JP2917737B2 - Direct injection spark ignition engine - Google Patents

Direct injection spark ignition engine

Info

Publication number
JP2917737B2
JP2917737B2 JP5080795A JP8079593A JP2917737B2 JP 2917737 B2 JP2917737 B2 JP 2917737B2 JP 5080795 A JP5080795 A JP 5080795A JP 8079593 A JP8079593 A JP 8079593A JP 2917737 B2 JP2917737 B2 JP 2917737B2
Authority
JP
Japan
Prior art keywords
injection
fuel
air
fuel ratio
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5080795A
Other languages
Japanese (ja)
Other versions
JPH06288282A (en
Inventor
浩子 小木田
輝行 伊東
勉 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5080795A priority Critical patent/JP2917737B2/en
Publication of JPH06288282A publication Critical patent/JPH06288282A/en
Application granted granted Critical
Publication of JP2917737B2 publication Critical patent/JP2917737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1451Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the sensor being an optical sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は直噴式火花点火機関に関
し、詳しくは、点火直前における点火栓近傍の空燃比を
制御するための噴射圧制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct-injection spark ignition engine, and more particularly to an injection pressure control for controlling an air-fuel ratio near a spark plug immediately before ignition.

【0002】[0002]

【従来の技術】吸気管に気化器や燃料噴射弁を備える予
混合式の火花点火機関では、特に過渡運転時などに燃料
の輸送遅れにより出力特性や排気組成が悪化するという
問題があり、これを解決するため、燃料噴射弁の噴孔を
燃焼室内に臨ませ、該燃料噴射弁によって圧縮行程中に
燃料噴射を行わせる構成の直噴式火花点火機関が考えら
れている(特願平4−17738号参照)。
2. Description of the Related Art In a premixed spark ignition engine having a carburetor and a fuel injection valve in an intake pipe, there is a problem that output characteristics and exhaust composition are deteriorated due to a delay in fuel transport especially during transient operation. In order to solve the above problem, a direct injection type spark ignition engine in which the injection hole of the fuel injection valve faces the combustion chamber and fuel is injected during the compression stroke by the fuel injection valve has been proposed (Japanese Patent Application No. Hei. 17738).

【0003】[0003]

【発明が解決しようとする課題】ところで、前記直噴式
火花点火機関で希薄燃焼を行わせる場合に、着火性能を
安定させるためには、点火栓近傍の空燃比を他の燃焼室
内領域よりも濃くする成層化が有効であり、かかる成層
化のためには、点火栓近傍に指向させて燃料噴射を行わ
せることが考えられる。
In order to stabilize the ignition performance when performing lean combustion in the direct-injection spark ignition engine, the air-fuel ratio in the vicinity of the spark plug is made higher than in the other combustion chamber region. It is considered that stratification is effective, and for such stratification, it is conceivable that fuel injection is performed in the vicinity of the spark plug.

【0004】ここで、点火栓近傍に指向させて燃料噴射
を行わせる構成にすると、燃料が直接的に点火栓の電極
部にかぶり、くすぶりや失火の原因となる惧れがある。
ここで、直噴式の燃料噴射弁ではその噴射圧が燃焼噴霧
の到達距離を決定する大きな要因となるから、点火栓の
かぶりを発生させない範囲内で点火栓近傍の空燃比を濃
くできる噴射圧の設定が必要になる。
Here, if the fuel injection is performed by directing the fuel toward the vicinity of the spark plug, the fuel may directly cover the electrode portion of the spark plug, which may cause smoldering or misfire.
Here, in a direct injection type fuel injection valve, the injection pressure is a major factor that determines the reach of the combustion spray. Therefore, the injection pressure of the fuel injection valve that can increase the air-fuel ratio in the vicinity of the ignition plug within a range that does not cause fogging of the ignition plug. Setting is required.

【0005】しかしながら、燃焼室内には規則性のない
ガス流動が形成され、また、筒内圧の影響もあって、燃
料噴霧の到達距離は一定ではなく、一定の噴射圧の下に
燃料噴射を行わせると、安定して所期の空燃比を点火栓
近傍形成させることができないという問題がある。即
ち、設定噴射圧が過大で到達距離が長過ぎると点火栓の
かぶりが生じ、また、設定噴射圧が過小で到達距離が短
過ぎると、点火栓近傍に点火可能な空燃比の混合気を形
成させることができず、失火を発生させてしまうことが
ある。このため、点火栓のかぶりを回避しつつ、点火栓
近傍の空燃比を最大限にリッチ化させることは困難であ
った。
[0005] However, irregular gas flows are formed in the combustion chamber, and due to the effect of the in-cylinder pressure, the reach of the fuel spray is not constant, and the fuel is injected under a constant injection pressure. This causes a problem that the desired air-fuel ratio cannot be stably formed in the vicinity of the ignition plug. That is, if the set injection pressure is too large and the reach is too long, fogging of the spark plug occurs.If the set injection pressure is too small and the reach is too short, an air-fuel ratio mixture that can be ignited is formed near the spark plug. It is not possible to cause a misfire. For this reason, it has been difficult to maximize the air-fuel ratio near the ignition plug while avoiding fogging of the ignition plug.

【0006】従って、前記直噴式火花点火機関における
噴射圧を最適値にするには、燃焼室内における点火栓近
傍の局所空燃比を検出し、該検出結果に基づいて点火栓
近傍の空燃比が目標空燃比になるように噴射圧を制御す
ることが望まれる。前記点火栓近傍の局所空燃比を検出
する方法としては、従来、特開平1−247740号公
報に開示されるように、点火栓に埋め込んだ光ファイバ
ーによって燃焼光を取り出し、該取り出した燃焼光を光
電変換することで点火栓近傍の局所空燃比を検出する構
成のものがある。
Therefore, in order to optimize the injection pressure in the direct injection spark ignition engine, the local air-fuel ratio near the spark plug in the combustion chamber is detected, and the air-fuel ratio near the spark plug is set to a target based on the detection result. It is desired to control the injection pressure so as to achieve the air-fuel ratio. As a method of detecting the local air-fuel ratio in the vicinity of the ignition plug, conventionally, as disclosed in Japanese Patent Laid-Open No. 1-247740, combustion light is extracted by an optical fiber embedded in the ignition plug, and the extracted combustion light is photoelectrically converted. There is a configuration in which the local air-fuel ratio near the spark plug is detected by conversion.

【0007】しかしながら、上記の燃焼光に基づく局所
空燃比の検出では、着火燃焼によって生じる燃焼光によ
って空燃比を検出するものであり、前記噴射圧の適正を
より的確に示す点火直前の空燃比を検出することができ
ないため、前述のようなガス流動等に伴う燃料噴霧の到
達距離の変化、換言すれば、点火栓近傍に形成される空
燃比を高精度に捉えることができず、点火栓のかぶりを
回避しつつ高い着火性を安定的に得ることが困難である
という問題があった。
However, in the above-described detection of the local air-fuel ratio based on the combustion light, the air-fuel ratio is detected by the combustion light generated by the ignition combustion, and the air-fuel ratio immediately before the ignition, which indicates the injection pressure more appropriately, is determined. Since it cannot be detected, the change in the reach of the fuel spray due to the gas flow as described above, in other words, the air-fuel ratio formed in the vicinity of the spark plug cannot be detected with high accuracy, and the spark plug cannot be detected. There is a problem that it is difficult to stably obtain high ignitability while avoiding fogging.

【0008】本発明は上記問題点に鑑みなされたもので
あり、噴孔が燃焼室内に臨み、かつ、該噴孔からの燃料
噴霧が点火栓近傍を指向するように燃料噴射弁が配設さ
れる直噴式火花点火機関において、点火直前における点
火栓近傍の空燃比を最適値にし得る噴射圧制御が行える
ようにすることを目的とする。
The present invention has been made in view of the above-mentioned problems, and a fuel injection valve is provided such that an injection hole faces a combustion chamber and fuel spray from the injection hole is directed to a vicinity of an ignition plug. It is an object of the present invention to provide a direct injection type spark ignition engine capable of performing injection pressure control that can set an air-fuel ratio near an ignition plug immediately before ignition to an optimum value.

【0009】[0009]

【課題を解決するための手段】そのため本発明にかかる
直噴式火花点火機関は、燃料噴射弁の噴孔が燃焼室内に
臨み、かつ、前記噴孔が点火栓近傍を指向して配設され
た直噴式火花点火機関であって、図1に示すように構成
される。図1において、透過光強度検出手段は、点火栓
近傍の燃焼室内に臨ませて発光側と受光側とからなる一
対の光学素子を所定間隙をもって対向配置し、光源で発
光した光を前記一対の光学素子を介して光電変換素子に
導く構成の手段である。
Therefore, in the direct injection spark ignition engine according to the present invention, the injection hole of the fuel injection valve faces the combustion chamber, and the injection hole is disposed so as to face the vicinity of the spark plug. This is a direct injection spark ignition engine and is configured as shown in FIG. In FIG. 1, a transmitted light intensity detecting means is arranged such that a pair of optical elements each including a light emitting side and a light receiving side are opposed to each other with a predetermined gap facing a combustion chamber near an ignition plug, and light emitted from a light source is transmitted to the pair of optical elements. This is a means having a configuration for leading to a photoelectric conversion element via an optical element.

【0010】また、筒内圧検出手段は機関の筒内圧を検
出し、空燃比演算手段は、透過光強度検出手段における
光電変換素子の出力と筒内圧検出手段で検出された筒内
圧とに基づいて点火栓近傍の空燃比を演算する。そし
て、噴射圧制御手段は、空燃比演算手段で演算される点
火直前の空燃比が目標空燃比になるように、前記燃料噴
射弁における燃料噴射圧を制御して燃料噴霧の到達距離
を変化させる
Further, the in-cylinder pressure detecting means detects the in-cylinder pressure of the engine, and the air-fuel ratio calculating means based on the output of the photoelectric conversion element in the transmitted light intensity detecting means and the in-cylinder pressure detected by the in-cylinder pressure detecting means. Calculate the air-fuel ratio near the spark plug. Then, the injection pressure control means controls the fuel injection so that the air-fuel ratio immediately before ignition calculated by the air-fuel ratio calculation means becomes the target air-fuel ratio.
Controlling the fuel injection pressure at the firing valve to reach the fuel spray
To change .

【0011】ここで、上記構成に加え、機関運転条件に
基づいて必要燃料噴射量を演算する必要噴射量演算手段
と、この必要噴射量演算手段で演算された必要燃料噴射
量を噴射するのに必要な噴射時間を前記噴射圧制御手段
で制御される燃料噴射圧に基づいて演算する噴射時間演
算手段と、所定の噴射タイミングにおいて前記噴射圧制
御手段で制御される燃料噴射圧の下に前記噴射時間演算
手段で演算された噴射時間だけ前記燃料噴射弁を開制御
する噴射制御手段と、を設けて構成することが好まし
い。
Here, in addition to the above configuration, the required fuel injection amount calculating means for calculating the required fuel injection amount based on the engine operating conditions and the required fuel injection amount calculated by the required fuel injection amount calculating means are injected. An injection time calculating means for calculating a required injection time based on the fuel injection pressure controlled by the injection pressure control means, and the injection being performed under a fuel injection pressure controlled by the injection pressure control means at a predetermined injection timing. It is preferable to provide an injection control means for opening and controlling the fuel injection valve for the injection time calculated by the time calculation means.

【0012】[0012]

【作用】かかる構成によると、透過光強度検出手段にお
いて、光源からの発光は、点火栓近傍の燃焼室内に臨む
一対の光学素子の間隙を通って光電変換素子に導かれる
構成であり、前記一対の光学素子の間隙を透過するとき
に、かかる空間に存在する燃料によって減衰されること
になる。
According to this structure, in the transmitted light intensity detecting means, the light emitted from the light source is guided to the photoelectric conversion element through the gap between the pair of optical elements facing the combustion chamber near the ignition plug. When passing through the gap between the optical elements, the fuel is attenuated by the fuel existing in the space.

【0013】そして、前記減衰は、燃料濃度によって変
化し、また、燃料濃度によって変化するということは燃
焼室内の圧力(筒内圧)によっても変化することにな
る。そこで、前記間隙を通った透過光が光学素子を介し
て入射する光電変換素子の出力と筒内圧検出手段で検出
された筒内圧とに基づいて、筒内圧の要因を除外して点
火栓近傍の燃料濃度(空燃比)が検出される。
The attenuation varies depending on the fuel concentration, and the fact that the attenuation varies depending on the fuel concentration also varies depending on the pressure in the combustion chamber (in-cylinder pressure). Therefore, based on the output of the photoelectric conversion element, through which the transmitted light passing through the gap enters via the optical element, and the in-cylinder pressure detected by the in-cylinder pressure detecting means, the factors of the in-cylinder pressure are excluded and the vicinity of the ignition plug is removed. Fuel concentration (air-fuel ratio) is detected.

【0014】ここで、前記空燃比検出は、燃焼室内の点
火栓近傍に存在する燃料による光の吸収を介して行われ
るものであり、点火前における点火栓近傍の空燃比を検
出することができる。そこで、点火直前の点火栓近傍の
空燃比が目標空燃比になるように、燃料噴射弁による噴
射圧を制御することで燃料噴霧の到達距離を制御し、
火栓の燃料かぶりを回避しつつ高い着火性が得られる空
燃比の混合気が点火栓近傍に形成されるようにする。
Here, the detection of the air-fuel ratio is performed through the absorption of light by the fuel existing near the spark plug in the combustion chamber, and the air-fuel ratio near the spark plug before ignition can be detected. . Therefore, near the spark plug just before ignition
The injection by the fuel injection valve is performed so that the air-fuel ratio becomes the target air-fuel ratio.
By controlling the injection pressure, the reaching distance of the fuel spray is controlled so that an air-fuel mixture having an air-fuel ratio that provides high ignitability while avoiding fuel fogging of the spark plug is formed near the spark plug.

【0015】また、上記のようにして噴射圧を制御する
構成とすると、単位時間当たりの噴射量が噴射圧の変化
に応じて変化してしまい、必要噴射量に対応する噴射時
間が変化するので、必要噴射量を噴射させるのに必要な
噴射時間を噴射圧に基づいてを演算させるようにした。
If the injection pressure is controlled as described above, the injection amount per unit time changes according to the change in the injection pressure, and the injection time corresponding to the required injection amount changes. The injection time required to inject the required injection amount is calculated based on the injection pressure.

【0016】[0016]

【実施例】以下に本発明の実施例を説明する。図2は本
実施例のシステム構成を示す図である。この図2におい
て、機関1は、電磁式の燃料噴射弁2をその噴孔を燃焼
室3内に臨ませて配置し、吸入行程中に吸気弁4を介し
て燃焼室3内に吸引した新気に対して圧縮行程中に前記
燃料噴射弁2から燃料を噴射して混合気を形成させ、該
混合気を点火栓5による火花点火によって着火燃焼させ
る直噴式火花点火機関である。
Embodiments of the present invention will be described below. FIG. 2 is a diagram illustrating the system configuration of the present embodiment. In FIG. 2, the engine 1 has a new electromagnetic fuel injection valve 2 with its injection hole facing the combustion chamber 3 and suction into the combustion chamber 3 via the intake valve 4 during the intake stroke. This is a direct-injection spark ignition engine in which fuel is injected from the fuel injection valve 2 during a compression stroke to form air-fuel mixture, and the air-fuel mixture is ignited and burned by spark ignition by a spark plug 5.

【0017】前記直噴式火花点火機関1の排気は、排気
弁6を介して燃焼室3内から排出され、更に、図示しな
い触媒,マフラーを介して大気中に放出される。前記燃
料噴射弁2には、燃料ポンプ8によって燃料タンク7内
から吸引圧送され、圧力調整器9によって所定の噴射圧
に調整されたガソリン燃料が供給される。そして、マイ
クロコンピュータを内蔵したコントロールユニット10か
ら所定噴射タイミングで送られる所定パルス幅の噴射パ
ルス信号に応じて燃料噴射弁2が開制御され、前記所定
噴射圧に調整された燃料を燃焼室3内に噴射供給する。
The exhaust gas of the direct-injection spark ignition engine 1 is discharged from the combustion chamber 3 through an exhaust valve 6, and further discharged to the atmosphere through a catalyst and a muffler (not shown). The fuel injection valve 2 is supplied with gasoline fuel which is suction-fed from the fuel tank 7 by a fuel pump 8 and adjusted to a predetermined injection pressure by a pressure regulator 9. The fuel injection valve 2 is controlled to open in response to an injection pulse signal having a predetermined pulse width sent at a predetermined injection timing from a control unit 10 incorporating a microcomputer, and the fuel adjusted to the predetermined injection pressure is supplied into the combustion chamber 3. To be injected.

【0018】即ち、燃料噴射弁2による噴射量は、前記
噴射圧と噴射時間に相当する噴射パルス信号のパルス幅
とによって決定される。尚、前記圧力調整器9は、コン
トロールユニット10からの噴射圧制御信号に応じてその
調整圧が変化する設定圧可変式の圧力調整器である。該
圧力調整器9は、例えば燃料供給通路の途中から燃料を
燃料タンク7内に戻すためのリターン通路の開口面積を
電子制御によって変化させて所定噴射圧に調整するもの
であり、燃料噴射弁2に供給される燃料圧(噴射圧)と
噴射される場所である燃焼室内の圧力との差圧をセンシ
ングし、コントロールユニット10は前記差圧と目標圧と
の比較結果に基づいて前記リターン通路の開口面積を制
御する。
That is, the injection amount of the fuel injection valve 2 is determined by the injection pressure and the pulse width of the injection pulse signal corresponding to the injection time. The pressure regulator 9 is a pressure regulator of a variable set pressure type whose regulation pressure changes according to an injection pressure control signal from the control unit 10. The pressure regulator 9 changes the opening area of the return passage for returning the fuel into the fuel tank 7 from the middle of the fuel supply passage by electronic control and adjusts it to a predetermined injection pressure. The control unit 10 senses the pressure difference between the fuel pressure (injection pressure) supplied to the engine and the pressure in the combustion chamber, which is the location where the fuel is injected, based on the comparison result between the pressure difference and the target pressure. Control the opening area.

【0019】ここで、前記燃料噴射弁2の噴霧方向は、
図3に示すように、点火栓5近傍に指向されており、こ
れによって、点火栓近傍に他よりも濃い空燃比を形成さ
せる燃焼室内における成層化が行えるようにしてある。
即ち、本実施例の直噴式火花点火機関で、希薄燃焼を行
わせる場合で、燃焼室内の平均空燃比としては着火安定
性の悪い希薄空燃比であっても、点火栓5を指向して燃
料噴射させることで点火栓近傍の空燃比を他に比べて濃
くし、以て、着火安定性を確保できるようにしている。
Here, the spray direction of the fuel injection valve 2 is as follows.
As shown in FIG. 3, it is directed to the vicinity of the spark plug 5, so that stratification in the combustion chamber can be performed in which a denser air-fuel ratio is formed near the spark plug than the others.
That is, in the case where lean combustion is performed by the direct injection spark ignition engine of the present embodiment, even if the average air-fuel ratio in the combustion chamber is a lean air-fuel ratio having poor ignition stability, the fuel is directed toward the ignition plug 5. By injecting, the air-fuel ratio in the vicinity of the ignition plug is made richer than the others, so that ignition stability can be ensured.

【0020】また、直噴式火花点火機関1には、燃焼室
3内において前記点火栓5近傍の局所空燃比を検出する
ための以下のような構成が備えられている。即ち、点火
栓5には、燃焼室3内に光ビームを導き、燃焼室3内空
間を透過させた光ビームを外部に取り出すための一対の
光学素子が一体的に設けられている。前記点火栓5に一
体的に設けられる前記一対の光学素子は、図4及び図5
に示すように、外部のレーザ源(光源)11で発光したレ
ーザ光を点火栓5の先端部の燃焼室3内に臨む位置まで
導き、その燃焼室3内に臨む先端部に設けられた光学面
12aによって他方の光学素子13に向けてレーザ光を反射
させる発光側の光学素子12と、該光学素子12と所定間隙
を介して対向配置され、前記光学素子12の先端部の光学
面12aで反射されたレーザ光を入射し、該入射光を点火
栓5の基端側に向けて反射させる光学面13aを燃焼室3
内に臨む先端部に備え、前記光学面13aで反射されたレ
ーザ光を外部に導出する受光側の光学素子13とからな
る。
The direct-injection spark ignition engine 1 has the following configuration for detecting the local air-fuel ratio in the vicinity of the ignition plug 5 in the combustion chamber 3. That is, the ignition plug 5 is integrally provided with a pair of optical elements for guiding the light beam into the combustion chamber 3 and extracting the light beam transmitted through the space inside the combustion chamber 3 to the outside. The pair of optical elements provided integrally with the ignition plug 5 are shown in FIGS.
As shown in (1), the laser light emitted from the external laser source (light source) 11 is guided to a position facing the inside of the combustion chamber 3 at the tip of the ignition plug 5, and an optical element provided at the tip facing the combustion chamber 3 surface
An optical element 12 on the light emitting side that reflects laser light toward the other optical element 13 by 12a is disposed to face the optical element 12 with a predetermined gap therebetween, and is reflected by an optical surface 12a at the tip of the optical element 12. The optical surface 13a which receives the laser light thus incident and reflects the incident light toward the base end side of the ignition plug 5
And a light receiving side optical element 13 for guiding the laser light reflected by the optical surface 13a to the outside.

【0021】即ち、前記一対の光学素子12,13は、その
先端がそれぞれ燃焼室3内に臨み、かかる先端部が所定
間隙を有して対向配置され、それぞれの先端部に設けら
れた光学面12a,13aによって、レーザ源11で発光した
レーザ光を光学素子12,13の間隙空間(燃焼室内の空
間)に透過させた後、かかる透過光を外部に取り出すも
のである。
That is, the front ends of the pair of optical elements 12 and 13 face the combustion chamber 3, respectively, and the front ends are opposed to each other with a predetermined gap therebetween, and the optical surfaces provided at the respective front ends are provided. The laser light emitted from the laser source 11 is transmitted through the gap space (space in the combustion chamber) between the optical elements 12 and 13 by the laser beams 12a and 13a, and the transmitted light is extracted to the outside.

【0022】前記光学素子13を介して燃焼室3内から外
部に取り出されたレーザ光は、光電変換素子14に入射
し、この光電変換素子14によって、レーザ光の透過光強
度が検出される構成となっている。ここで、前記光学素
子12,13は、点火栓5の中心電極5aを中心にして対向
配置されており、かかる構成によって、前記一対の光学
素子12,13の間隙は、点火栓5における中心電極5aと
接地電極5bとで挟まれる火花間隙を横切るようになっ
ている。従って、光学素子12から光学素子13に向けて燃
焼室空間を透過するレーザ光は、前記火花間隙を横切っ
て進むことになる。
The laser light taken out of the combustion chamber 3 through the optical element 13 is incident on a photoelectric conversion element 14, and the transmitted light intensity of the laser light is detected by the photoelectric conversion element 14. It has become. Here, the optical elements 12 and 13 are opposed to each other with the center electrode 5a of the ignition plug 5 as a center. With this configuration, the gap between the pair of optical elements 12 and 13 is It crosses the spark gap sandwiched between 5a and the ground electrode 5b. Therefore, the laser light transmitted from the optical element 12 to the optical element 13 in the combustion chamber space travels across the spark gap.

【0023】尚、図2において、15は、レーザ源11が発
光したレーザ光を光学素子12側に反射させ、また、光学
素子13を介して取り出されたレーザ光を光電変換素子14
に向かって反射させるミラーやプリズムからなる光学部
品であり、上記のレーザ源11、光学素子12,13、光学部
品15、光電変換素子14によって本実施例の透過光強度検
出手段が構成される。
In FIG. 2, reference numeral 15 designates a laser beam emitted from the laser source 11 reflected by the optical element 12 and a laser beam extracted via the optical element 13 reflected by the photoelectric conversion element 14.
The laser source 11, the optical elements 12, 13, the optical component 15, and the photoelectric conversion element 14 constitute the transmitted light intensity detecting means of the present embodiment.

【0024】前記光学素子12,13の材料としては、石英
やサファイヤなどを用いることができるが、耐熱,耐圧
を考慮すると、サファイヤを用いることが好ましい。更
に、光学素子12,13の配置によって決定される燃焼室3
内におけるレーザ光の透過空間は、点火栓5の火花間隙
の近傍であることが好ましいが、レーザ光の光路が火花
間隙を横切る光学素子の配置に限定するものではなく、
また、点火栓5と別体に光学素子12,13を設ける構成で
あっても良い。
As the material of the optical elements 12 and 13, quartz or sapphire can be used, but sapphire is preferably used in consideration of heat resistance and pressure resistance. Further, the combustion chamber 3 determined by the arrangement of the optical elements 12 and 13
It is preferable that the transmission space of the laser light in the inside is in the vicinity of the spark gap of the ignition plug 5, but the optical path of the laser light is not limited to the arrangement of the optical element crossing the spark gap.
Further, a configuration in which the optical elements 12 and 13 are provided separately from the ignition plug 5 may be employed.

【0025】前記レーザ源11で発光させる光ビームとし
ては、使用するガソリン燃料が選択的に吸収する波長の
レーザ光を用いる。具体的には赤外光であり、本実施例
では、波長が赤外光領域に含まれる3.39μmのレーザ光
を用いている。機関1に使用されるガソリン燃料は、一
般的に、赤外光を選択的に吸収する性質があり、混合気
においては該混合気中におけるガソリン濃度に略比例し
て前記吸収量が増大する。即ち、入射光強度をIO 、ガ
ソリン濃度をC、吸収係数をKとすると、ガソリンによ
る赤外光の吸収量Iは、I=IO exp -KC として表すこ
とができる。
As a light beam emitted by the laser source 11, a laser beam having a wavelength selectively absorbed by gasoline fuel to be used is used. Specifically, the light is infrared light. In this embodiment, a laser light having a wavelength of 3.39 μm included in the infrared light region is used. The gasoline fuel used for the engine 1 generally has a property of selectively absorbing infrared light, and the amount of absorption in a mixture increases substantially in proportion to the gasoline concentration in the mixture. That is, assuming that the incident light intensity is I O , the gasoline concentration is C, and the absorption coefficient is K, the absorption amount I of infrared light by gasoline can be expressed as I = I O exp −KC .

【0026】従って、混合気に対して所定強度の赤外光
を照射し、ガソリンによって赤外光がどの程度吸収され
たかを検出できれば、混合気中のガソリン濃度、換言す
れば、混合気の空燃比を検出できることになる。ここ
で、本実施例では、前記一対の光学素子12,13は、燃焼
室3内の空間を間隙として対向配置され、かかる間隙を
レーザ光が通過し、最終的に光電変換素子14に入射する
構成であり、然も、レーザ光は点火栓5の火花間隙を横
切って進むから、前記火花間隙部に存在する混合気中の
ガソリン濃度に見合う量だけレーザ光が吸収され、かか
る吸収によって減衰したレーザ光が光電変換素子14に入
射することになる。
Therefore, if the mixture is irradiated with infrared light of a predetermined intensity and it is possible to detect how much the infrared light has been absorbed by the gasoline, the gasoline concentration in the mixture, in other words, the emptyness of the mixture, The fuel ratio can be detected. Here, in the present embodiment, the pair of optical elements 12 and 13 are opposed to each other with a space in the combustion chamber 3 as a gap, and the laser beam passes through the gap and finally enters the photoelectric conversion element 14. Since the laser light travels across the spark gap of the spark plug 5, the laser light is absorbed by an amount corresponding to the gasoline concentration in the air-fuel mixture present in the spark gap, and is attenuated by the absorption. The laser light enters the photoelectric conversion element 14.

【0027】また、レーザ光(赤外光)の吸収量がガソ
リン濃度に比例するということは、燃焼室内における圧
力(筒内圧)変化によっても吸収量が変化することにな
る。そこで、筒内圧によるキャリブレーション特性を予
め測定しておき(図6参照)、前記光電変換素子14の出
力と、筒内圧検出手段としての筒内圧センサ16で検出さ
れる筒内圧とをパラメータとする空燃比の演算特性(変
換マップ)を予め設定しておくことで、混合気が吸入さ
れる吸気行程から点火時期まで間において、点火栓5の
火花間隙周辺の空燃比を演算できることになる(図7参
照)。
The fact that the amount of absorption of laser light (infrared light) is proportional to the gasoline concentration means that the amount of absorption also changes due to a change in pressure (in-cylinder pressure) in the combustion chamber. Therefore, the calibration characteristic based on the in-cylinder pressure is measured in advance (see FIG. 6), and the output of the photoelectric conversion element 14 and the in-cylinder pressure detected by the in-cylinder pressure sensor 16 as the in-cylinder pressure detecting means are used as parameters. By setting the air-fuel ratio calculation characteristics (conversion map) in advance, the air-fuel ratio around the spark gap of the spark plug 5 can be calculated from the intake stroke in which the air-fuel mixture is sucked to the ignition timing (FIG. 7).

【0028】ここで、前記燃料噴射弁2による燃料噴射
は点火栓5を指向して行われるため、噴射された燃料が
直接的に点火栓5の電極部にかぶり、くすぶりや失火の
原因となることがないようにし、然も、点火栓5近傍の
空燃比を極力リッチにして着火性能を向上させることが
望まれる。しかしながら、燃焼室内には規則性のないガ
ス流動が形成され、また、筒内圧の影響もあって、燃料
噴霧の到達距離は一定でなく、燃料噴射弁2の設定噴射
圧が過大で到達距離が長過ぎると点火栓のかぶりが生
じ、また、設定噴射圧が過小で到達距離が短過ぎると、
点火栓5近傍に点火可能な空燃比の混合気を形成させる
ことができず、失火を発生させてしまう。
Here, since the fuel injection by the fuel injection valve 2 is directed toward the spark plug 5, the injected fuel directly covers the electrode portion of the spark plug 5 and causes smoldering and misfire. It is desired that the air-fuel ratio near the ignition plug 5 be made as rich as possible to improve the ignition performance. However, an irregular gas flow is formed in the combustion chamber, and also due to the influence of the in-cylinder pressure, the reaching distance of the fuel spray is not constant, and the setting injection pressure of the fuel injection valve 2 is excessive and the reaching distance is large. If it is too long, the ignition plug will fog, and if the set injection pressure is too small and the reach is too short,
An ignitable air-fuel mixture cannot be formed in the vicinity of the ignition plug 5, causing a misfire.

【0029】そこで、コントロールユニット10は、上記
構成によって点火栓5近傍の点火直前における空燃比を
検出し、該検出結果に基づいて点火栓5近傍の空燃比が
目標空燃比になるように圧力調整器9で調整される噴射
圧を制御するようになっている。そのため、コントロー
ルユニット10には、前記光電変換素子14の出力の他、筒
内圧センサ16,クランク角センサ17,エアフローメータ
18からの検出信号が入力され、前記光電変換素子14の出
力及び筒内圧センサ16の検出信号に基づいて空燃比を演
算すると共に、該演算結果に基づいて前記圧力調整器9
で調整される噴射圧を制御し、更に、かかる噴射圧制御
に伴って燃料噴射弁2に与える噴射パルス信号のパルス
幅を設定する。
Therefore, the control unit 10 detects the air-fuel ratio immediately before ignition in the vicinity of the ignition plug 5 by the above configuration, and adjusts the pressure based on the detection result so that the air-fuel ratio in the vicinity of the ignition plug 5 becomes the target air-fuel ratio. The injection pressure adjusted by the heater 9 is controlled. Therefore, in addition to the output of the photoelectric conversion element 14, the control unit 10 includes an in-cylinder pressure sensor 16, a crank angle sensor 17, and an air flow meter.
A detection signal is input from the sensor 18 and an air-fuel ratio is calculated based on an output of the photoelectric conversion element 14 and a detection signal of the in-cylinder pressure sensor 16.
Is controlled, and the pulse width of the injection pulse signal to be given to the fuel injection valve 2 in accordance with the injection pressure control is set.

【0030】次に、図8のフローチャートに従って前記
コントロールユニット10による空燃比検出及び噴射制御
の様子を詳細に説明する。尚、本実施例において、空燃
比演算手段,噴射圧制御手段,必要噴射量演算手段,噴
射時間演算手段,噴射制御手段としての機能は、前記図
8のフローチャートに示すように、コントロールユニッ
ト10がソフトウェア的に備えている。
Next, how the control unit 10 detects the air-fuel ratio and controls the injection will be described in detail with reference to the flowchart of FIG. In this embodiment, the functions of the air-fuel ratio calculation means, the injection pressure control means, the required injection amount calculation means, the injection time calculation means and the injection control means are performed by the control unit 10 as shown in the flowchart of FIG. Provided as software.

【0031】図8のフローチャートにおいて、S1では
クランク角センサ17からの回転信号に基づいて機関回転
数Neを算出し、S2ではエアフローメータ18で検出さ
れた吸入空気量を読み込む。そして、S3では、前記回
転,空気量(負荷)の情報に基づいて必要噴射量に対応
する基本噴射パルス幅(噴射時間)を、機関運転条件に
応じた基本噴射圧Poに調整された場合に対応して演算
する。
In the flowchart of FIG. 8, the engine speed Ne is calculated based on the rotation signal from the crank angle sensor 17 in S1, and the intake air amount detected by the air flow meter 18 is read in S2. Then, in S3, when the basic injection pulse width (injection time) corresponding to the required injection amount is adjusted to the basic injection pressure Po corresponding to the engine operating condition, based on the information of the rotation and the air amount (load). Calculate accordingly.

【0032】また、S4では、点火タイミングを、回転
と負荷の情報に基づいてマップから求める。次のS5で
は、予め機関回転数などの運転条件に応じて設定されて
いる基本噴射圧Poをセットし、前記圧力調整器9によ
って前記基本噴射圧Poに調整されるようにする。尚、
前記基本噴射圧Poは、詳細には、噴射圧と筒内圧との
目標差圧がであるが、以下では単に噴射圧として説明を
簡略化する。
At S4, the ignition timing is obtained from the map based on the information on the rotation and the load. In the next step S5, a basic injection pressure Po set in advance according to operating conditions such as the engine speed is set, and is adjusted to the basic injection pressure Po by the pressure regulator 9. still,
The basic injection pressure Po is, in detail, a target differential pressure between the injection pressure and the in-cylinder pressure. Hereinafter, the description will be simplified simply as the injection pressure.

【0033】そして、S6では、セットされている基本
噴射パルス幅(基本噴射圧Poに対応して演算された必
要噴射量に相当する噴射時間)に従って所定噴射タイミ
ングで燃料噴射弁2を開制御し、燃料噴射を行わせる。
S7では、前記S4で求められた点火時期に従って、レ
ーザ光の透過光強度と筒内圧センサ16で検出される筒内
圧に基づき演算される空燃比をサンプリングし、点火直
前における点火栓5近傍の空燃比Aoを得る。
In S6, the fuel injection valve 2 is controlled to open at a predetermined injection timing in accordance with the set basic injection pulse width (the injection time corresponding to the required injection amount calculated corresponding to the basic injection pressure Po). , And perform fuel injection.
In S7, the air-fuel ratio calculated based on the transmitted light intensity of the laser beam and the in-cylinder pressure detected by the in-cylinder pressure sensor 16 is sampled according to the ignition timing obtained in S4, and the air-fuel ratio near the ignition plug 5 immediately before ignition is sampled. The fuel ratio Ao is obtained.

【0034】S8では、前記空燃比Aoと、点火可能空
燃比のリーン限界値Amin とを比較する。そして、点火
直前における点火栓5近傍の空燃比Aoがリーン限界値
Amin よりもリーンであるときには、S9へ進んで、噴
射圧を所定値だけ増大設定させる補正を行う。尚、前記
噴射圧の補正制御においては、基本噴射圧Poの1/10
0 程度の圧力をステップ的に変化させると良い。
In step S8, the air-fuel ratio Ao is compared with a lean limit value Amin of the ignitable air-fuel ratio. When the air-fuel ratio Ao near the ignition plug 5 immediately before ignition is leaner than the lean limit value Amin, the process proceeds to S9, and a correction is made to increase the injection pressure by a predetermined value. In the injection pressure correction control, 1/10 of the basic injection pressure Po is used.
It is good to change the pressure of about 0 stepwise.

【0035】即ち、点火直前における点火栓5近傍の空
燃比が所期空燃比よりもリーンである場合には、噴射圧
が要求よりも低いために、要求通りに燃料噴霧が噴射弁
付近に到達していないものと推定できる。そこで、噴射
圧をより高める補正を行うことで、噴射弁2から噴射さ
れる燃料の到達距離を延ばして、点火直前における点火
栓5近傍の空燃比をよりリッチ化し、良好な着火が得ら
れる空燃比雰囲気で点火が行われるようにする。
That is, when the air-fuel ratio near the spark plug 5 immediately before ignition is leaner than the desired air-fuel ratio, the injection pressure is lower than required, and the fuel spray reaches the vicinity of the injection valve as required. It can be estimated that they did not. Therefore, by performing a correction that further increases the injection pressure, the reaching distance of the fuel injected from the injection valve 2 is extended, the air-fuel ratio near the ignition plug 5 immediately before ignition is further enriched, and the air that provides good ignition is obtained. The ignition is performed in the fuel ratio atmosphere.

【0036】一方、S8で点火直前における点火栓6近
傍の空燃比Aoがリーン限界値Amin よりもリッチであ
ると判別されたときには、S10へ進み、今度は前記空燃
比Aoと点火可能空燃比のリッチ限界値Amax とを比較
する。ここで、点火直前における点火栓5近傍の空燃比
Aoがリッチ限界値Amax よりもリッチであると判別さ
れたときには、S11へ進み、噴射圧を所定値だけ減少設
定させる補正を行う。
On the other hand, when it is determined in S8 that the air-fuel ratio Ao near the ignition plug 6 immediately before ignition is richer than the lean limit value Amin, the process proceeds to S10, and this time the air-fuel ratio Ao and the ignitable air-fuel ratio are compared. Compare with the rich limit value Amax. Here, when it is determined that the air-fuel ratio Ao in the vicinity of the ignition plug 5 immediately before ignition is richer than the rich limit value Amax, the process proceeds to S11, and a correction is made to reduce the injection pressure by a predetermined value.

【0037】即ち、点火栓5の雰囲気がリッチ限界値A
max を越えるリッチな雰囲気である場合には、燃料噴射
弁2から噴射される燃料の到達距離が長過ぎ、点火栓5
を燃料噴霧が直撃して濡れを生じさせるような状況であ
ると推定されるので、噴射圧を下げることで到達距離を
縮め、点火直前における点火栓5近傍の空燃比をリーン
化させる。
That is, when the atmosphere of the ignition plug 5 is the rich limit value A
In the case of a rich atmosphere exceeding max, the fuel injection distance from the fuel injection valve 2 is too long and the ignition plug 5
It is presumed that the fuel spray directly hits and causes wetting, so the injection distance is reduced by lowering the injection pressure, and the air-fuel ratio near the ignition plug 5 immediately before ignition is made lean.

【0038】S9又はS11で噴射圧の変更を行った場合
には、噴射パルス幅を噴射圧の変更に応じて補正しない
と所期の燃料を噴射させることができなくなるので、S
12で変更された噴射圧に応じて噴射パルス幅(噴射時
間)を補正する処理を施す。そして、S13では、前記S
9又はS11で変更された噴射圧P1 (目標差圧)を、前
記圧力調整器9における調整圧Poにセットする。
If the injection pressure is changed in S9 or S11, the desired fuel cannot be injected unless the injection pulse width is corrected according to the change in the injection pressure.
A process for correcting the injection pulse width (injection time) according to the injection pressure changed in 12 is performed. Then, in S13, the S
The injection pressure P 1 (target differential pressure) changed in 9 or S11 is set to the adjustment pressure Po in the pressure regulator 9.

【0039】一方、S8,S10における判別によって前
記空燃比Aoが、リーン限界値Amin とリッチ限界値A
max とで挟まれる要求空燃比(目標空燃比)範囲内であ
ると判別された場合には、噴射圧の補正が必要ないの
で、現状の噴射圧を維持すべくS9〜S13をジャンプし
てS14へ進む。ここで、上記実施例における噴射圧制御
の特性を図9に示してある。即ち、リーン限界値Amin
とリッチ限界値Amax とで挟まれる点火可能空燃比範囲
に、点火直前における点火栓近傍の空燃比が該当する場
合には、そのときの噴射圧を維持し、リーン限界値Ami
n を下回るリーン空燃比であるときには、制御範囲内
(Pmax 〜Pmin)で噴射圧を増大制御し、また、リッチ
限界値Amax を上回るリッチ空燃比であるときには、制
御範囲内(Pmax 〜Pmin)で噴射圧を減少制御する。
On the other hand, according to the discrimination in S8 and S10, the air-fuel ratio Ao is changed between the lean limit value Amin and the rich limit value A.
If it is determined that it is within the required air-fuel ratio (target air-fuel ratio) range sandwiched by max, it is not necessary to correct the injection pressure, so that S9 to S13 are jumped to maintain the current injection pressure, and S14 is performed. Proceed to. Here, the characteristics of the injection pressure control in the above embodiment are shown in FIG. That is, the lean limit value Amin
If the air-fuel ratio in the vicinity of the spark plug immediately before ignition falls within the range of the ignitable air-fuel ratio between the ignition limit and the rich limit value Amax, the injection pressure at that time is maintained, and the lean limit value Ami
When the lean air-fuel ratio is lower than n, the injection pressure is increased and controlled within the control range (Pmax-Pmin). Injection pressure is reduced.

【0040】S14では、運転条件(回転,負荷)が変化
したか否かを判別し、運転条件が一定で要求燃料量が一
定である場合には、S6へ戻り、点火直前における点火
栓5近傍の空燃比を要求範囲内に制御するための噴射圧
調整を再度行わせる。一方、運転条件が変化して要求燃
料量が変化する場合には、S1へ戻って、要求燃料量の
演算を行わせる。
In step S14, it is determined whether or not the operating conditions (rotation, load) have changed. If the operating conditions are constant and the required fuel amount is constant, the process returns to step S6, and the vicinity of the ignition plug 5 immediately before the ignition is started. The injection pressure adjustment for controlling the air-fuel ratio within the required range is performed again. On the other hand, if the required fuel amount changes due to a change in the operating conditions, the process returns to S1 to calculate the required fuel amount.

【0041】上記実施例によれば、点火直前における点
火栓5近傍の空燃比が、点火に最適な空燃比となるよう
に直噴式の燃料噴射弁2による噴射圧が調整されるか
ら、常に最適な空燃比条件の下に点火を行わせることが
できる。従って、希薄燃焼を行わせる場合であっても、
点火栓5近傍に指向させて燃料を噴射させることによっ
て、点火栓近傍に他よりも濃い空燃比の混合気を形成さ
せ、然も、点火栓のかぶりを回避しつつ濃い空燃比に安
定的に制御でき、希薄燃焼時に安定した着火性能が得ら
れる。
According to the above embodiment, the injection pressure of the direct injection type fuel injection valve 2 is adjusted so that the air-fuel ratio near the ignition plug 5 immediately before ignition becomes an air-fuel ratio optimum for ignition. Ignition can be performed under various air-fuel ratio conditions. Therefore, even when performing lean combustion,
By injecting fuel in the vicinity of the spark plug 5 and injecting fuel, an air-fuel mixture with a richer air-fuel ratio is formed near the spark plug, and stably at a rich air-fuel ratio while avoiding fogging of the spark plug. Controllable and stable ignition performance can be obtained during lean burn.

【0042】また、前記混合気の成層化によって、燃焼
室3内の点火栓5から遠い領域では空燃比が超希薄とな
り、ノッキングに至る自己発火反応が抑制されるため、
その結果として圧縮比を上げて、熱効率,出力の向上が
図れる。尚、空燃比の検出結果に基づいて設定される噴
射圧に基づく噴射圧調整は、燃料ポンプの駆動制御によ
って行わせても良く、噴射圧の調整方法を上記実施例の
圧力調整器9による方法に限定するものではない。
Further, by stratification of the air-fuel mixture, the air-fuel ratio becomes extremely lean in a region far from the ignition plug 5 in the combustion chamber 3 and the self-ignition reaction leading to knocking is suppressed.
As a result, the compression ratio can be increased, and the thermal efficiency and output can be improved. The injection pressure adjustment based on the injection pressure set based on the detection result of the air-fuel ratio may be performed by drive control of the fuel pump, and the method of adjusting the injection pressure is the method by the pressure regulator 9 of the above embodiment. It is not limited to.

【0043】また、上記実施例では、空燃比の検出結果
を噴射圧調整にのみ用いたが、前記レーザ光の透過光強
度による空燃比の検出結果に基づいて燃料噴射量にフィ
ードバック補正を施す構成としても良い。
In the above embodiment, the detection result of the air-fuel ratio is used only for adjusting the injection pressure. However, a configuration in which the fuel injection amount is subjected to feedback correction based on the detection result of the air-fuel ratio based on the transmitted light intensity of the laser light. It is good.

【0044】[0044]

【発明の効果】以上説明したように本発明によると、噴
孔を燃焼室内に臨ませた燃料噴射弁により点火栓近傍を
指向させて燃料噴射させる構成の直噴式火花点火機関に
おいて、点火栓近傍の燃焼室空間に透過させた光の透過
強度によって点火栓近傍の点火直前での空燃比を検出
し、該検出結果に基づいて点火直前の点火栓近傍の空燃
比が目標空燃比になるように、燃料噴射弁による噴射圧
を制御することで燃料噴霧の到達距離を制御するよう構
成したことにより、点火栓の燃料かぶりを回避しつつ、
点火直前における点火栓近傍の空燃比を高い着火性が得
られる空燃比に制御でき、特に希薄燃焼させるときの着
火性能を高めることができるという効果がある。
As described above, according to the present invention, in a direct injection type spark ignition engine having a fuel injection valve having an injection hole facing the combustion chamber, fuel is directed in the vicinity of the spark plug, and the fuel injection valve is located near the spark plug. air-fuel of the transmitted intensity of the light is transmitted through the combustion chamber space to detect the air-fuel ratio at the ignition immediately before the vicinity of the spark plug, in the vicinity of the spark plug ignition immediately before on the basis of the detection result
Injection pressure by the fuel injector so that the ratio becomes the target air-fuel ratio
Control the fuel spray distance by controlling
By doing so, while avoiding fuel fogging of the spark plug,
The air-fuel ratio in the vicinity of the spark plug immediately before ignition can be controlled to an air-fuel ratio at which a high ignitability can be obtained, and there is an effect that the ignition performance particularly when performing lean combustion can be enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の一実施例を示すシステム概略図。FIG. 2 is a system schematic diagram showing one embodiment of the present invention.

【図3】同上実施例における燃料噴霧の指向を示す図。FIG. 3 is a diagram showing the direction of fuel spray in the embodiment.

【図4】同上実施例における点火栓先端部の側面拡大
図。
FIG. 4 is an enlarged side view of the tip portion of the ignition plug in the embodiment.

【図5】同上実施例における点火栓先端部の底面拡大
図。
FIG. 5 is an enlarged bottom view of the tip of the spark plug in the embodiment.

【図6】透過光強度と筒内圧とに対応する空燃比を示す
線図。
FIG. 6 is a diagram showing an air-fuel ratio corresponding to transmitted light intensity and in-cylinder pressure.

【図7】クランク角に対する筒内圧及び透過光強度の変
化を示す線図。
FIG. 7 is a diagram showing changes in in-cylinder pressure and transmitted light intensity with respect to a crank angle.

【図8】同上実施例における噴射圧制御を示すフローチ
ャート。
FIG. 8 is a flowchart showing injection pressure control in the embodiment.

【図9】同上実施例における噴射圧制御の特性を示す線
図。
FIG. 9 is a diagram showing characteristics of injection pressure control in the embodiment.

【符号の説明】[Explanation of symbols]

1 直噴式火花点火機関 2 燃料噴射弁 3 燃焼室 4 吸気弁 5 点火栓 5a 中心電極 5b 接地電極 7 燃料タンク 8 燃料ポンプ 9 圧力調整器 10 コントロールユニット 11 レーザ源 12,13 光学素子 14 光電変換素子 16 筒内圧センサ 17 クランク角センサ 18 エアフローメータ DESCRIPTION OF SYMBOLS 1 Direct injection spark ignition engine 2 Fuel injection valve 3 Combustion chamber 4 Intake valve 5 Spark plug 5a Center electrode 5b Ground electrode 7 Fuel tank 8 Fuel pump 9 Pressure regulator 10 Control unit 11 Laser source 12, 13 Optical element 14 Photoelectric conversion element 16 Cylinder pressure sensor 17 Crank angle sensor 18 Air flow meter

フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 21/61 G01N 21/61 (56)参考文献 特開 平1−237435(JP,A) 特開 昭62−87638(JP,A) (58)調査した分野(Int.Cl.6,DB名) F02D 41/14 310 F02D 41/02 345 F02D 41/32 F02D 45/00 364 F02D 45/00 368 G01N 21/61 Continuation of the front page (51) Int.Cl. 6 identification symbol FI G01N 21/61 G01N 21/61 (56) References JP-A-1-237435 (JP, A) JP-A-62-87638 (JP, A) (58) Field surveyed (Int.Cl. 6 , DB name) F02D 41/14 310 F02D 41/02 345 F02D 41/32 F02D 45/00 364 F02D 45/00 368 G01N 21/61

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃料噴射弁の噴孔が燃焼室内に臨み、か
つ、前記噴孔が点火栓近傍を指向して配設された直噴式
火花点火機関であって、 前記点火栓近傍の燃焼室内に臨ませて発光側と受光側と
からなる一対の光学素子を所定間隙をもって対向配置
し、光源で発光した光を前記一対の光学素子を介して光
電変換素子に導く透過光強度検出手段と、 機関の筒内圧を検出する筒内圧検出手段と、 前記透過光強度検出手段における前記光電変換素子の出
力と前記筒内圧検出手段で検出された筒内圧とに基づい
て点火栓近傍の空燃比を演算する空燃比演算手段と、 該空燃比演算手段で演算される点火直前の空燃比が目標
空燃比になるように、前記燃料噴射弁における燃料噴射
圧を制御して燃料噴霧の到達距離を変化させる噴射圧制
御手段と、 を含んで構成されたことを特徴とする直噴式火花点火機
関。
1. A direct-injection spark ignition engine in which an injection hole of a fuel injection valve faces a combustion chamber, and wherein the injection hole is disposed so as to face a vicinity of a spark plug, wherein the combustion chamber is close to the spark plug. A pair of optical elements consisting of a light-emitting side and a light-receiving side facing each other are disposed facing each other with a predetermined gap, and transmitted light intensity detecting means for guiding light emitted by a light source to a photoelectric conversion element through the pair of optical elements, An in-cylinder pressure detecting means for detecting an in-cylinder pressure of the engine; and calculating an air-fuel ratio near the ignition plug based on an output of the photoelectric conversion element in the transmitted light intensity detecting means and an in-cylinder pressure detected by the in-cylinder pressure detecting means. air-fuel ratio calculating means and the target air-fuel ratio of the ignition immediately before is computed by the air-fuel ratio calculating means for
Fuel injection at the fuel injection valve so as to achieve an air-fuel ratio
A direct-injection spark ignition engine, comprising: an injection pressure control means for controlling a pressure to change a reaching distance of the fuel spray .
【請求項2】機関運転条件に基づいて必要燃料噴射量を
演算する必要噴射量演算手段と、 該必要噴射量演算手段で演算された必要燃料噴射量を噴
射するのに必要な噴射時間を前記噴射圧制御手段で制御
される燃料噴射圧に基づいて演算する噴射時間演算手段
と、 所定の噴射タイミングにおいて前記噴射圧制御手段で制
御される燃料噴射圧の下に前記噴射時間演算手段で演算
された噴射時間だけ前記燃料噴射弁を開制御する噴射制
御手段と、 を含んで構成されることを特徴とする請求項1記載の直
噴式火花点火機関。
2. A required fuel injection amount calculating means for calculating a required fuel injection amount based on engine operating conditions; and an injection time required for injecting the required fuel injection amount calculated by the required fuel injection amount calculating means. An injection time calculating means for calculating based on the fuel injection pressure controlled by the injection pressure control means; and a fuel injection pressure calculated by the injection time control means at a predetermined injection timing under the fuel injection pressure controlled by the injection pressure control means. The direct-injection spark ignition engine according to claim 1, further comprising: injection control means for opening and controlling the fuel injection valve for a predetermined injection time.
JP5080795A 1993-04-07 1993-04-07 Direct injection spark ignition engine Expired - Lifetime JP2917737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5080795A JP2917737B2 (en) 1993-04-07 1993-04-07 Direct injection spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5080795A JP2917737B2 (en) 1993-04-07 1993-04-07 Direct injection spark ignition engine

Publications (2)

Publication Number Publication Date
JPH06288282A JPH06288282A (en) 1994-10-11
JP2917737B2 true JP2917737B2 (en) 1999-07-12

Family

ID=13728399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5080795A Expired - Lifetime JP2917737B2 (en) 1993-04-07 1993-04-07 Direct injection spark ignition engine

Country Status (1)

Country Link
JP (1) JP2917737B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4250843B2 (en) * 2000-01-07 2009-04-08 トヨタ自動車株式会社 Fuel injection control device for internal combustion engine
JP4640169B2 (en) * 2005-12-28 2011-03-02 マツダ株式会社 Spark ignition direct injection engine
JP2007177743A (en) * 2005-12-28 2007-07-12 Mazda Motor Corp Spark-ignition direct-injection engine
JP4622853B2 (en) * 2005-12-28 2011-02-02 マツダ株式会社 Spark ignition direct injection engine

Also Published As

Publication number Publication date
JPH06288282A (en) 1994-10-11

Similar Documents

Publication Publication Date Title
KR100676947B1 (en) Fuel injection controller for internal combustion engine
US6354268B1 (en) Cylinder pressure based optimization control for compression ignition engines
CA1197303A (en) Method and apparatus for controlling fuel injection timing in a compression ignition engine
US6651617B2 (en) Method of controlling ignition timing of compression ignition engine of premixed mixture type
EP1183450B1 (en) Direct-injection spark ignition engine
US20020195086A1 (en) Cylinder pressure based optimization control for compression ignition engines
US5076237A (en) Means and method for measuring and controlling smoke from an internal combustion engine
US4753200A (en) Engine combustion control system
JP2002339789A (en) Control device for spark ignition type direct-injection engine and fuel injection time setting method
US5904127A (en) Method of controlling an adjustable operating parameter of an internal combustion engine with direct fuel injection
JP6206158B2 (en) Control system for spark ignition internal combustion engine
KR19990014156A (en) Control device of internal combustion engine which performs stratified combustion
JP2917737B2 (en) Direct injection spark ignition engine
JP3554167B2 (en) Control device for in-cylinder injection engine
JP3603341B2 (en) In-cylinder state detection device for internal combustion engine
JP2932887B2 (en) Air-fuel ratio detection device for internal combustion engine
JP2004360539A (en) Direct cylinder injection internal combustion engine
US20120111301A1 (en) Spark ignition internal combustion engine
JP2004300999A (en) Device and method for detecting engine combustion chamber environment, and engine control device
JP4294603B2 (en) Laser ignition device for internal combustion engine
JP2921325B2 (en) Fuel injection control device for internal combustion engine
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP3826294B2 (en) Premixed compression ignition internal combustion engine
JPH0996606A (en) Smoke-detecting apparatus and controlling apparatus for diesel engine using the smoke-detecting apparatus
JPH0742592A (en) Fuel injection quantity control device