機関において、燃焼室の点火前の空燃比を検出
する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting an air-fuel ratio of a combustion chamber before ignition in an internal combustion engine such as a gasoline engine.

【0002】[0002]

【従来の技術】この種の空燃比検出装置は、特開平6−
288283号公報に開示されているように、ガソリン
機関において、ガソリンの蒸気が選択的に吸収する波長
の光を発光する光源と、その波長の光の強度を検出する
光強度検出素子を設け、燃焼室の点火栓近傍位置に空燃
比計測部を設け、光源が発光した光を空燃比計測部の発
光側から受光側に投射して光強度検出素子に入射させる
光路を設けて、透過光強度検出装置を構成している。
2. Description of the Related Art An air-fuel ratio detecting device of this type is disclosed in
As disclosed in Japanese Patent Publication No. 288283, a gasoline engine is provided with a light source that emits light of a wavelength that gasoline vapor selectively absorbs, and a light intensity detection element that detects the intensity of light of that wavelength. An air-fuel ratio measurement unit is provided near the ignition plug in the chamber, and an optical path is provided to project the light emitted from the light source from the light-emitting side of the air-fuel ratio measurement unit to the light-receiving side and make it incident on the light intensity detection element, thereby detecting transmitted light intensity. Make up the device.

【0003】透過光強度検出装置においては、ガソリン
の蒸気に選択的に吸収される波長の光は、空燃比計測部
の発光側と受光側の間に存在するガソリン蒸気と空気の
混合気を透過し、ガソリン蒸気に吸収されて減衰した透
過光の強度が検出される。
In a transmitted light intensity detecting device, light having a wavelength selectively absorbed by gasoline vapor passes through a gasoline vapor / air mixture present between a light emitting side and a light receiving side of an air-fuel ratio measuring section. Then, the intensity of the transmitted light absorbed and attenuated by the gasoline vapor is detected.

【0004】ガソリンの濃度Cは、次の関係式から求め
られる。
[0004] The concentration C of gasoline is obtained from the following relational expression.

【0005】C=ln(I0/I)/(μ・L) ただし、lnは、自然対数である。I0は、ガソリン蒸気
に入射した光の強度であり、Iは、ガソリン蒸気を透過
した光の強度である。μは、ガソリン蒸気の吸光係数で
ある。Lは、空燃比計測部の光路長である。
C = ln (I 0 / I) / (μ · L) where ln is a natural logarithm. I 0 is the intensity of light incident on gasoline vapor, and I is the intensity of light transmitted through gasoline vapor. μ is the extinction coefficient of gasoline vapor. L is the optical path length of the air-fuel ratio measurement unit.

【0006】また、燃焼室の空気密度を求めるため、燃
焼室の圧力を検出する装置を設けている。
Further, a device for detecting the pressure in the combustion chamber is provided in order to determine the air density in the combustion chamber.

【0007】そして、透過光の強度と燃焼室の圧力及び
空燃比の関係を予め測定して、空燃比算出用のマップを
作成し、この空燃比算出マップを記憶させた空燃比演算
装置を設けている。
[0007] An air-fuel ratio calculating device is provided in which the relationship between the intensity of the transmitted light, the pressure in the combustion chamber, and the air-fuel ratio is measured in advance, a map for calculating the air-fuel ratio is prepared, and the air-fuel ratio calculation map is stored. ing.

【0008】空燃比演算装置において、透過光強度検出
装置と燃焼室圧力検出装置の各出力と空燃比算出マップ
に基づいて、燃焼室点火栓近傍の点火前の空燃比を求め
る。
In the air-fuel ratio calculation device, the air-fuel ratio in the vicinity of the ignition plug of the combustion chamber before ignition is obtained based on the output of the transmitted light intensity detection device and the output of the combustion chamber pressure detection device and the air-fuel ratio calculation map.

【0009】なお、この空燃比に基づいて、燃料噴射時
期を制御する。
The fuel injection timing is controlled based on the air-fuel ratio.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記のよう
な空燃比検出装置においては、ガソリン蒸気の吸光係数
は、ガソリンの製造所、製造ロット、レギュラーガソリ
ンやプレミアムガソリンのような種類などによって変化
せず、一義的に定まることを前提にしている。
However, in the above-described air-fuel ratio detecting device, the extinction coefficient of gasoline vapor varies depending on a gasoline manufacturing plant, a production lot, and types such as regular gasoline and premium gasoline. Rather, it is assumed that it is uniquely determined.

【0011】プロパンやメタンのような単一成分の燃料
は、その吸光係数が燃料の製造所や製造ロットによって
変化せず、一義的に定まるので、単一成分燃料の内燃機
関においては、製造所や製造ロットの異なる燃料を運転
途中に補給しても、空燃比検出装置が検出する空燃比に
誤差が生じない。
In the case of a single component fuel such as propane or methane, the extinction coefficient of the single component fuel does not change depending on the fuel manufacturer or production lot and is determined uniquely. Even if fuel of a different production lot is supplied during operation, no error occurs in the air-fuel ratio detected by the air-fuel ratio detecting device.

【0012】しかし、ガソリンのような多成分の燃料
は、製造所、製造ロット、レギュラーガソリンやプレミ
アムガソリンのような種類、或いは、季節などによっ
て、組成が異なり、その結果、吸光係数が一義的に定ま
らない。例えば、レギュラーガソリンとプレミアムガソ
リンでは、吸光係数に20%位の差がある。
However, multi-component fuels such as gasoline have different compositions depending on factories, production lots, types such as regular gasoline and premium gasoline, or seasons. Not determined. For example, there is a difference of about 20% in the extinction coefficient between regular gasoline and premium gasoline.

【0013】従って、多成分燃料の内燃機関において
は、空燃比検出装置に予め設定した吸光係数とは異なる
吸光係数の燃料を使用すると、空燃比検出装置が検出す
る空燃比に誤差が生ずる。
Therefore, in a multi-component fueled internal combustion engine, if a fuel having an absorption coefficient different from the absorption coefficient preset in the air-fuel ratio detector is used, an error occurs in the air-fuel ratio detected by the air-fuel ratio detector.

【0014】すると、空燃比検出装置が検出する空燃比
に基づいて制御する燃料噴射時期や点火時期に誤差が生
ずる。
Then, errors occur in the fuel injection timing and the ignition timing controlled based on the air-fuel ratio detected by the air-fuel ratio detection device.

【0015】[0015]

【課題を解決するための研究】上記の課題を解決するた
めには、先ず、随時、多成分燃料の内燃機関において
使用中の燃料の吸光係数を検出し、次に、空燃比演算
装置において、使用中の吸光係数に代えて、新たに検出
した吸光係数を使用して空燃比を算出する必要がある。 燃焼室の混合気が均一になる運転時には、燃焼室の
点火栓近傍の空燃比は、燃焼室の全体の空燃比と同一に
なるので、この時に、燃焼室の点火栓近傍の空燃比を検
出する空燃比検出装置において透過光強度を計測し、ま
た、排気管の排気ガスから燃焼室の全体の空燃比を検出
する空燃比センサにおいて燃焼室の全体の燃料濃度を求
める。
In order to solve the above problems, first, at any time, the extinction coefficient of the fuel used in the multi-component fueled internal combustion engine is detected. It is necessary to calculate the air-fuel ratio using the newly detected extinction coefficient instead of the extinction coefficient in use. At the time of operation in which the air-fuel mixture in the combustion chamber is uniform, the air-fuel ratio near the ignition plug in the combustion chamber is the same as the overall air-fuel ratio in the combustion chamber. At this time, the air-fuel ratio near the ignition plug in the combustion chamber is detected. The air-fuel ratio detecting device measures the transmitted light intensity, and the air-fuel ratio sensor that detects the entire air-fuel ratio of the combustion chamber from the exhaust gas of the exhaust pipe determines the overall fuel concentration of the combustion chamber.

【0016】空燃比センサにおいて求めた燃焼室の全体
の燃料濃度Cと、空燃比検出装置において検出した透過
光強度Iを、前記の関係式を変形した次式に代入して、
使用中の燃料の吸光係数μを算出する。
Substituting the overall fuel concentration C of the combustion chamber determined by the air-fuel ratio sensor and the transmitted light intensity I detected by the air-fuel ratio detector into the following equation, which is a modification of the above-described relational equation,
Calculate the absorption coefficient μ of the fuel in use.

【0017】μ=ln(I0/I)/(C・L) 新たに検出した吸光係数は、空燃比演算装置におい
て使用中の吸光係数と比較し、両者が異なるとき、また
は、両者の差が一定の範囲を越えたときには、空燃比演
算装置において、使用中の吸光係数に代えて、新たに検
出した吸光係数を使用して空燃比を算出する。または、
空燃比演算装置に記憶させた複数の吸光係数の中から、
新たに検出した吸光係数に最も近い吸光係数を選択し、
空燃比演算装置において、使用中の吸光係数に代えて、
新たに選択した吸光係数を使用して空燃比を算出する。
Μ = ln (I 0 / I) / (CL) The newly detected extinction coefficient is compared with the extinction coefficient used in the air-fuel ratio calculator, and when the two are different or the difference between the two. Exceeds a certain range, the air-fuel ratio calculation device calculates the air-fuel ratio using the newly detected absorption coefficient instead of the currently used absorption coefficient. Or
From a plurality of absorption coefficients stored in the air-fuel ratio calculation device,
Select the extinction coefficient closest to the newly detected extinction coefficient,
In the air-fuel ratio calculation device, instead of the extinction coefficient in use,
The air-fuel ratio is calculated using the newly selected extinction coefficient.

【0018】すると、多成分燃料の内燃機関において使
用中の燃料の吸光係数と同一またはほぼ同一の吸光係数
に基づいて空燃比が検出される。 例えば、燃焼室に燃料のガソリンを直接噴射する直
噴ガソリン機関においては、圧縮行程で燃料を噴射する
ときには、燃焼室の混合気が均一にならないが、吸気行
程で燃料を噴射するときには、噴射開始から点火までの
時間が長く、その間に燃料が拡散すると共に吸気が流動
して、点火直前には、燃焼室の混合気が均一になる。
Then, the air-fuel ratio is detected based on the extinction coefficient which is the same as or substantially the same as the extinction coefficient of the fuel being used in the multi-component fuel internal combustion engine. For example, in a direct-injection gasoline engine that directly injects gasoline as fuel into the combustion chamber, the fuel-air mixture in the combustion chamber is not uniform when injecting fuel in the compression stroke. The time from ignition to ignition is long, during which fuel diffuses and intake air flows, and immediately before ignition, the mixture in the combustion chamber becomes uniform.

【0019】従って、吸気行程で燃料を噴射したときの
点火直前に、空燃比検出装置と空燃比センサを使用し
て、使用中の燃料の吸光係数を検出する。
Therefore, immediately before ignition when fuel is injected in the intake stroke, the air-fuel ratio detecting device and the air-fuel ratio sensor are used to detect the extinction coefficient of the fuel in use.

【0020】また、吸気行程で燃料を噴射するときに
は、理論空燃比で燃焼させることが多い。そのようなと
きには、空燃比センサに代えて、排気管の排気ガスから
燃焼室の理論空燃比の燃焼状態を検出するO2センサを
用いることもできる。
When fuel is injected during the intake stroke, the fuel is often burned at a stoichiometric air-fuel ratio. In such a case, instead of the air-fuel ratio sensor, an O 2 sensor that detects the combustion state of the combustion chamber at the stoichiometric air-fuel ratio from the exhaust gas of the exhaust pipe may be used.

【0021】[0021]

【課題を解決するための手段】本発明は、燃料の蒸気が
選択的に吸収する波長の光を、燃焼室に設けた空燃比計
測部の発光側から受光側に投射して、燃焼室の燃料蒸気
と空気の混合気を透過した光の強度を検出する透過光強
度検出装置と、透過光強度検出装置の出力と燃料の吸光
係数などに基づいて燃焼室の点火前の空燃比を求める空
燃比演算装置を設けた内燃機関の空燃比検出装置におい
て、内燃機関において使用中の燃料の吸光係数を検出す
る吸光係数検出装置と、空燃比演算装置において使用中
の吸光係数を、吸光係数検出装置で新たに検出した吸光
係数と同一またはほぼ同一の吸光係数に代える吸光係数
補正装置を設けた。
SUMMARY OF THE INVENTION According to the present invention, light having a wavelength which fuel vapor selectively absorbs is projected from a light emitting side of an air-fuel ratio measuring section provided in a combustion chamber to a light receiving side, and the combustion chamber has A transmitted light intensity detector for detecting the intensity of light transmitted through a mixture of fuel vapor and air; and an air for obtaining an air-fuel ratio before ignition of a combustion chamber based on an output of the transmitted light intensity detector, an absorption coefficient of fuel, and the like. An air-fuel ratio detection device for an internal combustion engine provided with a fuel ratio calculation device, wherein an absorption coefficient detection device for detecting an absorption coefficient of a fuel used in the internal combustion engine, and an absorption coefficient used for the air-fuel ratio calculation device, an absorption coefficient detection device An extinction coefficient correction device was used to replace the extinction coefficient with or substantially the same as the extinction coefficient newly detected.

【0022】[0022]

【発明の効果】内燃機関において使用中の燃料の吸光係
数と同一またはほぼ同一の吸光係数に基づいて燃焼室の
点火前の空燃比が検出される。従って、使用中の燃料と
は吸光係数の異なる燃料を運転途中に補給しても、空燃
比の検出値に誤差が生じ難い。
The air-fuel ratio of the combustion chamber before ignition is detected based on the same or almost the same extinction coefficient as that of the fuel used in the internal combustion engine. Therefore, even if fuel having an absorption coefficient different from that of the fuel being used is supplied during operation, an error is hardly generated in the detected value of the air-fuel ratio.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<第1例(図1〜図3参照)>本例は、ガソリン機関に
おいて、燃焼室点火栓近傍の点火前の空燃比を検出する
装置である。
<First Example (see FIGS. 1 to 3)> This example is an apparatus for detecting an air-fuel ratio in the vicinity of a combustion chamber spark plug before ignition in a gasoline engine.

【0024】空燃比検出装置は、図1と図2に示すよう
に、ガソリンの蒸気が選択的に吸収する波長の光を発光
する光源1と、その波長の光の強度を検出する光強度検
出素子2を設け、ガソリン機関の燃焼室3の点火栓4近
傍位置に空燃比計測部5を設け、光源1が発光した光を
空燃比計測部5の発光側から受光側に投射して光強度検
出素子2に入射させる光路6を設けて、空燃比計測部5
の発光側と受光側の間に存在するガソリン蒸気と空気の
混合気を透過した光の強度を検出する透過光強度検出装
置7を構成している。
As shown in FIGS. 1 and 2, the air-fuel ratio detecting device includes a light source 1 which emits light having a wavelength which gasoline vapor selectively absorbs, and a light intensity detecting device which detects the intensity of the light having the wavelength. An element 2 is provided, and an air-fuel ratio measuring unit 5 is provided near a spark plug 4 in a combustion chamber 3 of a gasoline engine, and light emitted from the light source 1 is projected from the light-emitting side of the air-fuel ratio measuring unit 5 to a light receiving side. An optical path 6 for entering the detection element 2 is provided, and an air-fuel ratio measuring unit 5 is provided.
The transmitted light intensity detecting device 7 detects the intensity of light transmitted through a mixture of gasoline vapor and air existing between the light emitting side and the light receiving side.

【0025】光源1は、波長が3.39μmの赤外光を
発光する赤外線レーザである。光強度検出素子2は、光
電変換素子である。光路6は、ハーフミラー8や光ファ
イバ9からなる。
The light source 1 is an infrared laser emitting infrared light having a wavelength of 3.39 μm. The light intensity detection element 2 is a photoelectric conversion element. The optical path 6 includes a half mirror 8 and an optical fiber 9.

【0026】空燃比計測部5は、図3に示すように、点
火栓4に光ファイバ9の先端とこれに接続した光学窓1
0を埋設し、光学窓10を、点火栓4の陽極電極11の
先端に近接した陰極電極12の折曲先端に対面して配置
し、光学窓10から出た光が燃焼室3の混合気を透過し
て陰極電極12の折曲先端で反射し、その反射光が燃焼
室3の混合気を透過して光学窓10に入る構成にしてい
る。
As shown in FIG. 3, the air-fuel ratio measuring unit 5 is connected to the ignition plug 4 by the tip of an optical fiber 9 and the optical window 1 connected thereto.
0, and the optical window 10 is arranged so as to face the bent tip of the cathode electrode 12 close to the tip of the anode electrode 11 of the ignition plug 4. And reflected by the bent tip of the cathode electrode 12, and the reflected light passes through the mixture in the combustion chamber 3 and enters the optical window 10.

【0027】また、図1に示すように、空燃比演算装置
15を設け、これに透過光強度検出装置7の光強度検出
素子2を接続している。燃焼室空気密度検出装置16を
設け、これを空燃比演算装置15に接続している。燃焼
室空気密度検出装置16は、ガソリン機関の吸気管の圧
力から検出した燃焼室3の吸入空気量と、ガソリン機関
のクランク角度から検出した燃焼室3の容積から燃焼室
3の空気密度を求めるものである。なお、これは、燃焼
室3の圧力から燃焼室3の空気密度を求めるものであっ
てもよい。
Further, as shown in FIG. 1, an air-fuel ratio calculating device 15 is provided, and the light intensity detecting element 2 of the transmitted light intensity detecting device 7 is connected to this. A combustion chamber air density detecting device 16 is provided and connected to the air-fuel ratio calculating device 15. The combustion chamber air density detector 16 calculates the air density of the combustion chamber 3 from the intake air amount of the combustion chamber 3 detected from the pressure of the intake pipe of the gasoline engine and the volume of the combustion chamber 3 detected from the crank angle of the gasoline engine. Things. It should be noted that this may be for obtaining the air density of the combustion chamber 3 from the pressure of the combustion chamber 3.

【0028】燃料噴射時期制御装置17と点火時期制御
装置18を設け、これらにそれぞれ空燃比演算装置15
を接続している。
A fuel injection timing control device 17 and an ignition timing control device 18 are provided.
Are connected.

【0029】空燃比演算装置15においては、ガソリン
蒸気の吸光係数などを記憶させ、透過光強度検出装置7
と燃焼室空気密度検出装置16の各出力などに基づい
て、空燃比計測部5の空燃比を求める。即ち、ガソリン
蒸気の吸光係数や透過光の強度などからガソリン濃度を
求め、燃焼室3の空気密度をガソリンの濃度で割って、
燃焼室3の点火栓4近傍の点火前の空燃比を求める。
The air-fuel ratio calculator 15 stores the absorption coefficient of gasoline vapor and the like, and stores the transmitted light intensity detector 7
The air-fuel ratio of the air-fuel ratio measurement unit 5 is determined based on the output of the combustion chamber air density detector 16 and the like. That is, the gasoline concentration is determined from the absorption coefficient of gasoline vapor and the intensity of transmitted light, and the air density in the combustion chamber 3 is divided by the gasoline concentration to obtain
An air-fuel ratio before ignition in the vicinity of the ignition plug 4 in the combustion chamber 3 is obtained.

【0030】この空燃比は、燃料噴射時期制御装置17
と点火時期制御装置18にそれぞれ入力し、ガソリン機
関の燃料噴射時期と点火時期をそれぞれ制御する。
This air-fuel ratio is determined by the fuel injection timing control device 17.
To the ignition timing control device 18 to control the fuel injection timing and the ignition timing of the gasoline engine, respectively.

【0031】ガソリン機関の排気管21には、図2に示
すように、空燃比センサ22を設けている。なお、これ
は、O2センサであってもよい。また、図1に示すよう
に、吸光係数検出装置23を設け、これに空燃比センサ
22と空燃比演算装置15をそれぞれ接続している。
An exhaust pipe 21 of a gasoline engine is provided with an air-fuel ratio sensor 22, as shown in FIG. Note that this may be an O 2 sensor. Further, as shown in FIG. 1, an absorption coefficient detecting device 23 is provided, and the air-fuel ratio sensor 22 and the air-fuel ratio calculating device 15 are connected to this.

【0032】吸光係数検出装置23においては、燃焼室
3の混合気が均一になる運転時に、透過光強度検出装置
7の出力と、空燃比センサ22において排気ガスから求
めた燃焼室3の全体の燃料濃度などに基づいて、使用中
のガソリン蒸気の吸光係数を求める。
In the extinction coefficient detecting device 23, the output of the transmitted light intensity detecting device 7 and the total amount of the combustion chamber 3 obtained from the exhaust gas by the air-fuel ratio sensor 22 during the operation in which the air-fuel mixture in the combustion chamber 3 becomes uniform are measured. The extinction coefficient of the gasoline vapor in use is determined based on the fuel concentration and the like.

【0033】また、図1に示すように、吸光係数比較装
置24を設け、これに吸光係数検出装置23と空燃比演
算装置15をそれぞれ接続している。
As shown in FIG. 1, an extinction coefficient comparing device 24 is provided, to which an extinction coefficient detecting device 23 and an air-fuel ratio calculating device 15 are connected.

【0034】吸光係数比較装置24においては、吸光係
数検出装置23で新たに検出した吸光係数を空燃比演算
装置15において使用中の吸光係数と比較し、両者が異
なるとき、または、両者の差が一定の範囲を越えたとき
に出力する。
In the extinction coefficient comparison device 24, the extinction coefficient newly detected by the extinction coefficient detection device 23 is compared with the extinction coefficient used in the air-fuel ratio calculation device 15, and when the two are different or the difference between the two is obtained. Output when exceeding a certain range.

【0035】また、図1に示すように、吸光係数補正装
置25を設け、これに吸光係数比較装置24と空燃比演
算装置15をそれぞれ接続し、吸光係数補正装置25を
空燃比演算装置15に接続している。
As shown in FIG. 1, an extinction coefficient correction device 25 is provided, and an extinction coefficient comparison device 24 and an air-fuel ratio calculation device 15 are connected to the extinction coefficient correction device 25, respectively. Connected.

【0036】吸光係数補正装置25においては、吸光係
数比較装置24が出力すると、空燃比演算装置15にお
いて使用中の吸光係数を、吸光係数検出装置23で新た
に検出した吸光係数に代える。または、空燃比演算装置
15に記憶させた複数の吸光係数の中から、吸光係数検
出装置23で新たに検出した吸光係数に最も近い吸光係
数を選択し、空燃比演算装置15において使用中の吸光
係数を、新たに選択した吸光係数に代える。
In the extinction coefficient correction unit 25, when the extinction coefficient comparison unit 24 outputs, the extinction coefficient used in the air-fuel ratio calculation unit 15 is replaced by the extinction coefficient newly detected by the extinction coefficient detection unit 23. Alternatively, an absorption coefficient closest to the absorption coefficient newly detected by the absorption coefficient detection device 23 is selected from the plurality of absorption coefficients stored in the air-fuel ratio calculation device 15, and the absorption coefficient used in the air-fuel ratio calculation device 15 is selected. Replace the coefficient with the newly selected extinction coefficient.

【0037】すると、空燃比演算装置15は、新たに求
めた吸光係数を使用して空燃比を算出する。即ち、ガソ
リン機関において使用中のガソリンの吸光係数と同一ま
たはほぼ同一の吸光係数に基づいて空燃比が検出され
る。
Then, the air-fuel ratio calculation device 15 calculates the air-fuel ratio using the newly obtained absorption coefficient. That is, the air-fuel ratio is detected based on the absorption coefficient that is the same as or substantially the same as the absorption coefficient of the gasoline being used in the gasoline engine.

【0038】<第2例(図4と図5参照)>本例は、第
1例の空燃比検出装置において、赤外線レーザのような
光源1を不要にするため、加熱されて光を放射する金属
を光源とし、これを点火栓4に内蔵したものである。
<Second Example (See FIGS. 4 and 5)> In this example, the air-fuel ratio detecting device of the first example is heated and emits light to eliminate the need for the light source 1 such as an infrared laser. The light source is a metal, which is incorporated in the ignition plug 4.

【0039】点火栓4は、図4に示すように、電線31
の先端を埋設し、陰極電極12の折曲先端の内面に発熱
体32を固定し、発熱体32中の抵抗線と電線31の先
端を接続している。点火栓4から突出した電線31の末
端は、電源33に接続する構成にしている。
As shown in FIG. 4, the ignition plug 4
The heating element 32 is fixed to the inner surface of the bent end of the cathode electrode 12, and the resistance wire in the heating element 32 and the end of the electric wire 31 are connected. The end of the electric wire 31 protruding from the ignition plug 4 is connected to a power supply 33.

【0040】発熱体32は、抵抗線を充填材に埋設し、
充填材を金属薄板で被覆している。抵抗線に通電する
と、被覆材の金属薄板が加熱されて可視域から赤外域ま
での波長の光を放射する。
The heating element 32 embeds a resistance wire in a filler,
The filler is covered with a sheet metal. When the resistance wire is energized, the thin metal sheet of the coating material is heated and emits light having a wavelength from the visible region to the infrared region.

【0041】この光は、発熱体32に対面して点火栓4
に埋設した光学窓10に入る構成にしている。光学窓1
0に接続した光ファイバ9と光強度検出素子2の間に
は、図5に示すように、波長が3.39μmの赤外光の
ような、ガソリン蒸気が選択的に吸収する波長の光を透
過する光学フィルタ34を配置している。
This light is directed to the heating plug 32 and
Into the optical window 10 buried in the device. Optical window 1
As shown in FIG. 5, light having a wavelength selectively absorbed by gasoline vapor, such as infrared light having a wavelength of 3.39 μm, is provided between the optical fiber 9 and the light intensity detecting element 2 connected to the optical fiber 9. An optical filter 34 that transmits light is provided.

【0042】その他の点は、第1例におけるのと同様で
ある。
The other points are the same as in the first example.

【0043】<第3例(図6と図7参照)>本例は、第
2例の空燃比検出装置において、光ファイバ9を不要に
するため、光学フィルタ34と光強度検出素子2を点火
栓4に内蔵したものである。
<Third Example (See FIGS. 6 and 7)> In this example, the optical filter 34 and the light intensity detecting element 2 are ignited in the air-fuel ratio detecting device of the second example in order to make the optical fiber 9 unnecessary. It is built into the stopper 4.

【0044】点火栓4は、図6に示すように、光学窓1
0の後側に光学フィルタ34を埋設し、光学フィルタ3
4の後側に光強度検出素子2を埋設し、光強度検出素子
2の後側に電線35の先端を埋設し、光強度検出素子2
と電線35の先端を接続している。
The ignition plug 4 is, as shown in FIG.
The optical filter 34 is embedded on the rear side of the optical filter 3.
4, the light intensity detecting element 2 is buried behind the light intensity detecting element 2, and the tip of the electric wire 35 is buried behind the light intensity detecting element 2.
And the end of the electric wire 35.

【0045】点火栓4から突出した電線35の末端は、
図7に示すように、空燃比演算装置15に接続する構成
にしている。
The end of the electric wire 35 protruding from the ignition plug 4
As shown in FIG. 7, it is configured to be connected to the air-fuel ratio calculation device 15.

【0046】その他の点は、第2例におけるのと同様で
ある。
The other points are the same as in the second example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の第1例の空燃比検出装置の
ブロック線図。
FIG. 1 is a block diagram of an air-fuel ratio detection device according to a first example of an embodiment of the present invention.

【図2】同例の空燃比検出装置のシステム概略図。FIG. 2 is a system schematic diagram of the air-fuel ratio detection device of the same example.

【図3】同例の空燃比検出装置の点火栓の縦断面図。FIG. 3 is a vertical sectional view of an ignition plug of the air-fuel ratio detection device of the same example.

【図4】実施形態の第2例の空燃比検出装置の点火栓の
縦断面図。
FIG. 4 is a longitudinal sectional view of an ignition plug of an air-fuel ratio detection device according to a second example of the embodiment.

【図5】同例の空燃比検出装置のシステム概略図。FIG. 5 is a system schematic diagram of the air-fuel ratio detection device of the same example.

【図6】実施形態の第3例の空燃比検出装置の点火栓の
縦断面図。
FIG. 6 is a longitudinal sectional view of an ignition plug of an air-fuel ratio detection device according to a third example of the embodiment.

【図7】同例の空燃比検出装置のシステム概略図。FIG. 7 is a system schematic diagram of the air-fuel ratio detection device of the same example.

【符号の説明】[Explanation of symbols]

3 燃焼室 5 空燃比計測部 7 透過光強度検出装置 13 空燃比演算装置 20 吸光係数検出装置 22 吸光係数補正装置 Reference Signs List 3 combustion chamber 5 air-fuel ratio measuring unit 7 transmitted light intensity detector 13 air-fuel ratio calculator 20 extinction coefficient detector 22 extinction coefficient corrector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 燃料の蒸気が選択的に吸収する波長の光
を、燃焼室に設けた空燃比計測部の発光側から受光側に
投射して、燃焼室の燃料蒸気と空気の混合気を透過した
光の強度を検出する透過光強度検出装置と、透過光強度
検出装置の出力と燃料の吸光係数などに基づいて燃焼室
の点火前の空燃比を求める空燃比演算装置を設けた内燃
機関の空燃比検出装置において、 内燃機関において使用中の燃料の吸光係数を検出する吸
光係数検出装置と、空燃比演算装置において使用中の吸
光係数を、吸光係数検出装置で新たに検出した吸光係数
と同一またはほぼ同一の吸光係数に代える吸光係数補正
装置を設けたことを特徴とする内燃機関の空燃比検出装
置。
1. An air-fuel ratio measurement unit provided in a combustion chamber projects light having a wavelength that is selectively absorbed by a fuel vapor from a light-emitting side to a light-receiving side to emit a mixture of fuel vapor and air in the combustion chamber. An internal combustion engine equipped with a transmitted light intensity detection device for detecting the intensity of transmitted light, and an air-fuel ratio calculation device for obtaining an air-fuel ratio before ignition of a combustion chamber based on an output of the transmitted light intensity detection device, an absorption coefficient of fuel, and the like. In the air-fuel ratio detector, the extinction coefficient detector that detects the extinction coefficient of the fuel used in the internal combustion engine, and the extinction coefficient used in the air-fuel ratio calculator, the extinction coefficient newly detected by the extinction coefficient detector An air-fuel ratio detection device for an internal combustion engine, comprising an absorption coefficient correction device for replacing the same or almost the same absorption coefficient.
JP21430997A 1997-08-08 1997-08-08 Air-fuel ratio detection device for internal combustion engine Expired - Lifetime JP3250491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21430997A JP3250491B2 (en) 1997-08-08 1997-08-08 Air-fuel ratio detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21430997A JP3250491B2 (en) 1997-08-08 1997-08-08 Air-fuel ratio detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH1151866A true JPH1151866A (en) 1999-02-26
JP3250491B2 JP3250491B2 (en) 2002-01-28

Family

ID=16653618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21430997A Expired - Lifetime JP3250491B2 (en) 1997-08-08 1997-08-08 Air-fuel ratio detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3250491B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004184175A (en) * 2002-12-02 2004-07-02 Yamaha Motor Co Ltd Gas concentration sensor, and air-fuel mixture concentration detector for engine
US6903822B2 (en) 2001-06-22 2005-06-07 Nissan Motor Co., Ltd. Apparatus for and method of measuring fuel density in an engine
JP2006145268A (en) * 2004-11-17 2006-06-08 Yamaha Motor Co Ltd Air/fuel ratio detector, engine equipped therewith and vehicle equipped with them
WO2015046875A1 (en) * 2013-09-25 2015-04-02 한국생산기술연구원 Air-fuel ratio measurement system comprising optical sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903822B2 (en) 2001-06-22 2005-06-07 Nissan Motor Co., Ltd. Apparatus for and method of measuring fuel density in an engine
JP2004184175A (en) * 2002-12-02 2004-07-02 Yamaha Motor Co Ltd Gas concentration sensor, and air-fuel mixture concentration detector for engine
JP2006145268A (en) * 2004-11-17 2006-06-08 Yamaha Motor Co Ltd Air/fuel ratio detector, engine equipped therewith and vehicle equipped with them
WO2015046875A1 (en) * 2013-09-25 2015-04-02 한국생산기술연구원 Air-fuel ratio measurement system comprising optical sensor

Also Published As

Publication number Publication date
JP3250491B2 (en) 2002-01-28

Similar Documents

Publication Publication Date Title
Docquier et al. Combustion control and sensors: a review
EP0441056B1 (en) Optical fuel composition sensor
JP4948117B2 (en) Fuel property detection device
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2009103630A (en) Liquid membrane thickness measurement device and controller for internal combustion engine
JP2008298782A (en) Method for evaluating combustion
JPS6291840A (en) Fuel characteristic detector
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP4294603B2 (en) Laser ignition device for internal combustion engine
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2917737B2 (en) Direct injection spark ignition engine
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
Kawahara et al. In situ fuel concentration measurement near a spark plug in a spray-guided direct-injection spark-ignition engine using infrared absorption method
WO2010050017A1 (en) Fuel control system
JP4493075B2 (en) Gas concentration detection device for internal combustion engine
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JP2004184175A (en) Gas concentration sensor, and air-fuel mixture concentration detector for engine
KR101505886B1 (en) Air-fuel ratio control apparatus
JP6752042B2 (en) Fuel gas concentration measuring device for internal combustion engine
JP2003139699A (en) Method and apparatus for measuring concentration of fuel in internal engine
JPH03251745A (en) Detecting method of concentration of methanol
JPH048285Y2 (en)
JP2002340800A (en) Apparatus for measuring fuel concentration of engine
JP2950107B2 (en) Control device for spark ignition engine
JP2003014640A (en) Fuel concentration measuring apparatus of engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011016

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

EXPY Cancellation because of completion of term