JP3368687B2 - Air-fuel ratio detection device for internal combustion engine - Google Patents

Air-fuel ratio detection device for internal combustion engine

Info

Publication number
JP3368687B2
JP3368687B2 JP23471994A JP23471994A JP3368687B2 JP 3368687 B2 JP3368687 B2 JP 3368687B2 JP 23471994 A JP23471994 A JP 23471994A JP 23471994 A JP23471994 A JP 23471994A JP 3368687 B2 JP3368687 B2 JP 3368687B2
Authority
JP
Japan
Prior art keywords
light
air
fuel
fuel ratio
optical elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23471994A
Other languages
Japanese (ja)
Other versions
JPH0893542A (en
Inventor
章彦 角方
勉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23471994A priority Critical patent/JP3368687B2/en
Publication of JPH0893542A publication Critical patent/JPH0893542A/en
Application granted granted Critical
Publication of JP3368687B2 publication Critical patent/JP3368687B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の空燃比検出装
置に関し、詳しくは、機関吸入混合気の空燃比を、燃焼
室内の混合気から直接的に検出し得る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio detecting device for an internal combustion engine, and more particularly to a device for directly detecting the air-fuel ratio of an engine intake air-fuel mixture from the air-fuel mixture in a combustion chamber.

【0002】[0002]

【従来の技術】従来から、燃焼室内における燃焼光を検
出することにより機関吸入混合気の空燃比(A/F)を
測定する装置が知られている。例えば特開平1−247
740号公報に開示される空燃比検出装置では、点火栓
に埋め込んだ光ファイバーによって燃焼光を取り出し、
該取り出した燃焼光を光電変換することで空燃比を検出
する構成としてある。
2. Description of the Related Art Conventionally, there is known a device for measuring an air-fuel ratio (A / F) of an engine intake air-fuel mixture by detecting combustion light in a combustion chamber. For example, JP-A 1-247
In the air-fuel ratio detection device disclosed in Japanese Patent No. 740, combustion light is taken out by an optical fiber embedded in a spark plug,
The air-fuel ratio is detected by photoelectrically converting the extracted combustion light.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記特
開平1−247740号公報に開示されるような光ファ
イバーで燃焼光を取り出す構成では、空燃比が異なった
り距離の異なる領域での発光が混ざって取り出されるこ
とになり、例えば点火限界の決定因子である点火栓近傍
の空燃比を正確に求めたくても、点火栓から離れた領域
の発光が影響して高精度な空燃比検出ができないという
問題があった。
However, in the structure for extracting the combustion light by the optical fiber as disclosed in the above-mentioned Japanese Patent Laid-Open No. 1-247740, the emission is mixed with the light emission in the region where the air-fuel ratio is different or the distance is different. Therefore, for example, even if it is desired to accurately obtain the air-fuel ratio in the vicinity of the spark plug, which is a determinant factor of the ignition limit, there is a problem that the light emission in the region away from the spark plug has an influence and thus the highly accurate air-fuel ratio cannot be detected. there were.

【0004】また、前記燃焼光に基づく空燃比検出で
は、点火前の空燃比を検出することができず、点火時期
における点火栓近傍の空燃比を精度良く制御することが
できないという問題もあった。本発明は上記問題点に鑑
みなされたものであり、点火前の点火栓近傍における空
燃比を、長期的に安定して精度良く検出できる空燃比検
出装置を提供することを目的とする。
Further, in the air-fuel ratio detection based on the combustion light, the air-fuel ratio before ignition cannot be detected, and the air-fuel ratio near the ignition plug at the ignition timing cannot be controlled accurately. . The present invention has been made in view of the above problems, and an object of the present invention is to provide an air-fuel ratio detection device that can stably and accurately detect the air-fuel ratio near the spark plug before ignition for a long period of time.

【0005】[0005]

【課題を解決するための手段】そのため請求項1の発明
にかかる内燃機関の空燃比検出装置においては、一対の
光学素子が内燃機関の燃焼室内に所定間隙をもって対向
配置され、2つの光源は、燃料に吸収される光と燃料に
吸収されない光との2種類の光をそれぞれ前記一対の光
学素子の一方から他方に向けて投射させる。そして、透
過光強度検出手段は、前記一対の光学素子間を投射させ
た前記2種類の光それぞれの強度を検出する。
Therefore, in the air-fuel ratio detecting device for an internal combustion engine according to the invention of claim 1, a pair of optical elements are arranged opposite to each other with a predetermined gap in the combustion chamber of the internal combustion engine, and the two light sources are: Two types of light, light absorbed by fuel and light not absorbed by fuel, are projected from one of the pair of optical elements toward the other. Then, the transmitted light intensity detecting means detects the intensity of each of the two types of light projected between the pair of optical elements.

【0006】一方、筒内圧検出手段は機関の筒内圧を検
出し、空燃比演算手段は、筒内圧検出手段で検出された
筒内圧と、前記透過光強度検出手段で検出された前記2
種類の光それぞれの強度とに基づいて機関吸入混合気の
空燃比を演算する。請求項2の発明にかかる内燃機関の
空燃比検出装置においては、一対の光学素子が内燃機関
の燃焼室内に所定間隙をもって対向配置され、2つの光
源は、燃料に吸収される光と燃料に吸収されない光との
2種類の光をそれぞれ前記一対の光学素子の一方から他
方に向けて投射させる。そして、透過光強度検出手段
は、前記一対の光学素子間を投射させた前記2種類の光
それぞれの強度を検出する。
On the other hand, the in-cylinder pressure detecting means detects the in-cylinder pressure of the engine, and the air-fuel ratio calculating means detects the in-cylinder pressure in the in-cylinder pressure detecting means and the above-mentioned 2 detected in the transmitted light intensity detecting means.
The air-fuel ratio of the engine intake air-fuel mixture is calculated based on the intensity of each kind of light. In the air-fuel ratio detection device for an internal combustion engine according to the invention of claim 2, a pair of optical elements are arranged to face each other in a combustion chamber of the internal combustion engine with a predetermined gap, and the two light sources absorb the light absorbed by the fuel and the light absorbed by the fuel. Two types of light, that is, the un-reflected light, are projected from one of the pair of optical elements toward the other. Then, the transmitted light intensity detecting means detects the intensity of each of the two types of light projected between the pair of optical elements.

【0007】ここで、光強度調整手段は、前記透過光強
度検出手段で検出された前記燃料に吸収されない光の強
度に基づいて、前記一対の光学素子の間に投射させる燃
料に吸収される光の強度を調整する。一方、筒内圧検出
手段により機関の筒内圧が検出され、空燃比演算手段
は、筒内圧検出手段で検出された筒内圧と、前記透過光
強度検出手段で検出された前記燃料に吸収される光の強
度とに基づいて機関吸入混合気の空燃比を演算する。
Here, the light intensity adjusting means absorbs the light absorbed by the fuel projected between the pair of optical elements based on the intensity of the light not absorbed by the fuel detected by the transmitted light intensity detecting means. Adjust the strength of. On the other hand, the in-cylinder pressure of the engine is detected by the in-cylinder pressure detecting means, and the air-fuel ratio calculating means detects the in-cylinder pressure detected by the in-cylinder pressure detecting means and the light absorbed by the fuel detected by the transmitted light intensity detecting means. The air-fuel ratio of the engine intake air-fuel mixture is calculated based on

【0008】請求項3の発明にかかる内燃機関の空燃比
検出装置では、前記一対の光学素子を機関の点火栓に一
体的に設ける構成とした。請求項4の発明にかかる内燃
機関の空燃比検出装置では、前記2つの光源それぞれ
が、前記一対の光学素子において相互に異なる側から光
を投射させるべく配設される一方、該2つの光源からの
2種類の光それぞれが、当該光を透過して他方を反射さ
せる反射部材を透過して前記一対の光学素子間に投射さ
れた後に、再度前記一対の光学素子間に投射されるべ
く、当該光を反射して他方を透過させる反射部材で反射
され、該反射によって光源側に戻る光がハーフミラーに
よってそれぞれの透過光強度検出手段に導かれる構成と
した。
In the air-fuel ratio detecting device for an internal combustion engine according to the third aspect of the present invention, the pair of optical elements are integrally provided on the ignition plug of the engine. In the air-fuel ratio detecting device for an internal combustion engine according to the invention of claim 4, the two light sources are arranged so as to project light from mutually different sides in the pair of optical elements, respectively. Each of the two types of light is transmitted through the reflection member that transmits the light and reflects the other, is projected between the pair of optical elements, and then is projected again between the pair of optical elements. The light is reflected by the reflecting member that reflects the light and transmits the other light, and the light returning to the light source side by the reflection is guided to the respective transmitted light intensity detecting means by the half mirror.

【0009】[0009]

【作用】請求項1の発明にかかる内燃機関の空燃比検出
装置によると、燃料に吸収される性質の光と、燃料に吸
収されない性質の光とが、それぞれ燃焼室内に対向配置
された一対の光学素子の間に投射される。即ち、前記2
種類の光は、一時的に燃焼室内を透過して進むことにな
り、このときに、燃料に吸収される光は、光学素子間に
存在する燃料(燃料濃度)によって減衰されることにな
る一方、燃料に吸収されない光は、燃料によって減衰さ
れることなく、燃焼室内を透過する。
According to the air-fuel ratio detecting device for an internal combustion engine according to the first aspect of the present invention, the light having a property of being absorbed by the fuel and the light having a property of not being absorbed by the fuel are respectively arranged in the combustion chamber so as to face each other. Projected between optical elements. That is, 2
The light of a kind temporarily passes through the combustion chamber and travels, and at this time, the light absorbed by the fuel is attenuated by the fuel (fuel concentration) existing between the optical elements. The light that is not absorbed by the fuel passes through the combustion chamber without being attenuated by the fuel.

【0010】但し、前記2種類の光は、共に光学素子の
汚れによって減衰することになり、かかる減衰レベル
(汚れ度合い)は、燃料に吸収されない光の減衰度合い
によって知ることができる。そして、燃料に吸収される
光は、燃料と前記汚れとの両方に影響されて減衰する
が、前記汚れによる減衰は、前記燃料に吸収されない光
の減衰度合いによって知ることができるから、前記燃料
に吸収される光の減衰から、燃料に因るもののみを特定
することが可能である。
However, both of the two types of light are attenuated by dirt on the optical element, and the attenuation level (dirt degree) can be known by the degree of attenuation of light not absorbed by the fuel. The light absorbed by the fuel is attenuated by being affected by both the fuel and the dirt, but the attenuation due to the dirt can be known by the degree of attenuation of the light not absorbed by the fuel. From the attenuation of the absorbed light, it is possible to identify only those due to fuel.

【0011】一方、前記燃料による光の吸収は、機関吸
入混合気の空燃比によって変化すると共に、圧縮行程に
おける筒内圧の変化(混合気の圧縮度合い)によっても
変化する。そこで、前記2種類の燃焼室透過後の光強度
に基づいて汚れによる減衰分を排除して燃料による光の
減衰のみを抽出し、該燃料による光の吸収と前記筒内圧
とによって空燃比を特定するものである。
On the other hand, the absorption of light by the fuel changes according to the air-fuel ratio of the engine intake air-fuel mixture and also changes according to the change of the in-cylinder pressure in the compression stroke (the degree of compression of the air-fuel mixture). Therefore, based on the light intensities after passing through the two types of combustion chambers, the attenuation due to dirt is eliminated and only the light attenuation due to fuel is extracted, and the air-fuel ratio is specified by the light absorption by the fuel and the in-cylinder pressure. To do.

【0012】請求項2の発明にかかる内燃機関の空燃比
検出装置では、上記のように、燃料に吸収されない光の
減衰によって、汚れによる光の減衰を知ることができる
から、燃料に吸収される光の投射強度を前記汚れ分だけ
増大させ、燃焼室内を透過させた後の光の強度が、同一
空燃比及び筒内圧に対して汚れがないときと同様なレベ
ルになるようにした。
In the air-fuel ratio detecting device for an internal combustion engine according to the second aspect of the present invention, as described above, the attenuation of light due to contamination can be known from the attenuation of light that is not absorbed by the fuel. The projection intensity of light was increased by the amount of the dirt, and the light intensity after passing through the combustion chamber was set to the same level as when there was no dirt for the same air-fuel ratio and in-cylinder pressure.

【0013】請求項3の発明にかかる内燃機関の空燃比
検出装置では、前記一対の光学素子を点火栓に一体的に
設けることで、点火栓近傍の燃焼室空間を光が透過する
ようになると共に、部品構成が簡略化される。請求項4
の発明にかかる内燃機関の空燃比検出装置では、一旦光
学素子間の燃焼室空間を透過した光を反射部材を用いて
反射させて再度光学素子間の燃焼室空間を透過させ、こ
のようにして光源側に戻された光をハーフミラーで透過
光強度検出手段に導くものであり、更に、かかる光の経
路を、2種類の光で相互に逆向きとして同時検出を可能
にすべく、前記反射部材として一方の光を反射して他方
を透過させる性質であって相互に透過・反射特性が逆転
する2つの反射部材を用いている。
In the air-fuel ratio detecting apparatus for an internal combustion engine according to the third aspect of the present invention, by providing the pair of optical elements integrally with the spark plug, light is transmitted through the combustion chamber space near the spark plug. At the same time, the component structure is simplified. Claim 4
In the air-fuel ratio detection device for an internal combustion engine according to the invention, the light that has once passed through the combustion chamber space between the optical elements is reflected by using a reflecting member and again passed through the combustion chamber space between the optical elements, The light returned to the light source side is guided to the transmitted light intensity detecting means by a half mirror, and further, in order to enable simultaneous detection by making the paths of such light into mutually opposite directions with two kinds of light, the reflection As the members, two reflecting members are used, which have the property of reflecting one light and transmitting the other, and the transmissive / reflective properties are mutually reversed.

【0014】[0014]

【実施例】以下に本発明の実施例を説明する。本実施例
のシステム構成を示す図1において、内燃機関1の吸気
ポート2には燃料噴射弁3が設けられており、図示しな
いエアクリーナ,スロットル弁を介して吸引される空気
に対して前記燃料噴射弁3から間欠的に燃料が噴射供給
されて混合気が形成される。
EXAMPLES Examples of the present invention will be described below. In FIG. 1 showing the system configuration of the present embodiment, a fuel injection valve 3 is provided in an intake port 2 of an internal combustion engine 1, and the fuel injection is performed with respect to air sucked through an air cleaner and a throttle valve (not shown). Fuel is intermittently injected and supplied from the valve 3 to form an air-fuel mixture.

【0015】そして、前記混合気は、吸気弁4を介して
燃焼室5内に吸引され、点火栓6による火花点火によっ
て着火燃焼する。機関1からの排気は、図示しない排気
弁,触媒,マフラーを介して大気中に排出される。ここ
で、前記燃焼室5内の圧力(筒内圧)を検出する筒内圧
センサ(筒内圧検出手段)7が設けられると共に、前記
燃焼室5を構成するシリンダヘッド8を貫通して点火栓
6の近傍に設けられた取付け穴に、空燃比検出装置を構
成する円柱状の光学素子9が嵌挿・保持されている。
Then, the air-fuel mixture is sucked into the combustion chamber 5 through the intake valve 4 and ignited and burned by spark ignition by the spark plug 6. Exhaust gas from the engine 1 is discharged into the atmosphere via an exhaust valve, a catalyst, and a muffler (not shown). Here, an in-cylinder pressure sensor (in-cylinder pressure detection means) 7 for detecting the pressure (in-cylinder pressure) in the combustion chamber 5 is provided, and the cylinder head 8 forming the combustion chamber 5 is penetrated to the spark plug 6 A cylindrical optical element 9 forming an air-fuel ratio detecting device is fitted and held in a mounting hole provided in the vicinity.

【0016】前記円柱状の光学素子9の燃焼室5内に臨
む先端部には、図2(a),(b),(c) に示すように、一対の
光学素子(三角プリズム)10,11が一体的に設けられて
いる。尚、前記図2(a)は光学素子9の上面図、
(b)は正面図、(c)は底面図である。前記一対の光
学素子10,11は、所定間隙を介して対向配置され、基体
となる光学素子9の基端面側から入射し、光学素子9の
軸方向に沿って燃焼室5内に向けて進む光ビームを、一
方の光学素子10,11の45°反射面によって直角に屈曲さ
せて他方の光学素子10,11に入射させる一方、該他方の
光学素子10,11の45°反射面で光学素子9の基端側に向
けて光ビームを直角に屈曲させる構成となっている。
As shown in FIGS. 2 (a), 2 (b) and 2 (c), a pair of optical elements (triangular prisms) 10 are provided at the tip of the cylindrical optical element 9 facing the combustion chamber 5. 11 are provided integrally. 2A is a top view of the optical element 9,
(B) is a front view and (c) is a bottom view. The pair of optical elements 10 and 11 are arranged so as to face each other with a predetermined gap therebetween, enter from the base end face side of the optical element 9 serving as a base, and proceed toward the combustion chamber 5 along the axial direction of the optical element 9. The light beam is bent at a right angle by the 45 ° reflection surface of one of the optical elements 10 and 11 and is incident on the other optical element 10 and 11, while the optical element is reflected by the 45 ° reflection surface of the other optical element 10 and 11. The light beam is bent at a right angle toward the base end side of 9.

【0017】即ち、前記光ビームは、前記一対の光学素
子10,11間を投射されることによって、前記光学素子10
から光学素子11又は光学素子11から光学素子10に向けて
進むときに、両者の間隙、即ち、燃焼室内の空間を通過
することになり、吸入行程から点火までの燃焼室5内に
混合気が存在する状態のときには、前記光学素子10,11
を介して光ビームを混合気中に透過させることになる。
That is, the light beam is projected between the pair of optical elements 10 and 11, whereby the optical element 10
When passing from the optical element 11 to the optical element 11 toward the optical element 10, it passes through the gap between them, that is, the space in the combustion chamber, and the air-fuel mixture in the combustion chamber 5 from the intake stroke to the ignition. When present, the optical elements 10, 11
The light beam is transmitted through the mixture through the.

【0018】尚、前記光学素子9,10,11の材料として
は、石英やサファイヤなどを用いるが、耐熱,耐圧を考
慮すると、サファイヤを用いることが好ましい。また、
前記光学素子9,10,11は一体物として形成する必要は
なく、光学面の研磨が必要な場合には、かかる研磨が容
易に行えるように、例えば図2中に点線で示す分割面に
従った3部品構成とし、研磨加工の後で接合させても良
い。
Although quartz, sapphire or the like is used as a material for the optical elements 9, 10 and 11, sapphire is preferably used in consideration of heat resistance and pressure resistance. Also,
The optical elements 9, 10 and 11 do not have to be formed as a single body, and when polishing of the optical surface is required, for example, according to the division surface shown by the dotted line in FIG. Alternatively, the structure may be a three-part configuration, and the components may be joined after polishing.

【0019】本実施例では、前記光学素子10,11に対し
て2種類の光ビームを投射させるべく2つの光源12,18
を設けてある。光源12は、ガソリン燃料によって吸収さ
れる波長ν1(例えば波長3.39μm)の赤外レーザ光を
発し、光源18は、ガソリン燃料によって吸収されない波
長ν2(例えば632.8 nm)の可視光レーザ光を発光す
る。
In this embodiment, two light sources 12 and 18 are projected to project two kinds of light beams on the optical elements 10 and 11.
Is provided. The light source 12 emits infrared laser light having a wavelength ν1 (for example, wavelength 3.39 μm) absorbed by gasoline fuel, and the light source 18 emits visible laser light having a wavelength ν2 (for example, 632.8 nm) not absorbed by gasoline fuel. .

【0020】光源12から出射されるレーザビームは、ミ
ラーやプリズム等からなる光学素子13によって前記光学
素子9の軸に平行で光学素子10に向かう方向に屈曲さ
れ、光学素子9の基端面に対して直角に入射する。前記
光学素子9の基端面において、光学素子10への入射光又
は光学素子10からの反射光が通過する部分には、波長ν
1の光を透過し波長ν2の光を反射させる光学膜16(反
射部材)が設けられており、光源12から出射される波長
ν1のレーザビームは、前記光学膜16を通過して光学素
子10へ向けて進む。
The laser beam emitted from the light source 12 is bent in a direction parallel to the axis of the optical element 9 toward the optical element 10 by an optical element 13 composed of a mirror, a prism or the like, with respect to the base end surface of the optical element 9. Incident at a right angle. In the base end face of the optical element 9, a wavelength ν is present in a portion through which incident light to the optical element 10 or reflected light from the optical element 10 passes.
An optical film 16 (reflection member) that transmits light of wavelength 1 and reflects light of wavelength ν2 is provided, and the laser beam of wavelength ν1 emitted from the light source 12 passes through the optical film 16 and passes through the optical element 10 Proceed toward.

【0021】そして、光学素子10の45°反射面で反射し
て、燃焼室空間を通過して対向配置される光学素子11に
入射し、光学素子11の45°反射面で反射した光は、光学
素子9の基端面に向けて進むが、前記光学素子9の基端
面において、光学素子11への入射光又は光学素子11から
の反射光が通過する部分には、波長ν2の光を透過し波
長ν1の光を反射させる光学膜17(反射部材)が設けら
れている。
Then, the light reflected by the 45 ° reflection surface of the optical element 10 and passing through the combustion chamber space to enter the optical element 11 arranged oppositely, the light reflected by the 45 ° reflection surface of the optical element 11 is Although the light travels toward the base end face of the optical element 9, the base end face of the optical element 9 transmits the light of the wavelength ν2 to the portion where the incident light to the optical element 11 or the reflected light from the optical element 11 passes. An optical film 17 (reflection member) that reflects light of wavelength ν1 is provided.

【0022】従って、光学素子11で反射した波長ν1の
レーザビームは、前記光学膜17で反射して再度光学素子
11に入射し、光学素子11及び光学素子10の反射によって
再び光源12側に戻る光路を辿って光学膜16を通過して進
む。光学膜16を通過して戻ってきた波長ν1のレーザビ
ームは、光学素子13と光源12との間に設けられているハ
ーフミラー20aで反射されて、光電変換素子14に入射
し、その透過光強度が前記光電変換素子14で検出され
る。
Therefore, the laser beam having the wavelength ν1 reflected by the optical element 11 is reflected by the optical film 17 and is again reflected by the optical element.
The light beam enters the optical element 11 and is reflected by the optical element 11 and the optical element 10. The optical path is returned to the light source 12 side and travels through the optical film 16. The laser beam having the wavelength ν1 that has returned through the optical film 16 is reflected by the half mirror 20a provided between the optical element 13 and the light source 12, enters the photoelectric conversion element 14, and the transmitted light thereof. The intensity is detected by the photoelectric conversion element 14.

【0023】尚、光源12からの波長ν1のレーザビーム
は、前記ハーフミラー20aを透過して光学素子13に至る
ことになる。一方、光源18は、波長ν2のレーザビーム
を、光源12とは逆に最初に光学素子11に入射させるべく
配設されており、光学膜17を透過して進む波長ν2のレ
ーザビームは、光学素子11,10の反射によって光学膜16
に至り、ここで反射されて再度光学素子10,11の反射に
よって光源18側に戻る光路を辿り、光学膜17を再度通過
した後、光源18と光学素子13との間に設けられたハーフ
ミラー20bで反射して光電変換素子19に入射し、その透
過光強度が前記光電変換素子19で検出される。
The laser beam of wavelength ν1 from the light source 12 passes through the half mirror 20a and reaches the optical element 13. On the other hand, the light source 18 is arranged so that the laser beam having the wavelength ν2 is first incident on the optical element 11 in contrast to the light source 12, and the laser beam having the wavelength ν2 that passes through the optical film 17 is Optical film 16 due to reflection of elements 11 and 10
The half mirror provided between the light source 18 and the optical element 13 after passing through the optical film 17 again after following the optical path that is reflected here and returns to the light source 18 side by the reflection of the optical elements 10 and 11 again. The light is reflected by 20b and enters the photoelectric conversion element 19, and the intensity of the transmitted light is detected by the photoelectric conversion element 19.

【0024】尚、図1において、15は、前記光学素子9
を保持するためのホルダである。かかる構成により、ガ
ソリン燃料によって吸収される波長ν1レーザ光と、ガ
ソリン燃料によって吸収されない波長ν2のレーザ光と
は、共に光源から出射した後、光学素子9,10,11を経
由しかつ燃焼室内空間を透過した後に、その透過光強度
が検出される構成となっている。
In FIG. 1, 15 is the optical element 9 described above.
Is a holder for holding. With this configuration, the laser light of wavelength ν1 absorbed by the gasoline fuel and the laser light of wavelength ν2 not absorbed by the gasoline fuel are both emitted from the light source, and then pass through the optical elements 9, 10, 11 and the combustion chamber space. After passing through, the transmitted light intensity is detected.

【0025】前記光電変換素子14,19(透過光強度検出
手段)の出力及び筒内圧センサ7からの検出信号は、前
記燃料噴射弁3による燃料噴射を制御するためのマイク
ロコンピュータを内蔵したコントロールユニット35に入
力される。コントロールユニット35は、これらの検出信
号に基づいて機関吸入混合気の空燃比を検出し、該検出
された空燃比に基づいて燃料噴射を制御する。
The output of the photoelectric conversion elements 14 and 19 (transmitted light intensity detecting means) and the detection signal from the in-cylinder pressure sensor 7 are control units including a microcomputer for controlling fuel injection by the fuel injection valve 3. Entered in 35. The control unit 35 detects the air-fuel ratio of the engine intake air-fuel mixture based on these detection signals, and controls the fuel injection based on the detected air-fuel ratio.

【0026】ここで、本実施例における空燃比検出の原
理を簡単に説明する。機関1に使用されるガソリン燃料
は、一般的に、赤外光を選択的に吸収する性質があり、
混合気においては該混合気中におけるガソリン濃度に略
比例して前記吸収量が増大する。即ち、入射光強度をI
O 、ガソリン濃度をC、吸収係数をKとすると、吸収量
Iは、I=IO exp -KC として表すことができる。
Here, the principle of air-fuel ratio detection in this embodiment will be briefly described. Gasoline fuel used in the engine 1 generally has a property of selectively absorbing infrared light,
In the air-fuel mixture, the absorption amount increases substantially in proportion to the gasoline concentration in the air-fuel mixture. That is, the incident light intensity is I
When O 2 , the gasoline concentration are C and the absorption coefficient is K, the absorption amount I can be expressed as I = I o exp -KC .

【0027】従って、混合気に対して所定強度の赤外光
(波長ν1のレーザ光)を照射し、ガソリンによって赤
外光がどの程度吸収されたかを検出できれば、混合気中
のガソリン濃度、換言すれば、混合気の空燃比を検出で
きることになる。ここで、本実施例では、前記一対の光
学素子10,11は、燃焼室5内の空間を間隙として対向配
置され、かかる間隙を波長ν1のレーザ光が通過し、最
終的に光電変換素子14に入射する構成であるから、前記
間隙に存在する混合気中のガソリン濃度に見合う量だけ
前記波長ν1のレーザ光が吸収され、かかる吸収によっ
て減衰したレーザ光が光電変換素子14に入射することに
なる。
Therefore, if it is possible to irradiate the air-fuel mixture with infrared light of a predetermined intensity (laser light of wavelength ν1) and detect how much the infrared light is absorbed by the gasoline, the concentration of gasoline in the air-fuel mixture, in other words, Then, the air-fuel ratio of the air-fuel mixture can be detected. Here, in the present embodiment, the pair of optical elements 10 and 11 are arranged so as to face each other with a space in the combustion chamber 5 as a gap, and the laser light having the wavelength ν1 passes through the gap, and finally the photoelectric conversion element 14 is formed. Since the laser beam having the wavelength ν1 is absorbed by an amount commensurate with the gasoline concentration in the air-fuel mixture existing in the gap, the laser beam attenuated by the absorption enters the photoelectric conversion element 14. Become.

【0028】また、レーザ光(赤外光)の吸収量がガソ
リン濃度に比例するということは、同じ空燃比状態であ
っても燃焼室内における圧力(筒内圧)変化によっても
吸収量が変化することになる。そこで、筒内圧によるキ
ャリブレーション特性を予め測定しておき(図3参
照)、前記光電変換素子14の出力と、筒内圧センサ7で
検出された筒内圧とをパラメータとする空燃比の演算特
性(空燃比演算手段)をコントロールユニット35に予め
設定しておくことで、混合気が吸入される吸気行程から
点火時期まで間において、燃焼室5内での局所的な空燃
比を演算できることになる(図4参照)。
Further, the fact that the absorption amount of the laser light (infrared light) is proportional to the gasoline concentration means that the absorption amount changes due to the pressure (cylinder pressure) change in the combustion chamber even in the same air-fuel ratio state. become. Therefore, the calibration characteristic based on the in-cylinder pressure is measured in advance (see FIG. 3), and the calculation characteristic of the air-fuel ratio using the output of the photoelectric conversion element 14 and the in-cylinder pressure detected by the in-cylinder pressure sensor 7 as parameters ( By previously setting the air-fuel ratio calculation means) in the control unit 35, it is possible to calculate the local air-fuel ratio in the combustion chamber 5 from the intake stroke in which the air-fuel mixture is sucked to the ignition timing ( (See FIG. 4).

【0029】前述のようにして検出された空燃比(点火
栓6近傍の局所空燃比)は、コントロールユニット35に
よる噴射制御(噴射量制御,噴射時期制御)の制御情報
として用いられる。点火時期における点火栓近傍の空燃
比は、点火限界を決定することになり、特に、着火性が
悪化する希薄燃焼機関では重要な要素となるが、上記の
ようにして点火前の点火栓近傍における空燃比を検出で
きれば、点火栓近傍の空燃比を高精度に制御して、良好
な着火性を安定的に得ることが可能となる。
The air-fuel ratio (local air-fuel ratio near the spark plug 6) detected as described above is used as control information for the injection control (injection amount control, injection timing control) by the control unit 35. The air-fuel ratio in the vicinity of the spark plug at the ignition timing will determine the ignition limit, and is an important factor especially in a lean-burn engine in which the ignitability deteriorates. If the air-fuel ratio can be detected, it becomes possible to control the air-fuel ratio in the vicinity of the spark plug with high accuracy and stably obtain good ignitability.

【0030】また、前記光電変換素子14で検出される透
過光強度は、一対の光学素子10,11の間隙における空燃
比状態のみに影響され、燃焼室内の他の領域における空
燃比状態に影響されないから、局所的な空燃比を高精度
に検出できる。前記空燃比の検出結果を用いた燃料噴射
制御としては、検出された空燃比を目標空燃比に一致さ
せるべく噴射量をフィードバック制御したり、また、空
燃比変動のリッチピーク時期が点火時期と重なるように
噴射弁による噴射タイミングを制御することで、点火栓
近傍の空燃比を所期状態に制御できる。
Further, the transmitted light intensity detected by the photoelectric conversion element 14 is affected only by the air-fuel ratio state in the gap between the pair of optical elements 10, 11 and is not affected by the air-fuel ratio state in other regions of the combustion chamber. Therefore, the local air-fuel ratio can be detected with high accuracy. As the fuel injection control using the detection result of the air-fuel ratio, the injection amount is feedback-controlled to match the detected air-fuel ratio with the target air-fuel ratio, and the rich peak timing of air-fuel ratio fluctuation overlaps with the ignition timing. By controlling the injection timing by the injection valve as described above, the air-fuel ratio near the spark plug can be controlled to a desired state.

【0031】ところで、上記のようにして、レーザ光を
導く光学素子10,11を燃焼室5内に臨ませて配設する
と、燃焼に伴う汚れが光学素子10,11に付着し、この汚
れ分がレーザ光を減衰させることによって、ガソリン燃
料によるレーザ光(赤外光)の吸収を精度良く検出する
ことができなくなる惧れがある。そのため、本実施例で
は、前述のように、燃料に吸収される波長ν1のレーザ
光と同様に、燃料に吸収されない波長ν2のレーザ光を
光学素子10,11間に投射させ、前記汚れによる光の減衰
を、前記波長ν2のレーザ光の減衰から求められるよう
にしてある。
By the way, when the optical elements 10 and 11 for guiding the laser light are arranged so as to face the inside of the combustion chamber 5 as described above, stains due to combustion adhere to the optical elements 10 and 11, and the amount of the stains is increased. There is a possibility that the absorption of the laser light (infrared light) by the gasoline fuel cannot be accurately detected by attenuating the laser light. Therefore, in the present embodiment, as described above, similar to the laser light having the wavelength ν1 absorbed by the fuel, the laser light having the wavelength ν2 that is not absorbed by the fuel is projected between the optical elements 10 and 11, and the light caused by the contamination is emitted. Is determined from the attenuation of the laser beam having the wavelength ν2.

【0032】即ち、波長ν1のレーザ光は燃料と汚れと
の両方に影響されて減衰するが、波長ν2のレーザ光は
汚れのみに影響されて減衰し、汚れによる影響はいずれ
の波長の光であっても略同じであると見做すことができ
るので、波長ν2のレーザ光の減衰結果に基づいて、波
長ν1のレーザ光の減衰に含まれる汚れによる影響分を
排除して、燃料による減衰のみを求めることができるも
のである。
That is, the laser light having the wavelength ν1 is affected by both fuel and dirt to be attenuated, but the laser light having the wavelength ν2 is affected by only dirt and is attenuated. Even if there is, it can be considered that they are almost the same. Therefore, based on the attenuation result of the laser light of wavelength ν2, the influence of dirt contained in the attenuation of the laser light of wavelength ν1 is eliminated, and the attenuation by fuel is reduced. You can only ask.

【0033】ここで、前述のような汚れに対する補正を
行いながら空燃比(ガソリン濃度)を検出するコントロ
ールユニット35の機能(空燃比演算手段)を、図5のフ
ローチャートに従って説明する。この図5のフローチャ
ートにおいて、まず、S1では、汚れによるレーザ光の
減衰レベルを示すことになる波長ν2のレーザ光の光電
変換素子19で検出された光強度An を読み込む。
Here, the function of the control unit 35 (air-fuel ratio calculating means) for detecting the air-fuel ratio (gasoline concentration) while correcting the above-mentioned dirt will be described with reference to the flowchart of FIG. In the flowchart of FIG. 5, first, in S1, the light intensity An detected by the photoelectric conversion element 19 of the laser light having the wavelength ν2, which indicates the attenuation level of the laser light due to the dirt, is read.

【0034】次のS2では、燃料に吸収される波長ν1
のレーザ光の光電変換素子14で検出された光強度Bn を
読み込む。そして、S3では、空燃比実測用の光強度B
n を、汚れ分を補正するための光強度An で除算して、
該演算結果を汚れ分が補正された光強度としてIにセッ
トする。
In the next S2, the wavelength ν1 absorbed by the fuel
The light intensity Bn of the laser light detected by the photoelectric conversion element 14 is read. Then, in S3, the light intensity B for air-fuel ratio measurement is measured.
Divide n by the light intensity An to correct the stain,
The calculation result is set to I as the light intensity with the dirt amount corrected.

【0035】S4では、前記汚れ補正が施された光強度
Iと、筒内圧センサ7で検出された筒内圧とに基づいて
ガソリン濃度C(空燃比)を演算する(図3参照)。S
5では、空燃比演算期間内で演算される空燃比のデータ
ナンバーを示すnを1アップし、次のS6では、空燃比
の実測期間(例えば点火時期前の所定区間)内であるか
否かを判別する。そして、実測区間でなければ、S7で
前記データナンバーをリセットし、また、実測区間内で
あれば、前記リセットを行うことなくS1に戻り、汚れ
補正を行いながら空燃比演算を繰り返し、演算結果を時
系列的に記憶する(図6参照)。
In S4, the gasoline concentration C (air-fuel ratio) is calculated based on the light intensity I after the stain correction and the in-cylinder pressure detected by the in-cylinder pressure sensor 7 (see FIG. 3). S
At 5, the n indicating the data number of the air-fuel ratio calculated within the air-fuel ratio calculation period is increased by 1, and at next S6, whether or not it is within the actual measurement period of the air-fuel ratio (for example, a predetermined section before the ignition timing). To determine. Then, if it is not in the actual measurement section, the data number is reset in S7. If it is in the actual measurement section, the flow returns to S1 without performing the reset, and the air-fuel ratio calculation is repeated while performing the dirt correction, and the calculation result is obtained. It is stored in time series (see FIG. 6).

【0036】尚、前記汚れ分のみに影響される光強度A
n が所定以下に低下した場合には、所期の透過光強度検
出が不能であると判断し、所定のフェイルセーフモード
(例えば空燃比検出の停止)に移行させるようにすると
良い。上記実施例では、燃料に吸収される波長ν1のレ
ーザ光の検出強度と、燃料に吸収されない波長ν2のレ
ーザ光の検出強度とに基づいて、汚れによる影響分を排
除した光強度(減衰レベル)を求めるようにしたが、波
長ν1のレーザ光の光学素子9に対する入射強度を、汚
れによる減衰分だけ高めれば、見掛け上は、汚れがない
ときと同様に空燃比のみに影響される透過光強度が検出
されることになる。
The light intensity A influenced only by the amount of dirt
If n has fallen below a predetermined value, it is judged that the desired transmitted light intensity detection is impossible, and it is preferable to shift to a predetermined fail-safe mode (for example, stop of air-fuel ratio detection). In the above-described embodiment, the light intensity (attenuation level) excluding the influence of dirt is detected based on the detected intensity of the laser beam having the wavelength ν1 absorbed by the fuel and the detected intensity of the laser beam having the wavelength ν2 not absorbed by the fuel. However, if the incident intensity of the laser beam having the wavelength ν1 to the optical element 9 is increased by the attenuation amount due to the dirt, the transmitted light intensity apparently influenced only by the air-fuel ratio is the same as when there is no dirt. Will be detected.

【0037】具体的には、波長ν2のレーザ光の減衰か
ら汚れによる光の減衰が求められるから、この分だけ光
学素子9,10,11に入射させる波長ν1のレーザ光の強
度を高めれば良い。レーザ光の強度調整は、予め光源12
における出射強度を高めに設定しておいて、光源12から
出射された波長ν1のレーザ光の強度を減衰調整する強
度調整フィルタ(光強度調整手段)における減衰レベル
を、前記汚れによる減衰分に対応して制御したり、また
は、光源12の出射強度自体を汚れによる減衰分に対応し
て増大制御させる(光強度調整手段)ことで行える。
Specifically, since attenuation of light due to dirt is required from attenuation of laser light of wavelength ν2, the intensity of laser light of wavelength ν1 incident on the optical elements 9, 10 and 11 should be increased by this amount. . Adjust the intensity of the laser light in advance by the light source 12
The emission level in the intensity adjusting filter (light intensity adjusting means) for attenuating the intensity of the laser beam having the wavelength ν1 emitted from the light source 12 is set to a high value, and the attenuation level in the intensity adjusting filter corresponds to the amount of attenuation due to the dirt. Control, or the emission intensity itself of the light source 12 is controlled to increase corresponding to the amount of attenuation due to dirt (light intensity adjusting means).

【0038】ところで、上記実施例では、点火栓6の近
傍に、一対の光学素子10,11を備えた光学素子9を配設
する構成としたが、点火栓6の電極雰囲気の空燃比を制
御して点火限界を高めるためには、点火栓6(電極部)
になるべく近い位置で空燃比を検出することが望まれ、
また、部品点数の削減,組み立て性及び燃焼室を構成す
るシリンダヘッドにおけるスペース効率を考慮すると、
点火栓6と前記一対の光学素子10,11とを一体化して設
けることが好ましい。
In the above embodiment, the optical element 9 including the pair of optical elements 10 and 11 is arranged near the spark plug 6, but the air-fuel ratio of the electrode atmosphere of the spark plug 6 is controlled. In order to increase the ignition limit, the spark plug 6 (electrode part)
It is desirable to detect the air-fuel ratio at a position as close as possible,
Further, considering the reduction of the number of parts, the assemblability, and the space efficiency in the cylinder head that constitutes the combustion chamber,
It is preferable that the spark plug 6 and the pair of optical elements 10 and 11 are integrally provided.

【0039】ここで、点火栓6に対して前記一対の光学
素子10,11を一体的に設けた実施例を、図7〜図10に基
づいて説明する。図7〜図10において、ホルダ21は取付
け用ねじ22によってシリンダヘッドに取付けられるもの
であり、このホルダ21には、ターミナル23a,中軸23
b,中心電極23c,接地電極23dからなる点火栓本体23
がホルダ21の軸心に対してオフセットして保持されてい
る。
An embodiment in which the pair of optical elements 10 and 11 are integrally provided on the spark plug 6 will be described with reference to FIGS. 7 to 10, the holder 21 is mounted on the cylinder head by the mounting screw 22, and the holder 21 includes a terminal 23a and a center shaft 23.
b, a central electrode 23c and a ground electrode 23d
Are held offset from the axis of the holder 21.

【0040】また、前記ホルダ21には、前記点火栓本体
23をオフセットさせて保持させたことによって生じる空
きスペース部分に、前記実施例における一対の光学素子
10,11に相当する2本の円柱状サファイヤロッド24,25
が、所定間隔を有して平行にホルダ21の軸方向に貫通し
て固着されている。前記2本のサファイヤロッド24,25
の先端部分は、図10に示すように、45°にカットされた
光学面をそれぞれ有し、かかる光学面を相対させること
で、前記実施例と同様に、一方のサファイヤロッド24
(25)を通過してきたレーザ源からのレーザ光が、前記
45°の光学面で反射して、燃焼室5内の空間に出射した
後、他方のサファイヤロッド25(24)に入射する。
The holder 21 includes the spark plug body.
The pair of optical elements in the above embodiment is provided in a vacant space portion generated by offsetting and holding 23.
Two cylindrical sapphire rods 24 and 25 corresponding to 10 and 11
Are fixed in parallel with each other with a predetermined interval so as to penetrate the holder 21 in the axial direction. The two sapphire rods 24, 25
As shown in FIG. 10, the tip portion of each has an optical surface cut at 45 °, and by making the optical surfaces face each other, one sapphire rod 24
The laser light from the laser source that has passed through (25) is
The light is reflected by the optical surface of 45 °, is emitted into the space inside the combustion chamber 5, and then is incident on the other sapphire rod 25 (24).

【0041】尚、前記サファイヤロッド24,25のレーザ
光が反射又は透過する光学面は充分な研磨が必要である
ので、例えば各サファイヤロッド24,25を図10に点線で
示す面で分けて2部品構成とし、研磨加工後に溶着等で
一体にすると良い。また、サファイヤロッド24,25の径
及び位置は、前記ホルダ21の取付け用ねじ22の径が許す
限り、図9に示すD1 ,D2 ,θの値を大きくすると良
い。これはロッド径が太い方が加工・組み立てが容易で
然も反射面を大きくでき、また、ロッド間の間隔を大き
くすることで、ガソリン濃度の違いがレーザ光の減衰レ
ベルの違いとして明確に検知できることになる。
Since the optical surfaces of the sapphire rods 24 and 25 on which the laser light is reflected or transmitted need to be sufficiently polished, for example, the sapphire rods 24 and 25 are divided into two surfaces by the dotted lines in FIG. It is preferable that the components are configured and integrated after welding by welding or the like. Further, the diameters and positions of the sapphire rods 24 and 25 are preferably set to large values of D 1 , D 2 and θ shown in FIG. 9 as long as the diameter of the mounting screw 22 of the holder 21 allows. This is because the thicker the rod, the easier it is to process and assemble, and the larger the reflecting surface can be made.Also, by increasing the distance between the rods, the difference in gasoline concentration can be clearly detected as the difference in the laser light attenuation level. You can do it.

【0042】上記図7〜図10に示す構成では、2本のサ
ファイヤロッド24,25は、基端側から反射面を有する先
端側まで同一径に形成され、ホルダ21に対して固着され
る構成であるが、かかる取付け方法に限定されるもので
はない。また、サファイヤロッド24,25は、先端側では
所定の間隙を有して対向することが必要であるが、基端
側では別体である必要はなく、一体化させても良い。
In the structure shown in FIGS. 7 to 10, the two sapphire rods 24, 25 are formed to have the same diameter from the base end side to the tip side having the reflecting surface, and are fixed to the holder 21. However, the mounting method is not limited to this. Further, the sapphire rods 24 and 25 need to face each other with a predetermined gap on the distal end side, but they do not have to be separate bodies on the proximal end side and may be integrated.

【0043】更に、上記実施例では、サファイヤロッド
24,25の先端側でロッド間を移動するレーザ光の光路
は、点火栓の火花間隙の近傍を通過する構成であるが、
更に、点火栓による着火性を左右する空燃比を高精度に
検出すべく、前記光路が前記火花間隙を横切るようにし
て、火花間隙付近の局所空燃比が検出できるようにする
と良い。
Further, in the above embodiment, the sapphire rod
The optical path of the laser light that moves between the rods on the tip side of 24, 25 is configured to pass near the spark gap of the spark plug,
Further, in order to detect the air-fuel ratio that influences the ignitability of the spark plug with high accuracy, the optical path may cross the spark gap so that the local air-fuel ratio near the spark gap can be detected.

【0044】図11及び図12は、サファイヤロッド24,25
が、点火栓の中心電極23cを挟んで点火栓先端部に突出
するように一体的に設けたものであり、サファイヤロッ
ド24(25)の先端側の45°光学面で反射したレーザ光
が、中心電極23cと接地電極23dとの間の火花間隙を通
ってサファイヤロッド25(24)側に入射する。かかる構
成によると、点火栓による着火性を左右する空燃比をよ
り的確に検出することができ、燃焼室5内における空燃
比ばらつきに影響されずに、高精度な空燃比制御が可能
である。
11 and 12 show sapphire rods 24 and 25.
However, the laser beam reflected by the 45 ° optical surface on the tip side of the sapphire rod 24 (25) is integrally provided so as to project to the tip of the spark plug with the center electrode 23c of the spark plug interposed therebetween. The light enters the sapphire rod 25 (24) side through the spark gap between the center electrode 23c and the ground electrode 23d. With this configuration, the air-fuel ratio that affects the ignitability of the spark plug can be detected more accurately, and highly accurate air-fuel ratio control is possible without being affected by the air-fuel ratio variation in the combustion chamber 5.

【0045】尚、光学素子10,11(サファイヤロッド2
4,25)を点火栓6に対して一体的に設ける構成を上記
に限定するものではない。但し、燃焼室5内における局
所空燃比を検出させる場合には、点火栓6の火花間隙部
の空燃比を検出させ、該検出結果に基づいて所期空燃比
とすべく燃料噴射を制御させることが望まれるので、図
11,図12に示したように、点火栓6の火花間隙を挟んで
両側に光学素子10,11を配設し、燃焼室5内における光
路が前記火花間隙を横切るようにすることが好ましい。
The optical elements 10 and 11 (sapphire rod 2
However, the configuration in which (4, 25) is integrally provided with the spark plug 6 is not limited to the above. However, in the case of detecting the local air-fuel ratio in the combustion chamber 5, the air-fuel ratio of the spark gap portion of the spark plug 6 is detected, and the fuel injection is controlled based on the detection result so as to obtain the desired air-fuel ratio. So the figure is
As shown in FIGS. 11 and 12, it is preferable that optical elements 10 and 11 are arranged on both sides of the spark gap of the spark plug 6 so that the optical path in the combustion chamber 5 crosses the spark gap.

【0046】また、前記光学素子9,10,11は燃焼室内
に臨んで対向配置されるから、前記光学素子9,10,11
及び光学膜16,17が高温となり、光学膜16,17が熱によ
って破損する惧れがある。そこで、前記光学素子9の周
囲をウォータージャケットで覆って冷却水による冷却を
図り、熱による破損を防止する構成とすることが好まし
い。
Further, since the optical elements 9, 10 and 11 are arranged facing each other in the combustion chamber, the optical elements 9, 10, 11 are arranged.
Also, the optical films 16 and 17 become hot, and the optical films 16 and 17 may be damaged by heat. Therefore, it is preferable that the periphery of the optical element 9 is covered with a water jacket to be cooled by cooling water so as to prevent damage due to heat.

【0047】[0047]

【発明の効果】以上説明したように請求項1の発明にか
かる内燃機関の空燃比検出装置によると、燃料に吸収さ
れる性質の光と、燃料に吸収されない性質の光とをそれ
ぞれに一対の光学素子によって燃焼室内空間に透過させ
てその透過光強度を検出させることにより、光学素子の
汚れによる影響を排除して燃料による光の減衰を精度良
く検出でき、以て、点火前の燃焼室内の局所空燃比を高
精度に検出できるという効果がある。
As described above, according to the air-fuel ratio detecting apparatus for an internal combustion engine according to the invention of claim 1, a pair of light of a property absorbed by fuel and light of a property not absorbed by fuel are provided. By transmitting the intensity of the transmitted light through the optical element by detecting the intensity of the transmitted light through the optical element, it is possible to eliminate the influence of dirt on the optical element and accurately detect the light attenuation due to the fuel. There is an effect that the local air-fuel ratio can be detected with high accuracy.

【0048】請求項2の発明にかかる内燃機関の空燃比
検出装置によると、光学素子の汚れによる影響分に対応
して、燃料に吸収される性質の光の光学素子に対する投
射強度を調整するので、汚れの有無に無関係に、燃料に
吸収される光の透過光強度から空燃比を求めることがで
きるという効果がある。請求項3の発明にかかる内燃機
関の空燃比検出装置によると、光学素子を点火栓に一体
的に設けることで、構成が簡略化され、また、点火栓に
対してより近い位置での空燃比検出が行えるという効果
がある。
According to the air-fuel ratio detecting apparatus for an internal combustion engine according to the second aspect of the present invention, the projection intensity of the light absorbed by the fuel on the optical element is adjusted according to the influence of the dirt on the optical element. There is an effect that the air-fuel ratio can be obtained from the transmitted light intensity of the light absorbed by the fuel regardless of the presence or absence of dirt. According to the air-fuel ratio detection device for an internal combustion engine of the invention of claim 3, the optical element is integrally provided on the spark plug, so that the structure is simplified and the air-fuel ratio at a position closer to the spark plug is provided. The effect is that detection can be performed.

【0049】請求項4の発明にかかる内燃機関の空燃比
検出装置によると、反射部材によって2種類の光を選択
的に反射させる構成として、2種類の光についての透過
光強度の検出が簡便かつ同時に行えるという効果があ
る。
According to the air-fuel ratio detecting apparatus for an internal combustion engine of the fourth aspect of the present invention, the transmitted light intensity of the two types of light can be detected easily and simply because the reflection member selectively reflects the two types of light. The effect is that they can be done at the same time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すシステム概略図。FIG. 1 is a system schematic diagram showing an embodiment of the present invention.

【図2】同上実施例における光学素子を示す図。FIG. 2 is a diagram showing an optical element according to the same example.

【図3】透過光強度と筒内圧とに対応する空燃比を示す
線図。
FIG. 3 is a diagram showing an air-fuel ratio corresponding to transmitted light intensity and in-cylinder pressure.

【図4】透過光強度と筒内圧の変化をクランク角に応じ
て示す線図。
FIG. 4 is a diagram showing changes in transmitted light intensity and in-cylinder pressure according to a crank angle.

【図5】汚れを補正を伴う空燃比演算の様子を示すフロ
ーチャート。
FIG. 5 is a flow chart showing a state of air-fuel ratio calculation accompanied by dirt correction.

【図6】燃料に吸収されない波長の光による汚れ補正の
特性を示す線図。
FIG. 6 is a diagram showing characteristics of stain correction by light having a wavelength that is not absorbed by fuel.

【図7】光学素子を一体化させた点火栓の一例を示す側
面図。
FIG. 7 is a side view showing an example of a spark plug in which an optical element is integrated.

【図8】図7に示す点火栓の上面図。8 is a top view of the spark plug shown in FIG. 7. FIG.

【図9】図7に示す点火栓の底面図。9 is a bottom view of the spark plug shown in FIG. 7. FIG.

【図10】図7に示す光学素子の先端部分拡大図。10 is an enlarged view of a tip portion of the optical element shown in FIG. 7.

【図11】点火栓の火花間隙を光路とする実施例を示す側
面図。
FIG. 11 is a side view showing an embodiment in which a spark gap of an ignition plug is used as an optical path.

【図12】図11に示す点火栓の底面図。FIG. 12 is a bottom view of the spark plug shown in FIG. 11.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 吸気ポート 3 燃料噴射弁 4 吸気弁 5 燃焼室 6 点火栓 7 筒内圧センサ 8 シリンダヘッド 9,10,11,13 光学素子 12,18 レーザ源(光源) 14,19 光電変換素子(透過光強度検出手段) 16,17 光学膜(反射部材) 20a,20b ハーフミラー 21 ホルダ 23 点火栓本体 23c 中心電極 23d 接地電極 24,25 サファイヤロッド 35 コントロールユニット 1 Internal combustion engine 2 intake ports 3 Fuel injection valve 4 intake valve 5 Combustion chamber 6 spark plug 7 Cylinder pressure sensor 8 cylinder head 9,10,11,13 Optical element 12, 18 Laser source (light source) 14, 19 Photoelectric conversion element (transmitted light intensity detection means) 16, 17 Optical film (reflection member) 20a, 20b Half mirror 21 holder 23 Spark plug body 23c Center electrode 23d Ground electrode 24, 25 sapphire rod 35 Control unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−307953(JP,A) 特開 昭60−188815(JP,A) 特開 平6−288283(JP,A) 特開 平1−247740(JP,A) 実開 昭60−127523(JP,U) (58)調査した分野(Int.Cl.7,DB名) F02D 45/00 F02P 13/00 ─────────────────────────────────────────────────── --- Continuation of front page (56) Reference JP-A-6-307953 (JP, A) JP-A-60-188815 (JP, A) JP-A-6-288283 (JP, A) JP-A-1- 247740 (JP, A) Actual development Sho 60-127523 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F02D 45/00 F02P 13/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の燃焼室内に所定間隙をもって対
向配置された一対の光学素子と、 燃料に吸収される光と燃料に吸収されない光との2種類
の光をそれぞれ前記一対の光学素子の一方から他方に向
けて投射させる2つの光源と、 前記一対の光学素子間を投射させた前記2種類の光それ
ぞれの強度を検出する2つの透過光強度検出手段と、 機関の筒内圧を検出する筒内圧検出手段と、 該筒内圧検出手段で検出された筒内圧と、前記透過光強
度検出手段で検出された前記2種類の光それぞれの強度
とに基づいて機関吸入混合気の空燃比を演算する空燃比
演算手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
検出装置。
1. A pair of optical elements disposed opposite to each other in a combustion chamber of an internal combustion engine with a predetermined gap, and two types of light, light absorbed by fuel and light not absorbed by fuel, respectively, of the pair of optical elements. Two light sources for projecting from one to the other, two transmitted light intensity detecting means for detecting respective intensities of the two types of light projected between the pair of optical elements, and an in-cylinder pressure of an engine are detected. The in-cylinder pressure detection means, the in-cylinder pressure detected by the in-cylinder pressure detection means, and the air-fuel ratio of the engine intake air-fuel mixture are calculated based on the intensities of the two types of light detected by the transmitted light intensity detection means. An air-fuel ratio detecting device for an internal combustion engine, comprising:
【請求項2】内燃機関の燃焼室内に所定間隙をもって対
向配置された一対の光学素子と、 燃料に吸収される光と燃料に吸収されない光との2種類
の光をそれぞれ前記一対の光学素子の一方から他方に向
けて投射させる2つの光源と、 前記一対の光学素子間を投射させた前記2種類の光それ
ぞれの強度を検出する2つの透過光強度検出手段と、 前記透過光強度検出手段で検出された前記燃料に吸収さ
れない光の強度に基づいて、前記一対の光学素子の間に
投射させる燃料に吸収される光の強度を調整する光強度
調整手段と、 機関の筒内圧を検出する筒内圧検出手段と、 該筒内圧検出手段で検出された筒内圧と、前記透過光強
度検出手段で検出された前記燃料に吸収される光の強度
とに基づいて機関吸入混合気の空燃比を演算する空燃比
演算手段と、 を含んで構成されたことを特徴とする内燃機関の空燃比
検出装置。
2. A pair of optical elements, which are opposed to each other with a predetermined gap in a combustion chamber of an internal combustion engine, and two kinds of light, light absorbed by fuel and light not absorbed by fuel, respectively, of the pair of optical elements. The two light sources for projecting from one to the other, two transmitted light intensity detecting means for detecting the intensity of each of the two types of light projected between the pair of optical elements, and the transmitted light intensity detecting means. Light intensity adjusting means for adjusting the intensity of the light absorbed by the fuel projected between the pair of optical elements based on the detected intensity of the light not absorbed by the fuel, and a cylinder for detecting the cylinder internal pressure of the engine. The internal pressure detection means, the in-cylinder pressure detected by the in-cylinder pressure detection means, and the air-fuel ratio of the engine intake air-fuel mixture are calculated based on the intensity of the light absorbed by the fuel detected by the transmitted light intensity detection means. Air-fuel ratio calculation Air-fuel ratio detecting apparatus for an internal combustion engine, characterized in that it is configured to include a stage, a.
【請求項3】前記一対の光学素子を機関の点火栓に一体
的に設けたことを特徴とする請求項1又は2に記載の内
燃機関の空燃比検出装置。
3. The air-fuel ratio detecting device for an internal combustion engine according to claim 1, wherein the pair of optical elements are integrally provided on an ignition plug of the engine.
【請求項4】前記2つの光源それぞれが、前記一対の光
学素子において相互に異なる側から光を投射させるべく
配設される一方、該2つの光源からの2種類の光それぞ
れが、当該光を透過して他方を反射させる反射部材を透
過して前記一対の光学素子間に投射された後に、再度前
記一対の光学素子間に投射されるべく、当該光を反射し
て他方を透過させる反射部材で反射され、該反射によっ
て光源側に戻る光がハーフミラーによってそれぞれの透
過光強度検出手段に導かれることを特徴とする請求項1
〜3のいずれか1つに記載の内燃機関の空燃比検出装
置。
4. The two light sources are respectively arranged to project light from mutually different sides in the pair of optical elements, while two kinds of light from the two light sources respectively emit the light. After being transmitted through a reflection member that transmits and reflects the other, the reflection member that reflects the light and transmits the other so as to be projected again between the pair of optical elements after being projected between the pair of optical elements. The light reflected by the light source and returned to the light source side by the reflection is guided to each transmitted light intensity detecting means by a half mirror.
An air-fuel ratio detection device for an internal combustion engine according to any one of items 1 to 3.
JP23471994A 1994-09-29 1994-09-29 Air-fuel ratio detection device for internal combustion engine Expired - Fee Related JP3368687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23471994A JP3368687B2 (en) 1994-09-29 1994-09-29 Air-fuel ratio detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23471994A JP3368687B2 (en) 1994-09-29 1994-09-29 Air-fuel ratio detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0893542A JPH0893542A (en) 1996-04-09
JP3368687B2 true JP3368687B2 (en) 2003-01-20

Family

ID=16975308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23471994A Expired - Fee Related JP3368687B2 (en) 1994-09-29 1994-09-29 Air-fuel ratio detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3368687B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT503276B1 (en) * 2007-05-31 2010-06-15 Avl List Gmbh METHOD FOR EVALUATING THE CONDITION OF A FUEL / AIR MIXTURE
DE102007041528A1 (en) * 2007-08-31 2009-03-05 Robert Bosch Gmbh Ignition device for a laser ignition of an internal combustion engine
MY152807A (en) * 2009-12-07 2014-11-28 Mcalister Technologies Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
JP3182445U (en) * 2012-12-28 2013-03-28 株式会社島津製作所 Optical measurement probe and optical measurement apparatus provided with the same
JP6480255B2 (en) * 2015-05-14 2019-03-06 株式会社Soken Fuel concentration measuring device

Also Published As

Publication number Publication date
JPH0893542A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
US9671303B2 (en) Method and system for laser pressure transducer
Hentschel et al. Measurement of wall film thickness in the intake manifold of a standard production SI engine by a spectroscopic technique
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2003004633A (en) Apparatus for measuring fuel concentration of engine
JP2009103630A (en) Liquid membrane thickness measurement device and controller for internal combustion engine
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
JP2001132511A (en) Air-fuel ratio control device for internal combustion engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
JP3784768B2 (en) Gas concentration sensor
JP2008045496A (en) Light sensor-incorporated laser ignition device
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2950107B2 (en) Control device for spark ignition engine
JP6216935B2 (en) Bore deformation measuring device
JPH11229949A (en) Fuel concentration detector for internal combustion engine
JP2003014640A (en) Fuel concentration measuring apparatus of engine
JP2002340800A (en) Apparatus for measuring fuel concentration of engine
JP2003139699A (en) Method and apparatus for measuring concentration of fuel in internal engine
JP2000314345A (en) Laser type physical quantity measuring device for engine
JPH06288282A (en) Direct injection type spark ignition engine
JP2003056385A (en) Cylinder condition measurement device and cylinder condition controller for internal combustion engine
JPH03251745A (en) Detecting method of concentration of methanol
JP2004205468A (en) In-cylinder physical quantity detecting apparatus
KR100254000B1 (en) Apparatus of measuring air-fuel ratio of engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees