JPH06288282A - Direct injection type spark ignition engine - Google Patents

Direct injection type spark ignition engine

Info

Publication number
JPH06288282A
JPH06288282A JP5080795A JP8079593A JPH06288282A JP H06288282 A JPH06288282 A JP H06288282A JP 5080795 A JP5080795 A JP 5080795A JP 8079593 A JP8079593 A JP 8079593A JP H06288282 A JPH06288282 A JP H06288282A
Authority
JP
Japan
Prior art keywords
injection
fuel
air
fuel ratio
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5080795A
Other languages
Japanese (ja)
Other versions
JP2917737B2 (en
Inventor
Hiroko Ogita
浩子 小木田
Teruyuki Ito
輝行 伊東
Tsutomu Nakada
勉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5080795A priority Critical patent/JP2917737B2/en
Publication of JPH06288282A publication Critical patent/JPH06288282A/en
Application granted granted Critical
Publication of JP2917737B2 publication Critical patent/JP2917737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1451Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the sensor being an optical sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To control properly injection pressure of fuel in a fuel injection valve so as to improve ignition performance, in a direct injection type spark ignition engine for allowing injection of fuel while making the fuel injection valve to point to the vicinity of a sparking plug there by the injection hole of the fuel injection valve is arranged in a fuel chamber. CONSTITUTION:Laser beam having a wave length absorbed selectively by gasoline is led in a combustion chamber, and passed into a space in the combustion chamber positioned in the vicinity of a sparking plug. lntensity of transmitting beam is detected by a photoelectric transfer element, and an air-fuel ratio in the vicinity of the sparking plug just before ignition is calculated on the basis of the intensity of transmitting beam and internal cylinder pressure (S7). When calculated air-fuel ratio is in a condition leaner than a prescribed lean limit air-fuel ratio, injection pressure is increased (S8 S9), and on the other hand, when the calculated air-fuel ratio is in condition richer than a prescribed rich limit air-fuel ratio, injection pressure is reduced (S10 S11).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は直噴式火花点火機関に関
し、詳しくは、点火直前における点火栓近傍の空燃比を
制御するための噴射圧制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection spark ignition engine, and more particularly to injection pressure control for controlling the air-fuel ratio near the ignition plug immediately before ignition.

【0002】[0002]

【従来の技術】吸気管に気化器や燃料噴射弁を備える予
混合式の火花点火機関では、特に過渡運転時などに燃料
の輸送遅れにより出力特性や排気組成が悪化するという
問題があり、これを解決するため、燃料噴射弁の噴孔を
燃焼室内に臨ませ、該燃料噴射弁によって圧縮行程中に
燃料噴射を行わせる構成の直噴式火花点火機関が考えら
れている(特願平4−17738号参照)。
2. Description of the Related Art A premixed spark ignition engine having a carburetor and a fuel injection valve in an intake pipe has a problem that output characteristics and exhaust composition are deteriorated due to delay in fuel transportation, especially during transient operation. In order to solve the above problem, there has been considered a direct injection spark ignition engine having a structure in which the injection hole of the fuel injection valve faces the combustion chamber and the fuel injection valve performs fuel injection during the compression stroke (Japanese Patent Application No. 4- 17738).

【0003】[0003]

【発明が解決しようとする課題】ところで、前記直噴式
火花点火機関で希薄燃焼を行わせる場合に、着火性能を
安定させるためには、点火栓近傍の空燃比を他の燃焼室
内領域よりも濃くする成層化が有効であり、かかる成層
化のためには、点火栓近傍に指向させて燃料噴射を行わ
せることが考えられる。
By the way, in order to stabilize the ignition performance when performing lean combustion in the direct injection type spark ignition engine, the air-fuel ratio near the spark plug should be made higher than that in other combustion chamber regions. Stratification is effective, and for such stratification, it is conceivable that the fuel is injected toward the vicinity of the spark plug.

【0004】ここで、点火栓近傍に指向させて燃料噴射
を行わせる構成にすると、燃料が直接的に点火栓の電極
部にかぶり、くすぶりや失火の原因となる惧れがある。
ここで、直噴式の燃料噴射弁ではその噴射圧が燃焼噴霧
の到達距離を決定する大きな要因となるから、点火栓の
かぶりを発生させない範囲内で点火栓近傍の空燃比を濃
くできる噴射圧の設定が必要になる。
If the fuel injection is performed by directing it toward the vicinity of the spark plug, the fuel may directly cover the electrode part of the spark plug, causing smoldering or misfire.
Here, in a direct injection type fuel injection valve, the injection pressure is a major factor that determines the arrival distance of the combustion spray, so the injection pressure of the injection pressure that can thicken the air-fuel ratio in the vicinity of the spark plug within the range that does not cause fog of the spark plug. Settings are required.

【0005】しかしながら、燃焼室内には規則性のない
ガス流動が形成され、また、筒内圧の影響もあって、燃
料噴霧の到達距離は一定ではなく、一定の噴射圧の下に
燃料噴射を行わせると、安定して所期の空燃比を点火栓
近傍形成させることができないという問題がある。即
ち、設定噴射圧が過大で到達距離が長過ぎると点火栓の
かぶりが生じ、また、設定噴射圧が過小で到達距離が短
過ぎると、点火栓近傍に点火可能な空燃比の混合気を形
成させることができず、失火を発生させてしまうことが
ある。このため、点火栓のかぶりを回避しつつ、点火栓
近傍の空燃比を最大限にリッチ化させることは困難であ
った。
However, due to the irregular gas flow formed in the combustion chamber and the influence of the in-cylinder pressure, the arrival distance of the fuel spray is not constant, and the fuel is injected under a constant injection pressure. If so, there is a problem that the desired air-fuel ratio cannot be stably formed in the vicinity of the spark plug. That is, if the set injection pressure is too high and the reaching distance is too long, the spark plug is fogged, and if the set injection pressure is too small and the reaching distance is too short, a mixture of air-fuel ratio that can ignite is formed near the spark plug. It may not be possible to cause misfire. Therefore, it has been difficult to maximize the air-fuel ratio in the vicinity of the spark plug while avoiding the spark plug fogging.

【0006】従って、前記直噴式火花点火機関における
噴射圧を最適値にするには、燃焼室内における点火栓近
傍の局所空燃比を検出し、該検出結果に基づいて点火栓
近傍の空燃比が目標空燃比になるように噴射圧を制御す
ることが望まれる。前記点火栓近傍の局所空燃比を検出
する方法としては、従来、特開平1−247740号公
報に開示されるように、点火栓に埋め込んだ光ファイバ
ーによって燃焼光を取り出し、該取り出した燃焼光を光
電変換することで点火栓近傍の局所空燃比を検出する構
成のものがある。
Therefore, in order to optimize the injection pressure in the direct injection spark ignition engine, the local air-fuel ratio in the vicinity of the spark plug in the combustion chamber is detected, and the air-fuel ratio in the vicinity of the spark plug is targeted based on the detection result. It is desirable to control the injection pressure so that the air-fuel ratio is achieved. As a method for detecting the local air-fuel ratio in the vicinity of the spark plug, conventionally, as disclosed in JP-A-1-247740, combustion light is extracted by an optical fiber embedded in the spark plug, and the extracted combustion light is photoelectrically converted. There is a configuration in which the local air-fuel ratio near the spark plug is detected by conversion.

【0007】しかしながら、上記の燃焼光に基づく局所
空燃比の検出では、着火燃焼によって生じる燃焼光によ
って空燃比を検出するものであり、前記噴射圧の適正を
より的確に示す点火直前の空燃比を検出することができ
ないため、前述のようなガス流動等に伴う燃料噴霧の到
達距離の変化、換言すれば、点火栓近傍に形成される空
燃比を高精度に捉えることができず、点火栓のかぶりを
回避しつつ高い着火性を安定的に得ることが困難である
という問題があった。
However, in the detection of the local air-fuel ratio based on the above combustion light, the air-fuel ratio is detected by the combustion light generated by the ignition combustion, and the air-fuel ratio immediately before ignition, which shows the appropriateness of the injection pressure more accurately, is detected. Since it cannot be detected, it is impossible to accurately detect the change in the reaching distance of the fuel spray due to the gas flow as described above, in other words, the air-fuel ratio formed in the vicinity of the spark plug cannot be detected with high accuracy. There is a problem that it is difficult to stably obtain high ignitability while avoiding fogging.

【0008】本発明は上記問題点に鑑みなされたもので
あり、噴孔が燃焼室内に臨み、かつ、該噴孔からの燃料
噴霧が点火栓近傍を指向するように燃料噴射弁が配設さ
れる直噴式火花点火機関において、点火直前における点
火栓近傍の空燃比を最適値にし得る噴射圧制御が行える
ようにすることを目的とする。
The present invention has been made in view of the above problems, and the fuel injection valve is arranged so that the injection hole faces the combustion chamber and the fuel spray from the injection hole is directed near the ignition plug. It is an object of the present invention to provide a direct injection spark ignition engine that can perform injection pressure control that can optimize the air-fuel ratio near the spark plug immediately before ignition.

【0009】[0009]

【課題を解決するための手段】そのため本発明にかかる
直噴式火花点火機関は、燃料噴射弁の噴孔が燃焼室内に
臨み、かつ、前記噴孔が点火栓近傍を指向して配設され
た直噴式火花点火機関であって、図1に示すように構成
される。図1において、透過光強度検出手段は、点火栓
近傍の燃焼室内に臨ませて発光側と受光側とからなる一
対の光学素子を所定間隙をもって対向配置し、光源で発
光した光を前記一対の光学素子を介して光電変換素子に
導く構成の手段である。
Therefore, in the direct injection type spark ignition engine according to the present invention, the injection hole of the fuel injection valve faces the combustion chamber, and the injection hole is arranged in the vicinity of the spark plug. This is a direct injection spark ignition engine, which is configured as shown in FIG. In FIG. 1, the transmitted light intensity detecting means faces a combustion chamber in the vicinity of the spark plug, and arranges a pair of optical elements consisting of a light emitting side and a light receiving side so as to face each other with a predetermined gap, and the light emitted from the light source is arranged to It is a means for guiding the photoelectric conversion element through the optical element.

【0010】また、筒内圧検出手段は機関の筒内圧を検
出し、空燃比演算手段は、透過光強度検出手段における
光電変換素子の出力と筒内圧検出手段で検出された筒内
圧とに基づいて点火栓近傍の空燃比を演算する。そし
て、噴射圧制御手段は、空燃比演算手段で演算される点
火直前の空燃比に基づいて前記燃料噴射弁における燃料
噴射圧を制御する。
Further, the in-cylinder pressure detecting means detects the in-cylinder pressure of the engine, and the air-fuel ratio calculating means determines the in-cylinder pressure detected by the in-cylinder pressure detecting means in the transmitted light intensity detecting means. Calculate the air-fuel ratio near the spark plug. The injection pressure control means controls the fuel injection pressure in the fuel injection valve based on the air-fuel ratio immediately before ignition calculated by the air-fuel ratio calculation means.

【0011】ここで、上記構成に加え、機関運転条件に
基づいて必要燃料噴射量を演算する必要噴射量演算手段
と、この必要噴射量演算手段で演算された必要燃料噴射
量を噴射するのに必要な噴射時間を前記噴射圧制御手段
で制御される燃料噴射圧に基づいて演算する噴射時間演
算手段と、所定の噴射タイミングにおいて前記噴射圧制
御手段で制御される燃料噴射圧の下に前記噴射時間演算
手段で演算された噴射時間だけ前記燃料噴射弁を開制御
する噴射制御手段と、を設けて構成することが好まし
い。
Here, in addition to the above-mentioned structure, a required injection amount calculation means for calculating the required fuel injection amount based on the engine operating condition and a required fuel injection amount calculated by the required injection amount calculation means are injected. Injection time calculation means for calculating a required injection time based on the fuel injection pressure controlled by the injection pressure control means, and the injection under the fuel injection pressure controlled by the injection pressure control means at a predetermined injection timing. It is preferable to provide an injection control means for controlling the opening of the fuel injection valve for the injection time calculated by the time calculation means.

【0012】[0012]

【作用】かかる構成によると、透過光強度検出手段にお
いて、光源からの発光は、点火栓近傍の燃焼室内に臨む
一対の光学素子の間隙を通って光電変換素子に導かれる
構成であり、前記一対の光学素子の間隙を透過するとき
に、かかる空間に存在する燃料によって減衰されること
になる。
According to this structure, in the transmitted light intensity detecting means, the light emitted from the light source is guided to the photoelectric conversion element through the gap between the pair of optical elements facing the combustion chamber near the ignition plug. When passing through the gap of the optical element, the fuel existing in the space is attenuated.

【0013】そして、前記減衰は、燃料濃度によって変
化し、また、燃料濃度によって変化するということは燃
焼室内の圧力(筒内圧)によっても変化することにな
る。そこで、前記間隙を通った透過光が光学素子を介し
て入射する光電変換素子の出力と筒内圧検出手段で検出
された筒内圧とに基づいて、筒内圧の要因を除外して点
火栓近傍の燃料濃度(空燃比)が検出される。
The attenuation changes depending on the fuel concentration, and the fact that it changes depending on the fuel concentration also changes depending on the pressure in the combustion chamber (cylinder pressure). Therefore, based on the output of the photoelectric conversion element in which the transmitted light that has passed through the gap enters through the optical element and the in-cylinder pressure detected by the in-cylinder pressure detecting means, the cause of the in-cylinder pressure is excluded and the vicinity of the spark plug is eliminated. The fuel concentration (air-fuel ratio) is detected.

【0014】ここで、前記空燃比検出は、燃焼室内の点
火栓近傍に存在する燃料による光の吸収を介して行われ
るものであり、点火前における点火栓近傍の空燃比を検
出することができる。そこで、かかる空燃比の検出結果
に基づき、ガス流動に影響されて変動する点火直前の点
火栓近傍の空燃比が所定空燃比になるように、燃料噴射
弁による噴射圧を制御し、点火栓の燃料かぶりを回避し
つつ高い着火性が得られる空燃比の混合気が点火栓近傍
に形成されるようにする。
Here, the air-fuel ratio detection is performed through the absorption of light by the fuel existing in the vicinity of the spark plug in the combustion chamber, and the air-fuel ratio near the spark plug before ignition can be detected. . Therefore, based on the detection result of the air-fuel ratio, the injection pressure by the fuel injection valve is controlled so that the air-fuel ratio in the vicinity of the ignition plug immediately before ignition, which is affected by the gas flow and fluctuates, becomes a predetermined air-fuel ratio. An air-fuel mixture having an air-fuel ratio that can obtain high ignitability while avoiding fuel fog is formed near the spark plug.

【0015】また、上記のようにして噴射圧を制御する
構成とすると、単位時間当たりの噴射量が噴射圧の変化
に応じて変化してしまい、必要噴射量に対応する噴射時
間が変化するので、必要噴射量を噴射させるのに必要な
噴射時間を噴射圧に基づいてを演算させるようにした。
Further, when the injection pressure is controlled as described above, the injection amount per unit time changes according to the change of the injection pressure, and the injection time corresponding to the required injection amount changes. The injection time required to inject the required injection amount is calculated based on the injection pressure.

【0016】[0016]

【実施例】以下に本発明の実施例を説明する。図2は本
実施例のシステム構成を示す図である。この図2におい
て、機関1は、電磁式の燃料噴射弁2をその噴孔を燃焼
室3内に臨ませて配置し、吸入行程中に吸気弁4を介し
て燃焼室3内に吸引した新気に対して圧縮行程中に前記
燃料噴射弁2から燃料を噴射して混合気を形成させ、該
混合気を点火栓5による火花点火によって着火燃焼させ
る直噴式火花点火機関である。
EXAMPLES Examples of the present invention will be described below. FIG. 2 is a diagram showing the system configuration of this embodiment. In FIG. 2, the engine 1 has an electromagnetic fuel injection valve 2 arranged so that its injection hole faces the combustion chamber 3 and sucked into the combustion chamber 3 via the intake valve 4 during the intake stroke. A direct injection type spark ignition engine in which fuel is injected from the fuel injection valve 2 to form air-fuel mixture during the compression stroke, and the air-fuel mixture is ignited and burned by spark ignition by a spark plug 5.

【0017】前記直噴式火花点火機関1の排気は、排気
弁6を介して燃焼室3内から排出され、更に、図示しな
い触媒,マフラーを介して大気中に放出される。前記燃
料噴射弁2には、燃料ポンプ8によって燃料タンク7内
から吸引圧送され、圧力調整器9によって所定の噴射圧
に調整されたガソリン燃料が供給される。そして、マイ
クロコンピュータを内蔵したコントロールユニット10か
ら所定噴射タイミングで送られる所定パルス幅の噴射パ
ルス信号に応じて燃料噴射弁2が開制御され、前記所定
噴射圧に調整された燃料を燃焼室3内に噴射供給する。
Exhaust gas from the direct injection type spark ignition engine 1 is discharged from the inside of the combustion chamber 3 through an exhaust valve 6 and further discharged into the atmosphere through a catalyst and a muffler (not shown). The fuel injection valve 2 is supplied with gasoline fuel that is sucked by pressure from a fuel tank 7 by a fuel pump 8 and adjusted to a predetermined injection pressure by a pressure regulator 9. Then, the fuel injection valve 2 is controlled to open according to an injection pulse signal of a predetermined pulse width sent from the control unit 10 having a built-in microcomputer at a predetermined injection timing, and the fuel adjusted to the predetermined injection pressure is supplied to the combustion chamber 3. To be supplied by injection.

【0018】即ち、燃料噴射弁2による噴射量は、前記
噴射圧と噴射時間に相当する噴射パルス信号のパルス幅
とによって決定される。尚、前記圧力調整器9は、コン
トロールユニット10からの噴射圧制御信号に応じてその
調整圧が変化する設定圧可変式の圧力調整器である。該
圧力調整器9は、例えば燃料供給通路の途中から燃料を
燃料タンク7内に戻すためのリターン通路の開口面積を
電子制御によって変化させて所定噴射圧に調整するもの
であり、燃料噴射弁2に供給される燃料圧(噴射圧)と
噴射される場所である燃焼室内の圧力との差圧をセンシ
ングし、コントロールユニット10は前記差圧と目標圧と
の比較結果に基づいて前記リターン通路の開口面積を制
御する。
That is, the injection amount of the fuel injection valve 2 is determined by the injection pressure and the pulse width of the injection pulse signal corresponding to the injection time. The pressure regulator 9 is a set pressure variable type pressure regulator whose regulated pressure changes according to an injection pressure control signal from the control unit 10. The pressure regulator 9 adjusts the opening area of the return passage for returning the fuel into the fuel tank 7 from the middle of the fuel supply passage to a predetermined injection pressure by changing the opening area by electronic control, for example. The pressure difference between the fuel pressure (injection pressure) supplied to the fuel cell and the pressure in the combustion chamber where the fuel is injected, and the control unit 10 detects the pressure difference in the return passage based on the comparison result between the pressure difference and the target pressure. Control the opening area.

【0019】ここで、前記燃料噴射弁2の噴霧方向は、
図3に示すように、点火栓5近傍に指向されており、こ
れによって、点火栓近傍に他よりも濃い空燃比を形成さ
せる燃焼室内における成層化が行えるようにしてある。
即ち、本実施例の直噴式火花点火機関で、希薄燃焼を行
わせる場合で、燃焼室内の平均空燃比としては着火安定
性の悪い希薄空燃比であっても、点火栓5を指向して燃
料噴射させることで点火栓近傍の空燃比を他に比べて濃
くし、以て、着火安定性を確保できるようにしている。
Here, the spray direction of the fuel injection valve 2 is
As shown in FIG. 3, it is directed to the vicinity of the spark plug 5, so that stratification can be performed in the combustion chamber in which an air-fuel ratio that is richer than the others is formed in the vicinity of the spark plug.
That is, in the case of performing lean combustion in the direct injection spark ignition engine of the present embodiment, even if the lean air-fuel ratio in which the ignition stability is poor as the average air-fuel ratio in the combustion chamber, the fuel is directed toward the spark plug 5. By injecting, the air-fuel ratio in the vicinity of the spark plug is made thicker than the others, thereby ensuring ignition stability.

【0020】また、直噴式火花点火機関1には、燃焼室
3内において前記点火栓5近傍の局所空燃比を検出する
ための以下のような構成が備えられている。即ち、点火
栓5には、燃焼室3内に光ビームを導き、燃焼室3内空
間を透過させた光ビームを外部に取り出すための一対の
光学素子が一体的に設けられている。前記点火栓5に一
体的に設けられる前記一対の光学素子は、図4及び図5
に示すように、外部のレーザ源(光源)11で発光したレ
ーザ光を点火栓5の先端部の燃焼室3内に臨む位置まで
導き、その燃焼室3内に臨む先端部に設けられた光学面
12aによって他方の光学素子13に向けてレーザ光を反射
させる発光側の光学素子12と、該光学素子12と所定間隙
を介して対向配置され、前記光学素子12の先端部の光学
面12aで反射されたレーザ光を入射し、該入射光を点火
栓5の基端側に向けて反射させる光学面13aを燃焼室3
内に臨む先端部に備え、前記光学面13aで反射されたレ
ーザ光を外部に導出する受光側の光学素子13とからな
る。
Further, the direct injection spark ignition engine 1 is provided with the following structure for detecting the local air-fuel ratio in the vicinity of the spark plug 5 in the combustion chamber 3. That is, the spark plug 5 is integrally provided with a pair of optical elements for guiding the light beam into the combustion chamber 3 and taking out the light beam transmitted through the inner space of the combustion chamber 3 to the outside. The pair of optical elements provided integrally with the spark plug 5 are as shown in FIGS.
As shown in, the laser light emitted from the external laser source (light source) 11 is guided to a position facing the inside of the combustion chamber 3 at the tip of the spark plug 5, and an optical provided at the tip facing the inside of the combustion chamber 3. surface
The optical element 12 on the light emitting side that reflects the laser beam toward the other optical element 13 by 12a and the optical element 12 are disposed to face each other with a predetermined gap, and are reflected by the optical surface 12a at the tip of the optical element 12. The combustion chamber 3 is provided with an optical surface 13a for injecting the generated laser light and reflecting the incident light toward the base end side of the spark plug 5.
It is provided with an optical element 13 on the light receiving side that is provided at the front end facing inward and guides the laser light reflected by the optical surface 13a to the outside.

【0021】即ち、前記一対の光学素子12,13は、その
先端がそれぞれ燃焼室3内に臨み、かかる先端部が所定
間隙を有して対向配置され、それぞれの先端部に設けら
れた光学面12a,13aによって、レーザ源11で発光した
レーザ光を光学素子12,13の間隙空間(燃焼室内の空
間)に透過させた後、かかる透過光を外部に取り出すも
のである。
That is, the tips of the pair of optical elements 12 and 13 respectively face the inside of the combustion chamber 3, and the tips are arranged so as to face each other with a predetermined gap, and the optical surfaces provided at the tips. After the laser light emitted from the laser source 11 is transmitted to the gap space (the space inside the combustion chamber) between the optical elements 12 and 13 by 12a and 13a, the transmitted light is extracted to the outside.

【0022】前記光学素子13を介して燃焼室3内から外
部に取り出されたレーザ光は、光電変換素子14に入射
し、この光電変換素子14によって、レーザ光の透過光強
度が検出される構成となっている。ここで、前記光学素
子12,13は、点火栓5の中心電極5aを中心にして対向
配置されており、かかる構成によって、前記一対の光学
素子12,13の間隙は、点火栓5における中心電極5aと
接地電極5bとで挟まれる火花間隙を横切るようになっ
ている。従って、光学素子12から光学素子13に向けて燃
焼室空間を透過するレーザ光は、前記火花間隙を横切っ
て進むことになる。
The laser light extracted from the inside of the combustion chamber 3 through the optical element 13 enters a photoelectric conversion element 14, and the photoelectric conversion element 14 detects the transmitted light intensity of the laser light. Has become. Here, the optical elements 12 and 13 are arranged so as to face each other with the center electrode 5a of the spark plug 5 as the center, and with this configuration, the gap between the pair of optical elements 12 and 13 is the center electrode of the spark plug 5. It crosses the spark gap sandwiched between 5a and the ground electrode 5b. Therefore, the laser light that passes through the combustion chamber space from the optical element 12 toward the optical element 13 travels across the spark gap.

【0023】尚、図2において、15は、レーザ源11が発
光したレーザ光を光学素子12側に反射させ、また、光学
素子13を介して取り出されたレーザ光を光電変換素子14
に向かって反射させるミラーやプリズムからなる光学部
品であり、上記のレーザ源11、光学素子12,13、光学部
品15、光電変換素子14によって本実施例の透過光強度検
出手段が構成される。
In FIG. 2, reference numeral 15 reflects the laser light emitted from the laser source 11 to the optical element 12 side, and the laser light extracted via the optical element 13 is converted into a photoelectric conversion element 14.
The laser source 11, the optical elements 12 and 13, the optical component 15, and the photoelectric conversion element 14 are optical components including a mirror and a prism for reflecting the light toward the optical axis.

【0024】前記光学素子12,13の材料としては、石英
やサファイヤなどを用いることができるが、耐熱,耐圧
を考慮すると、サファイヤを用いることが好ましい。更
に、光学素子12,13の配置によって決定される燃焼室3
内におけるレーザ光の透過空間は、点火栓5の火花間隙
の近傍であることが好ましいが、レーザ光の光路が火花
間隙を横切る光学素子の配置に限定するものではなく、
また、点火栓5と別体に光学素子12,13を設ける構成で
あっても良い。
Quartz, sapphire or the like can be used as the material of the optical elements 12 and 13, but sapphire is preferably used in consideration of heat resistance and pressure resistance. Furthermore, the combustion chamber 3 determined by the arrangement of the optical elements 12 and 13
It is preferable that the laser light transmission space inside the spark plug be near the spark gap of the spark plug 5, but the optical path of the laser light is not limited to the arrangement of the optical elements that cross the spark gap.
Alternatively, the optical elements 12 and 13 may be provided separately from the spark plug 5.

【0025】前記レーザ源11で発光させる光ビームとし
ては、使用するガソリン燃料が選択的に吸収する波長の
レーザ光を用いる。具体的には赤外光であり、本実施例
では、波長が赤外光領域に含まれる3.39μmのレーザ光
を用いている。機関1に使用されるガソリン燃料は、一
般的に、赤外光を選択的に吸収する性質があり、混合気
においては該混合気中におけるガソリン濃度に略比例し
て前記吸収量が増大する。即ち、入射光強度をIO 、ガ
ソリン濃度をC、吸収係数をKとすると、ガソリンによ
る赤外光の吸収量Iは、I=IO exp -KC として表すこ
とができる。
As the light beam emitted by the laser source 11, a laser beam having a wavelength that is selectively absorbed by the gasoline fuel used is used. Specifically, it is infrared light, and in this embodiment, laser light having a wavelength of 3.39 μm included in the infrared light region is used. The gasoline fuel used in the engine 1 generally has a property of selectively absorbing infrared light, and in the air-fuel mixture, the absorption amount increases substantially in proportion to the gasoline concentration in the air-fuel mixture. That is, when the incident light intensity is I O , the gasoline concentration is C, and the absorption coefficient is K, the absorption amount I of infrared light by gasoline can be expressed as I = I O exp -KC .

【0026】従って、混合気に対して所定強度の赤外光
を照射し、ガソリンによって赤外光がどの程度吸収され
たかを検出できれば、混合気中のガソリン濃度、換言す
れば、混合気の空燃比を検出できることになる。ここ
で、本実施例では、前記一対の光学素子12,13は、燃焼
室3内の空間を間隙として対向配置され、かかる間隙を
レーザ光が通過し、最終的に光電変換素子14に入射する
構成であり、然も、レーザ光は点火栓5の火花間隙を横
切って進むから、前記火花間隙部に存在する混合気中の
ガソリン濃度に見合う量だけレーザ光が吸収され、かか
る吸収によって減衰したレーザ光が光電変換素子14に入
射することになる。
Therefore, if it is possible to irradiate the air-fuel mixture with infrared light of a predetermined intensity and detect how much the infrared light is absorbed by the gasoline, the concentration of gasoline in the air-fuel mixture, in other words, the sky of the air-fuel mixture is detected. The fuel ratio can be detected. Here, in the present embodiment, the pair of optical elements 12 and 13 are arranged so as to face each other with the space in the combustion chamber 3 as a gap, and the laser light passes through the gap and finally enters the photoelectric conversion element 14. Since the laser light travels across the spark gap of the spark plug 5, the laser light is absorbed in an amount commensurate with the concentration of gasoline in the air-fuel mixture existing in the spark gap and is attenuated by the absorption. The laser light will enter the photoelectric conversion element 14.

【0027】また、レーザ光(赤外光)の吸収量がガソ
リン濃度に比例するということは、燃焼室内における圧
力(筒内圧)変化によっても吸収量が変化することにな
る。そこで、筒内圧によるキャリブレーション特性を予
め測定しておき(図6参照)、前記光電変換素子14の出
力と、筒内圧検出手段としての筒内圧センサ16で検出さ
れる筒内圧とをパラメータとする空燃比の演算特性(変
換マップ)を予め設定しておくことで、混合気が吸入さ
れる吸気行程から点火時期まで間において、点火栓5の
火花間隙周辺の空燃比を演算できることになる(図7参
照)。
Further, the fact that the absorption amount of the laser light (infrared light) is proportional to the gasoline concentration means that the absorption amount also changes due to the pressure (cylinder pressure) change in the combustion chamber. Therefore, the calibration characteristic based on the in-cylinder pressure is measured in advance (see FIG. 6), and the output of the photoelectric conversion element 14 and the in-cylinder pressure detected by the in-cylinder pressure sensor 16 as the in-cylinder pressure detecting means are used as parameters. By setting the calculation characteristic (conversion map) of the air-fuel ratio in advance, it is possible to calculate the air-fuel ratio around the spark gap of the spark plug 5 during the intake stroke in which the air-fuel mixture is sucked up to the ignition timing. 7).

【0028】ここで、前記燃料噴射弁2による燃料噴射
は点火栓5を指向して行われるため、噴射された燃料が
直接的に点火栓5の電極部にかぶり、くすぶりや失火の
原因となることがないようにし、然も、点火栓5近傍の
空燃比を極力リッチにして着火性能を向上させることが
望まれる。しかしながら、燃焼室内には規則性のないガ
ス流動が形成され、また、筒内圧の影響もあって、燃料
噴霧の到達距離は一定でなく、燃料噴射弁2の設定噴射
圧が過大で到達距離が長過ぎると点火栓のかぶりが生
じ、また、設定噴射圧が過小で到達距離が短過ぎると、
点火栓5近傍に点火可能な空燃比の混合気を形成させる
ことができず、失火を発生させてしまう。
Since the fuel injection by the fuel injection valve 2 is directed toward the spark plug 5, the injected fuel directly covers the electrode portion of the spark plug 5, causing smoldering and misfire. It is desired that the air-fuel ratio near the spark plug 5 is made as rich as possible to improve the ignition performance. However, due to the irregular gas flow formed in the combustion chamber and the influence of the in-cylinder pressure, the reaching distance of the fuel spray is not constant, and the set injection pressure of the fuel injection valve 2 is excessive and the reaching distance is too long. If it is too long, fogging of the spark plug will occur, and if the set injection pressure is too small and the reaching distance is too short,
An air-fuel mixture with an ignitable air-fuel ratio cannot be formed in the vicinity of the spark plug 5, resulting in misfire.

【0029】そこで、コントロールユニット10は、上記
構成によって点火栓5近傍の点火直前における空燃比を
検出し、該検出結果に基づいて点火栓5近傍の空燃比が
目標空燃比になるように圧力調整器9で調整される噴射
圧を制御するようになっている。そのため、コントロー
ルユニット10には、前記光電変換素子14の出力の他、筒
内圧センサ16,クランク角センサ17,エアフローメータ
18からの検出信号が入力され、前記光電変換素子14の出
力及び筒内圧センサ16の検出信号に基づいて空燃比を演
算すると共に、該演算結果に基づいて前記圧力調整器9
で調整される噴射圧を制御し、更に、かかる噴射圧制御
に伴って燃料噴射弁2に与える噴射パルス信号のパルス
幅を設定する。
Therefore, the control unit 10 detects the air-fuel ratio in the vicinity of the spark plug 5 immediately before ignition by the above-mentioned configuration, and adjusts the pressure so that the air-fuel ratio in the vicinity of the spark plug 5 becomes the target air-fuel ratio based on the detection result. The injection pressure adjusted by the device 9 is controlled. Therefore, in addition to the output of the photoelectric conversion element 14, the control unit 10 includes an in-cylinder pressure sensor 16, a crank angle sensor 17, an air flow meter.
The detection signal from 18 is input, the air-fuel ratio is calculated based on the output of the photoelectric conversion element 14 and the detection signal of the in-cylinder pressure sensor 16, and the pressure regulator 9 is calculated based on the calculation result.
The injection pressure adjusted by is controlled, and the pulse width of the injection pulse signal given to the fuel injection valve 2 according to the injection pressure control is set.

【0030】次に、図8のフローチャートに従って前記
コントロールユニット10による空燃比検出及び噴射制御
の様子を詳細に説明する。尚、本実施例において、空燃
比演算手段,噴射圧制御手段,必要噴射量演算手段,噴
射時間演算手段,噴射制御手段としての機能は、前記図
8のフローチャートに示すように、コントロールユニッ
ト10がソフトウェア的に備えている。
Next, the state of air-fuel ratio detection and injection control by the control unit 10 will be described in detail with reference to the flowchart of FIG. In the present embodiment, the functions of the air-fuel ratio calculation means, the injection pressure control means, the required injection amount calculation means, the injection time calculation means, and the injection control means are controlled by the control unit 10 as shown in the flow chart of FIG. It is equipped with software.

【0031】図8のフローチャートにおいて、S1では
クランク角センサ17からの回転信号に基づいて機関回転
数Neを算出し、S2ではエアフローメータ18で検出さ
れた吸入空気量を読み込む。そして、S3では、前記回
転,空気量(負荷)の情報に基づいて必要噴射量に対応
する基本噴射パルス幅(噴射時間)を、機関運転条件に
応じた基本噴射圧Poに調整された場合に対応して演算
する。
In the flowchart of FIG. 8, the engine speed Ne is calculated based on the rotation signal from the crank angle sensor 17 in S1, and the intake air amount detected by the air flow meter 18 is read in S2. Then, in S3, when the basic injection pulse width (injection time) corresponding to the required injection amount is adjusted to the basic injection pressure Po according to the engine operating condition based on the information on the rotation and the air amount (load). Calculate correspondingly.

【0032】また、S4では、点火タイミングを、回転
と負荷の情報に基づいてマップから求める。次のS5で
は、予め機関回転数などの運転条件に応じて設定されて
いる基本噴射圧Poをセットし、前記圧力調整器9によ
って前記基本噴射圧Poに調整されるようにする。尚、
前記基本噴射圧Poは、詳細には、噴射圧と筒内圧との
目標差圧がであるが、以下では単に噴射圧として説明を
簡略化する。
Further, in S4, the ignition timing is obtained from the map based on the information on the rotation and the load. In the next S5, the basic injection pressure Po, which is set in advance in accordance with the operating conditions such as the engine speed, is set and adjusted by the pressure adjuster 9 to the basic injection pressure Po. still,
In detail, the basic injection pressure Po is a target differential pressure between the injection pressure and the in-cylinder pressure, but in the following, the explanation will be simplified simply as an injection pressure.

【0033】そして、S6では、セットされている基本
噴射パルス幅(基本噴射圧Poに対応して演算された必
要噴射量に相当する噴射時間)に従って所定噴射タイミ
ングで燃料噴射弁2を開制御し、燃料噴射を行わせる。
S7では、前記S4で求められた点火時期に従って、レ
ーザ光の透過光強度と筒内圧センサ16で検出される筒内
圧に基づき演算される空燃比をサンプリングし、点火直
前における点火栓5近傍の空燃比Aoを得る。
Then, in S6, the fuel injection valve 2 is controlled to open at a predetermined injection timing according to the set basic injection pulse width (injection time corresponding to the required injection amount calculated corresponding to the basic injection pressure Po). , Make fuel injection.
In S7, the air-fuel ratio calculated based on the transmitted light intensity of the laser light and the in-cylinder pressure detected by the in-cylinder pressure sensor 16 is sampled according to the ignition timing obtained in S4, and the air-fuel ratio near the ignition plug 5 immediately before ignition is sampled. Obtain the fuel ratio Ao.

【0034】S8では、前記空燃比Aoと、点火可能空
燃比のリーン限界値Amin とを比較する。そして、点火
直前における点火栓5近傍の空燃比Aoがリーン限界値
Amin よりもリーンであるときには、S9へ進んで、噴
射圧を所定値だけ増大設定させる補正を行う。尚、前記
噴射圧の補正制御においては、基本噴射圧Poの1/10
0 程度の圧力をステップ的に変化させると良い。
In S8, the air-fuel ratio Ao is compared with the lean limit value Amin of the ignitable air-fuel ratio. Then, when the air-fuel ratio Ao in the vicinity of the spark plug 5 immediately before ignition is leaner than the lean limit value Amin, the routine proceeds to S9, where correction is performed to increase the injection pressure by a predetermined value. In the correction control of the injection pressure, 1/10 of the basic injection pressure Po
It is advisable to change the pressure of about 0 stepwise.

【0035】即ち、点火直前における点火栓5近傍の空
燃比が所期空燃比よりもリーンである場合には、噴射圧
が要求よりも低いために、要求通りに燃料噴霧が噴射弁
付近に到達していないものと推定できる。そこで、噴射
圧をより高める補正を行うことで、噴射弁2から噴射さ
れる燃料の到達距離を延ばして、点火直前における点火
栓5近傍の空燃比をよりリッチ化し、良好な着火が得ら
れる空燃比雰囲気で点火が行われるようにする。
That is, when the air-fuel ratio in the vicinity of the spark plug 5 immediately before ignition is leaner than the desired air-fuel ratio, the injection pressure is lower than required, so that the fuel spray reaches the vicinity of the injection valve as required. It can be inferred that they have not. Therefore, by performing a correction to increase the injection pressure, the arrival distance of the fuel injected from the injection valve 2 is extended, the air-fuel ratio near the spark plug 5 immediately before ignition is made richer, and good ignition is obtained. Ignition is performed in a fuel ratio atmosphere.

【0036】一方、S8で点火直前における点火栓6近
傍の空燃比Aoがリーン限界値Amin よりもリッチであ
ると判別されたときには、S10へ進み、今度は前記空燃
比Aoと点火可能空燃比のリッチ限界値Amax とを比較
する。ここで、点火直前における点火栓5近傍の空燃比
Aoがリッチ限界値Amax よりもリッチであると判別さ
れたときには、S11へ進み、噴射圧を所定値だけ減少設
定させる補正を行う。
On the other hand, when it is determined in S8 that the air-fuel ratio Ao in the vicinity of the spark plug 6 immediately before ignition is richer than the lean limit value Amin, the routine proceeds to S10, this time the air-fuel ratio Ao and the ignitable air-fuel ratio The rich limit value Amax is compared. Here, when it is determined that the air-fuel ratio Ao near the spark plug 5 immediately before ignition is richer than the rich limit value Amax, the routine proceeds to S11, where correction is made to reduce the injection pressure by a predetermined value.

【0037】即ち、点火栓5の雰囲気がリッチ限界値A
max を越えるリッチな雰囲気である場合には、燃料噴射
弁2から噴射される燃料の到達距離が長過ぎ、点火栓5
を燃料噴霧が直撃して濡れを生じさせるような状況であ
ると推定されるので、噴射圧を下げることで到達距離を
縮め、点火直前における点火栓5近傍の空燃比をリーン
化させる。
That is, the atmosphere of the spark plug 5 has a rich limit value A.
In a rich atmosphere exceeding max, the distance reached by the fuel injected from the fuel injection valve 2 is too long and the spark plug 5
Since it is estimated that the fuel spray directly hits and causes wetting, the reaching distance is shortened by lowering the injection pressure, and the air-fuel ratio near the spark plug 5 immediately before ignition is made lean.

【0038】S9又はS11で噴射圧の変更を行った場合
には、噴射パルス幅を噴射圧の変更に応じて補正しない
と所期の燃料を噴射させることができなくなるので、S
12で変更された噴射圧に応じて噴射パルス幅(噴射時
間)を補正する処理を施す。そして、S13では、前記S
9又はS11で変更された噴射圧P1 (目標差圧)を、前
記圧力調整器9における調整圧Poにセットする。
When the injection pressure is changed in S9 or S11, the desired fuel cannot be injected unless the injection pulse width is corrected in accordance with the change in injection pressure.
A process of correcting the injection pulse width (injection time) according to the injection pressure changed in 12 is performed. Then, in S13, the above S
The injection pressure P 1 (target differential pressure) changed in 9 or S11 is set to the adjustment pressure Po in the pressure adjuster 9.

【0039】一方、S8,S10における判別によって前
記空燃比Aoが、リーン限界値Amin とリッチ限界値A
max とで挟まれる要求空燃比範囲内であると判別された
場合には、噴射圧の補正が必要ないので、現状の噴射圧
を維持すべくS9〜S13をジャンプしてS14へ進む。こ
こで、上記実施例における噴射圧制御の特性を図9に示
してある。即ち、リーン限界値Amin とリッチ限界値A
max とで挟まれる点火可能空燃比範囲に、点火直前にお
ける点火栓近傍の空燃比が該当する場合には、そのとき
の噴射圧を維持し、リーン限界値Amin を下回るリーン
空燃比であるときには、制御範囲内(Pmax 〜Pmin)で
噴射圧を増大制御し、また、リッチ限界値Amax を上回
るリッチ空燃比であるときには、制御範囲内(Pmax 〜
Pmin)で噴射圧を減少制御する。
On the other hand, the air-fuel ratio Ao is determined to be lean limit value Amin and rich limit value A by the determinations in S8 and S10.
If it is determined that the current injection pressure is within the required air-fuel ratio range sandwiched by max, it is not necessary to correct the injection pressure, and therefore, steps S9 to S13 are jumped to maintain the current injection pressure, and the process proceeds to S14. Here, the characteristics of the injection pressure control in the above embodiment are shown in FIG. That is, the lean limit value Amin and the rich limit value A
If the air-fuel ratio in the vicinity of the spark plug just before ignition falls within the ignitable air-fuel ratio range sandwiched by max, the injection pressure at that time is maintained, and when the lean air-fuel ratio is below the lean limit value Amin, The injection pressure is controlled to increase within the control range (Pmax to Pmin), and when the rich air-fuel ratio exceeds the rich limit value Amax, the injection pressure is within the control range (Pmax to Pmin).
Pmin) controls the injection pressure to decrease.

【0040】S14では、運転条件(回転,負荷)が変化
したか否かを判別し、運転条件が一定で要求燃料量が一
定である場合には、S6へ戻り、点火直前における点火
栓5近傍の空燃比を要求範囲内に制御するための噴射圧
調整を再度行わせる。一方、運転条件が変化して要求燃
料量が変化する場合には、S1へ戻って、要求燃料量の
演算を行わせる。
In S14, it is determined whether or not the operating conditions (rotation, load) have changed, and if the operating conditions are constant and the required fuel amount is constant, the process returns to S6 and the vicinity of the spark plug 5 immediately before ignition is determined. The injection pressure is adjusted again to control the air-fuel ratio within the required range. On the other hand, when the operating condition changes and the required fuel amount changes, the process returns to S1 and the required fuel amount is calculated.

【0041】上記実施例によれば、点火直前における点
火栓5近傍の空燃比が、点火に最適な空燃比となるよう
に直噴式の燃料噴射弁2による噴射圧が調整されるか
ら、常に最適な空燃比条件の下に点火を行わせることが
できる。従って、希薄燃焼を行わせる場合であっても、
点火栓5近傍に指向させて燃料を噴射させることによっ
て、点火栓近傍に他よりも濃い空燃比の混合気を形成さ
せ、然も、点火栓のかぶりを回避しつつ濃い空燃比に安
定的に制御でき、希薄燃焼時に安定した着火性能が得ら
れる。
According to the above embodiment, the injection pressure by the direct injection type fuel injection valve 2 is adjusted so that the air-fuel ratio in the vicinity of the spark plug 5 immediately before ignition becomes the optimum air-fuel ratio for ignition. Ignition can be performed under various air-fuel ratio conditions. Therefore, even when performing lean combustion,
By injecting fuel toward the vicinity of the spark plug 5, an air-fuel mixture having a richer air-fuel ratio than the other is formed in the vicinity of the spark plug, and the air-fuel ratio is stably stabilized at a rich air-fuel ratio while avoiding fogging of the spark plug. It can be controlled and stable ignition performance can be obtained during lean combustion.

【0042】また、前記混合気の成層化によって、燃焼
室3内の点火栓5から遠い領域では空燃比が超希薄とな
り、ノッキングに至る自己発火反応が抑制されるため、
その結果として圧縮比を上げて、熱効率,出力の向上が
図れる。尚、空燃比の検出結果に基づいて設定される噴
射圧に基づく噴射圧調整は、燃料ポンプの駆動制御によ
って行わせても良く、噴射圧の調整方法を上記実施例の
圧力調整器9による方法に限定するものではない。
Further, due to the stratification of the air-fuel mixture, the air-fuel ratio becomes extremely lean in the region far from the spark plug 5 in the combustion chamber 3, and the self-ignition reaction leading to knocking is suppressed.
As a result, the compression ratio can be increased, and thermal efficiency and output can be improved. It should be noted that the injection pressure adjustment based on the injection pressure set based on the detection result of the air-fuel ratio may be performed by drive control of the fuel pump, and the injection pressure is adjusted by the pressure adjuster 9 of the above embodiment. It is not limited to.

【0043】また、上記実施例では、空燃比の検出結果
を噴射圧調整にのみ用いたが、前記レーザ光の透過光強
度による空燃比の検出結果に基づいて燃料噴射量にフィ
ードバック補正を施す構成としても良い。
In the above embodiment, the detection result of the air-fuel ratio is used only for adjusting the injection pressure, but the fuel injection amount is feedback-corrected based on the detection result of the air-fuel ratio based on the transmitted light intensity of the laser light. Also good.

【0044】[0044]

【発明の効果】以上説明したように本発明によると、噴
孔を燃焼室内に臨ませた燃料噴射弁により点火栓近傍を
指向させて燃料噴射させる構成の直噴式火花点火機関に
おいて、点火栓近傍の燃焼室空間に透過させた光の透過
強度によって点火栓近傍の点火直前での空燃比を検出
し、該検出結果に基づいて前記燃料噴射弁の噴射圧を制
御することにより、点火栓の燃料かぶりを回避しつつ、
点火直前における点火栓近傍の空燃比を高い着火性が得
られる空燃比に制御でき、特に希薄燃焼させるときの着
火性能を高めることができるという効果がある。
As described above, according to the present invention, in the direct injection type spark ignition engine having the structure in which the fuel injection valve having the injection hole facing the combustion chamber directs the fuel toward the vicinity of the spark plug to inject the fuel, The fuel of the spark plug is detected by detecting the air-fuel ratio immediately before ignition in the vicinity of the spark plug based on the transmission intensity of the light transmitted through the combustion chamber space and controlling the injection pressure of the fuel injection valve based on the detection result. While avoiding fogging,
There is an effect that the air-fuel ratio in the vicinity of the spark plug immediately before ignition can be controlled to an air-fuel ratio that can obtain high ignitability, and the ignition performance can be enhanced especially when performing lean combustion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing an embodiment of the present invention.

【図3】同上実施例における燃料噴霧の指向を示す図。FIG. 3 is a view showing the direction of fuel spray in the embodiment.

【図4】同上実施例における点火栓先端部の側面拡大
図。
FIG. 4 is an enlarged side view of a spark plug tip portion according to the embodiment.

【図5】同上実施例における点火栓先端部の底面拡大
図。
FIG. 5 is an enlarged bottom view of a spark plug tip portion according to the embodiment.

【図6】透過光強度と筒内圧とに対応する空燃比を示す
線図。
FIG. 6 is a diagram showing an air-fuel ratio corresponding to transmitted light intensity and in-cylinder pressure.

【図7】クランク角に対する筒内圧及び透過光強度の変
化を示す線図。
FIG. 7 is a diagram showing changes in in-cylinder pressure and transmitted light intensity with respect to a crank angle.

【図8】同上実施例における噴射圧制御を示すフローチ
ャート。
FIG. 8 is a flowchart showing injection pressure control in the embodiment.

【図9】同上実施例における噴射圧制御の特性を示す線
図。
FIG. 9 is a diagram showing characteristics of injection pressure control in the embodiment.

【符号の説明】[Explanation of symbols]

1 直噴式火花点火機関 2 燃料噴射弁 3 燃焼室 4 吸気弁 5 点火栓 5a 中心電極 5b 接地電極 7 燃料タンク 8 燃料ポンプ 9 圧力調整器 10 コントロールユニット 11 レーザ源 12,13 光学素子 14 光電変換素子 16 筒内圧センサ 17 クランク角センサ 18 エアフローメータ 1 direct injection spark ignition engine 2 fuel injection valve 3 combustion chamber 4 intake valve 5 spark plug 5a center electrode 5b ground electrode 7 fuel tank 8 fuel pump 9 pressure regulator 10 control unit 11 laser source 12, 13 optical element 14 photoelectric conversion element 16 In-cylinder pressure sensor 17 Crank angle sensor 18 Air flow meter

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 21/59 Z 7370−2J Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G01N 21/59 Z 7370-2J

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】燃料噴射弁の噴孔が燃焼室内に臨み、か
つ、前記噴孔が点火栓近傍を指向して配設された直噴式
火花点火機関であって、 前記点火栓近傍の燃焼室内に臨ませて発光側と受光側と
からなる一対の光学素子を所定間隙をもって対向配置
し、光源で発光した光を前記一対の光学素子を介して光
電変換素子に導く透過光強度検出手段と、 機関の筒内圧を検出する筒内圧検出手段と、 前記透過光強度検出手段における前記光電変換素子の出
力と前記筒内圧検出手段で検出された筒内圧とに基づい
て点火栓近傍の空燃比を演算する空燃比演算手段と、 該空燃比演算手段で演算される点火直前の空燃比に基づ
いて前記燃料噴射弁における燃料噴射圧を制御する噴射
圧制御手段と、 を含んで構成されたことを特徴とする直噴式火花点火機
関。
1. A direct injection type spark ignition engine in which a nozzle hole of a fuel injection valve faces a combustion chamber, and the nozzle hole is arranged so as to face the vicinity of the spark plug, and the combustion chamber near the spark plug. A pair of optical elements consisting of a light emitting side and a light receiving side facing each other with a predetermined gap therebetween, and transmitted light intensity detecting means for guiding the light emitted from the light source to the photoelectric conversion element via the pair of optical elements, An in-cylinder pressure detecting means for detecting the in-cylinder pressure of the engine, and an air-fuel ratio near the ignition plug based on the output of the photoelectric conversion element in the transmitted light intensity detecting means and the in-cylinder pressure detected by the in-cylinder pressure detecting means. And an injection pressure control means for controlling the fuel injection pressure in the fuel injection valve based on the air-fuel ratio immediately before ignition calculated by the air-fuel ratio calculation means. Direct injection type spark ignition engine.
【請求項2】機関運転条件に基づいて必要燃料噴射量を
演算する必要噴射量演算手段と、 該必要噴射量演算手段で演算された必要燃料噴射量を噴
射するのに必要な噴射時間を前記噴射圧制御手段で制御
される燃料噴射圧に基づいて演算する噴射時間演算手段
と、 所定の噴射タイミングにおいて前記噴射圧制御手段で制
御される燃料噴射圧の下に前記噴射時間演算手段で演算
された噴射時間だけ前記燃料噴射弁を開制御する噴射制
御手段と、 を含んで構成されることを特徴とする請求項1記載の直
噴式火花点火機関。
2. A required injection amount calculation means for calculating a required fuel injection amount based on engine operating conditions, and an injection time required for injecting the required fuel injection amount calculated by the required injection amount calculation means. An injection time calculating means for calculating the fuel injection pressure based on the fuel injection pressure controlled by the injection pressure control means; and a fuel injection pressure calculated by the injection time calculating means under the fuel injection pressure controlled by the injection pressure control means at a predetermined injection timing. 2. A direct injection spark ignition engine according to claim 1, further comprising: injection control means for controlling the opening of the fuel injection valve for a predetermined injection time.
JP5080795A 1993-04-07 1993-04-07 Direct injection spark ignition engine Expired - Lifetime JP2917737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5080795A JP2917737B2 (en) 1993-04-07 1993-04-07 Direct injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5080795A JP2917737B2 (en) 1993-04-07 1993-04-07 Direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH06288282A true JPH06288282A (en) 1994-10-11
JP2917737B2 JP2917737B2 (en) 1999-07-12

Family

ID=13728399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5080795A Expired - Lifetime JP2917737B2 (en) 1993-04-07 1993-04-07 Direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP2917737B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193523A (en) * 2000-01-07 2001-07-17 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2007177741A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine
JP2007177742A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine
JP2007177743A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001193523A (en) * 2000-01-07 2001-07-17 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2007177741A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine
JP2007177742A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine
JP2007177743A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine
JP4622853B2 (en) * 2005-12-28 2011-02-02 マツダ株式会社 Spark ignition direct injection engine

Also Published As

Publication number Publication date
JP2917737B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
US5076237A (en) Means and method for measuring and controlling smoke from an internal combustion engine
KR100676947B1 (en) Fuel injection controller for internal combustion engine
CA1197303A (en) Method and apparatus for controlling fuel injection timing in a compression ignition engine
US6354268B1 (en) Cylinder pressure based optimization control for compression ignition engines
US20020195086A1 (en) Cylinder pressure based optimization control for compression ignition engines
JP2008115860A (en) Ion detecting device detecting ion current in combustion chamber of diesel engine
KR20020022059A (en) Direct-injection spark ignition engine
KR890017448A (en) Adaptive control system for internal combustion engine and operating method of internal combustion engine
US5904127A (en) Method of controlling an adjustable operating parameter of an internal combustion engine with direct fuel injection
JP2917737B2 (en) Direct injection spark ignition engine
JP2007262937A (en) Control device of direct injection gasoline engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2004360539A (en) Direct cylinder injection internal combustion engine
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JP4294603B2 (en) Laser ignition device for internal combustion engine
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP4493075B2 (en) Gas concentration detection device for internal combustion engine
JP3826294B2 (en) Premixed compression ignition internal combustion engine
JP2950107B2 (en) Control device for spark ignition engine
JPH0742592A (en) Fuel injection quantity control device
Tanaka et al. Planar measurements of OH radicals in an SI engine based on laser induced flourescence
JP2005256764A (en) Internal combustion engine equipped with optical spectrum analyzer device
JP3945072B2 (en) Fuel injection control device for internal combustion engine