JP6752042B2 - Fuel gas concentration measuring device for internal combustion engine - Google Patents

Fuel gas concentration measuring device for internal combustion engine Download PDF

Info

Publication number
JP6752042B2
JP6752042B2 JP2016080617A JP2016080617A JP6752042B2 JP 6752042 B2 JP6752042 B2 JP 6752042B2 JP 2016080617 A JP2016080617 A JP 2016080617A JP 2016080617 A JP2016080617 A JP 2016080617A JP 6752042 B2 JP6752042 B2 JP 6752042B2
Authority
JP
Japan
Prior art keywords
tip
optical element
ground electrode
light
gas concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016080617A
Other languages
Japanese (ja)
Other versions
JP2017191008A (en
Inventor
高伸 青地
高伸 青地
幸慈 小川
幸慈 小川
克彬 元澤
克彬 元澤
端無 憲
憲 端無
憲佳 坪田
憲佳 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016080617A priority Critical patent/JP6752042B2/en
Publication of JP2017191008A publication Critical patent/JP2017191008A/en
Application granted granted Critical
Publication of JP6752042B2 publication Critical patent/JP6752042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、内燃機関用燃料ガス濃度計測装置に関する。 The present invention relates to a fuel gas concentration measuring device for an internal combustion engine.

従来、内燃機関の筒内ガスの空燃比を検出するための装置として、内燃機関に取り付けられる点火プラグに、非分散赤外吸光法(すなわち、NDIR法)を利用したガスセンサを一体的に設けたものがある。例えば、特許文献1には、従来の一般的な量産型の点火プラグの構成にガスセンサを一体化した装置が開示されている。具体的には、まず、当該量産型の点火プラグは、プラグ軸方向に延びる棒状の中心電極と、該中心電極を内側に保持する筒状の絶縁碍子と、該絶縁碍子を内側に保持するハウジングと、該ハウジングの先端に形成されて中心電極の先端部に対向するように設けられた接地電極とを備える。そして、当該量産型の点火プラグにおいて、中心電極の内部に中心電極に沿ってサファイアからなる光学素子を設けるとともに、接地電極における光学素子の先端部に対向する位置に反射部を設け、さらに新たな接地電極を中心電極の先端部の側方に設けている。そして、光学素子は光源及び受光強度検出部に光学的に接続されている。かかる構成を有する特許文献1の装置では、光学素子の先端部から光を放射し、当該放射光を反射部によって光学素子の先端部に反射させて、当該反射光を検出することにより、当該先端部と反射部との間のガス濃度を検出して、混合気の空燃比を計測する。 Conventionally, as a device for detecting the air-fuel ratio of the gas in the cylinder of an internal combustion engine, a gas sensor using a non-dispersed infrared absorption method (that is, NDIR method) is integrally provided with a spark plug attached to the internal combustion engine. There is something. For example, Patent Document 1 discloses a device in which a gas sensor is integrated with a conventional general mass-produced spark plug configuration. Specifically, first, the mass-produced spark plug includes a rod-shaped center electrode extending in the plug axis direction, a tubular insulating insulator that holds the center electrode inside, and a housing that holds the insulating insulator inside. And a ground electrode formed at the tip of the housing and provided so as to face the tip of the center electrode. Then, in the mass-produced spark plug, an optical element made of sapphire is provided inside the center electrode along the center electrode, and a reflection portion is provided at a position facing the tip of the optical element in the ground electrode. A ground electrode is provided on the side of the tip of the center electrode. The optical element is optically connected to the light source and the light receiving intensity detecting unit. In the apparatus of Patent Document 1 having such a configuration, light is emitted from the tip of the optical element, the synchrotron radiation is reflected by the reflecting portion to the tip of the optical element, and the reflected light is detected to detect the tip. The air-fuel ratio of the air-fuel mixture is measured by detecting the gas concentration between the part and the reflective part.

特開2004−93282号公報Japanese Unexamined Patent Publication No. 2004-93282

しかしながら、特許文献1に開示の構成では、量産型の点火プラグにおける接地電極とは別に、新たな接地電極を中心電極の先端部の側方に設けている。そのため、中心電極と当該新たな接地電極との間に形成された放電部における気流の形成が、当該新たな接地電極とは別部材に設けられた反射部により阻害される。その結果、当該構成では、量産型の点火プラグの放電部における気流が再現されず、量産型の点火プラグにおける空燃比を正確に導き出すことができない。特に、直噴型の内燃機関では、混合気が成層化されており、混合気濃度に空間的分布があるため、わずかな空間位置の違いによっ混合気濃度が大きく異なる場合があることから、空燃比を正確に導き出すことが一層困難となっている。 However, in the configuration disclosed in Patent Document 1, a new ground electrode is provided on the side of the tip of the center electrode in addition to the ground electrode in the mass-produced spark plug. Therefore, the formation of the air flow in the discharge portion formed between the center electrode and the new ground electrode is hindered by the reflection portion provided in a member separate from the new ground electrode. As a result, in this configuration, the airflow in the discharge portion of the mass-produced spark plug is not reproduced, and the air-fuel ratio in the mass-produced spark plug cannot be accurately derived. In particular, in a direct injection type internal combustion engine, the air-fuel mixture is stratified and the air-fuel mixture concentration has a spatial distribution. Therefore, the air-fuel mixture concentration may differ significantly due to a slight difference in spatial position. It is becoming more difficult to accurately derive the air-fuel ratio.

さらに、特許文献1の構成では、中心電極は筒状の絶縁碍子の内側に保持されており、新たな接地電極が中心電極の先端部の側方に設けられている。したがって、中心電極と接地電極との間の放電部は絶縁碍子と近い位置に形成されることとなる。そのため、当該放電部に形成された初期火花が絶縁碍子によって冷却され易い。その結果、量産型の点火プラグに比べて着火性が劣るため、リーン燃焼させる内燃機関では混合気に着火できない場合があり、空燃比を正確に算出できない。 Further, in the configuration of Patent Document 1, the center electrode is held inside the tubular insulator, and a new ground electrode is provided on the side of the tip end portion of the center electrode. Therefore, the discharge portion between the center electrode and the ground electrode is formed at a position close to the insulating insulator. Therefore, the initial spark formed in the discharge portion is easily cooled by the insulating insulator. As a result, since the ignitability is inferior to that of the mass-produced spark plug, the internal combustion engine that burns lean may not be able to ignite the air-fuel mixture, and the air-fuel ratio cannot be calculated accurately.

本発明は、かかる背景に鑑みてなされたもので、空燃比を算出するために、内燃機関の筒内ガス濃度を正確に計測することができる内燃機関用燃料ガス濃度計測装置を提供しようとするものである。 The present invention has been made in view of this background, and an object of the present invention is to provide a fuel gas concentration measuring device for an internal combustion engine capable of accurately measuring the in-cylinder gas concentration of an internal combustion engine in order to calculate the air-fuel ratio. It is a thing.

本発明の一態様は、燃料の蒸気によって吸収されて強度が減衰する所定波長の光を出射する光源(10)と、
光の強度を検出する受光強度検出部(20)と、
中心電極(31)と、該中心電極を内側に保持する円筒形の絶縁碍子(37)と、接地電極(35)とを有するとともに、上記中心電極の先端部(32)と上記接地電極に備えられた接地電極チップ(36)との間に放電部(G)が形成された点火プラグ(30)と、
該点火プラグの中心線(30a)に沿うように上記中心電極の内部に設けられて上記光源及び上記受光強度検出部に光学的に接続され、上記光源の光をプラグ軸方向(Y)における先端側(Y1)の端部である光学素子端部(41)から出射するとともに、上記光学素子端部から入射した光を上記受光強度検出部に伝送する光学素子(40)と、
上記接地電極における上記光学素子端部と対向する位置に形成されて上記光学素子端部から出射された光を上記光学素子端部に向けて反射する反射部(50)と、
上記光学素子端部と上記反射部との間の空間であって、上記光学素子端部から出射されて上記反射部により反射される光が透過する被計測部(60)と、
を備え、該被計測部を透過して上記光学素子端部から入射した光の強度の減衰に基づいて燃料ガス濃度を計測するように構成されており、
上記絶縁碍子の先端部(371)は、上記中心電極の上記先端部よりもプラグ軸方向の基端側(Y2)に位置しており、
上記光学素子端部は、上記中心電極の上記先端部よりもプラグ軸方向の基端側に位置しているとともに、上記絶縁碍子の上記先端部よりもプラグ軸方向の先端側に位置しており、
上記接地電極チップ、上記接地電極において、上記光学素子端部をプラグ軸方向に投影してなる投影領域(S1)の外側に位置しているとともに、上記接地電極チップの少なくとも一部は、上記接地電極において、上記中心電極の上記先端部をプラグ軸方向に投影してなる投影領域(S2)の内側に位置している、内燃機関用燃料ガス濃度計測装置(1)にある。
One aspect of the present invention is a light source (10) that emits light having a predetermined wavelength that is absorbed by fuel vapor and whose intensity is attenuated.
The light receiving intensity detection unit (20) that detects the light intensity,
It has a center electrode (31) , a cylindrical insulating porcelain (37) that holds the center electrode inside, and a ground electrode (35), and is provided with a tip portion (32) of the center electrode and the ground electrode. A spark plug (30) in which a discharge portion (G) is formed between the ground electrode tip (36) and the ground electrode tip (36).
It is provided inside the center electrode so as to be along the center line (30a) of the spark plug, and is optically connected to the light source and the light receiving intensity detection unit, and the light of the light source is directed to the tip in the plug axial direction (Y). An optical element (40) that emits light from the optical element end (41), which is the end of the side (Y1), and transmits light incident from the optical element end to the light receiving intensity detection unit.
A reflecting portion (50) formed at a position facing the end of the optical element on the ground electrode and reflecting light emitted from the end of the optical element toward the end of the optical element.
A space to be measured (60), which is a space between the end of the optical element and the reflection portion, through which light emitted from the end of the optical element and reflected by the reflection portion is transmitted.
It is configured to measure the fuel gas concentration based on the attenuation of the intensity of the light incident from the end of the optical element that has passed through the measured portion.
The tip end portion (371) of the insulating insulator is located on the proximal end side (Y2) in the plug axial direction with respect to the tip end portion of the center electrode.
The end of the optical element is located closer to the base end in the plug axial direction than the tip of the center electrode, and is located closer to the tip of the insulating insulator in the plug axial direction than the tip of the insulator. ,
The ground electrode chip is located outside the projection region (S1) formed by projecting the end of the optical element in the plug axis direction in the ground electrode, and at least a part of the ground electrode chip is the above. The ground electrode is located in the fuel gas concentration measuring device (1) for an internal combustion engine , which is located inside a projection region (S2) formed by projecting the tip of the center electrode in the plug axis direction .

上記内燃機関用燃料ガス濃度計測装置においては、反射部と接地電極チップがいずれも接地電極に形成されて、一体的に構成されている。これにより、反射部とは別部材の接地電極を設ける必要がないため、放電部の気流形成が阻害されにくく、上記量産型の点火プラグの場合と同様の気流形成を再現できる。そのため、内燃機関の筒内ガス濃度を正確に計測することができ、空燃比を正確に導き出すことができる。これにより、直噴型の内燃機関において成層化された混合気においても、ガス濃度を正確に計測することができ、空燃比を正確に導き出すことが容易となる。 In the fuel gas concentration measuring device for an internal combustion engine, both the reflecting portion and the grounding electrode tip are formed on the grounding electrode and are integrally configured. As a result, since it is not necessary to provide a ground electrode of a member separate from the reflecting portion, the airflow formation of the discharge portion is less likely to be hindered, and the same airflow formation as in the case of the mass-produced spark plug can be reproduced. Therefore, the in-cylinder gas concentration of the internal combustion engine can be accurately measured, and the air-fuel ratio can be accurately derived. As a result, the gas concentration can be accurately measured even in the air-fuel mixture stratified in the direct injection type internal combustion engine, and the air-fuel ratio can be easily derived.

さらに、接地電極チップが、接地電極において、光学素子端部をプラグ軸方向に投影してなる投影領域の外側に位置している。これにより、接地電極チップにより、光学素子端部から出射された光が被計測部を進行するのを妨げられることが防止される。その結果、被計測部におけるガス濃度を一層正確に計測することができ、空燃比を一層正確に導き出すことができる。 Further, the ground electrode chip is located on the ground electrode outside the projection region formed by projecting the end of the optical element in the plug axis direction. This prevents the ground electrode chip from preventing the light emitted from the end of the optical element from traveling through the unit to be measured. As a result, the gas concentration in the unit to be measured can be measured more accurately, and the air-fuel ratio can be derived more accurately.

さらに、放電部が量産型の点火プラグと略同様の位置に形成されるため、量産型の点火プラグの場合に比べて初期火花が絶縁碍子によって冷却され易いということもない。その結果、量産型の点火プラグと同等の着火性が得られ、量産型の点火プラグにおける空燃比を再現することができる。 Further, since the discharge portion is formed at a position substantially the same as that of the mass-produced spark plug, the initial spark is not easily cooled by the insulating insulator as compared with the case of the mass-produced spark plug. As a result, ignitability equivalent to that of a mass-produced spark plug can be obtained, and the air-fuel ratio of the mass-produced spark plug can be reproduced.

以上のごとく、本発明によれば、空燃比を正確に導き出すために、内燃機関の筒内ガス濃度を正確に計測することができる内燃機関用燃料ガス濃度計測装置を提供することができる。 As described above, according to the present invention, in order to accurately derive the air-fuel ratio, it is possible to provide a fuel gas concentration measuring device for an internal combustion engine that can accurately measure the in-cylinder gas concentration of the internal combustion engine.

なお、特許請求の範囲及び課題を解決する手段に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本発明の技術的範囲を限定するものではない。 The reference numerals in parentheses described in the scope of claims and the means for solving the problem indicate the correspondence with the specific means described in the embodiments described later, and limit the technical scope of the present invention. It's not a thing.

実施形態1における、内燃機関用燃料ガス濃度計測装置の構成を表す模式図。The schematic diagram which shows the structure of the fuel gas concentration measuring apparatus for an internal combustion engine in Embodiment 1. FIG. 実施形態1における、点火プラグの断面模式図。FIG. 6 is a schematic cross-sectional view of the spark plug according to the first embodiment. 図2における、放電部及びその周囲の一部拡大図。FIG. 2 is a partially enlarged view of the discharge section and its surroundings. 図3における、放電部及びその周囲の斜視図。FIG. 3 is a perspective view of the discharge portion and its surroundings. 実施形態1の変形形態1における、放電部及びその周囲の断面一部拡大図。FIG. 3 is an enlarged view of a part of a cross section of the discharged portion and its surroundings in the modified form 1 of the first embodiment. 実施形態1の変形形態2における、放電部及びその周囲の断面一部拡大図。FIG. 2 is an enlarged view of a part of a cross section of the discharged portion and its surroundings in the modified form 2 of the first embodiment. 実施形態2における、放電部及びその周囲の断面一部拡大図。FIG. 2 is an enlarged view of a part of a cross section of the discharged portion and its surroundings in the second embodiment.

(実施形態1)
内燃機関用燃料ガス濃度計測装置の実施形態について、図1〜図4を用いて説明する。
本実施形態の内燃機関用燃料ガス濃度計測装置1(以下、ガス濃度計測装置1ともいう)は、図1に示すように、光源10、受光強度検出部20、点火プラグ30、光学素子40、反射部50、被計測部60を備えている。
光源10は、燃料の蒸気によって吸収されて強度が減衰する所定波長の光を出射する。
受光強度検出部20は、光の強度を検出する。
図2に示すように、点火プラグ30は、中心電極31と接地電極35とを有するとともに、中心電極31の先端部32と接地電極35に備えられた接地電極チップ36との間に放電部Gが形成されている。
(Embodiment 1)
An embodiment of the fuel gas concentration measuring device for an internal combustion engine will be described with reference to FIGS. 1 to 4.
As shown in FIG. 1, the fuel gas concentration measuring device 1 for an internal combustion engine (hereinafter, also referred to as a gas concentration measuring device 1) of the present embodiment includes a light source 10, a light receiving intensity detecting unit 20, a spark plug 30, and an optical element 40. It includes a reflection unit 50 and a measurement unit 60.
The light source 10 emits light having a predetermined wavelength that is absorbed by the vapor of the fuel and whose intensity is attenuated.
The light receiving intensity detecting unit 20 detects the intensity of light.
As shown in FIG. 2, the spark plug 30 has a center electrode 31 and a ground electrode 35, and a discharge portion G is provided between the tip portion 32 of the center electrode 31 and the ground electrode tip 36 provided on the ground electrode 35. Is formed.

図1、図2に示すように、光学素子40は、点火プラグ30の中心線30aに沿うように中心電極31の内部に設けられて光源10及び受光強度検出部20に光学的に接続され、光源10の光をプラグ軸方向Yにおける先端側Y1の端部である光学素子端部41から出射するとともに、光学素子端部41から入射した光を受光強度検出部20に伝送する。
図2、図3に示すように、反射部50は、接地電極35における光学素子端部41と対向する位置に形成されて光学素子端部41から出射された光を光学素子端部41に向けて反射する。
As shown in FIGS. 1 and 2, the optical element 40 is provided inside the center electrode 31 along the center line 30a of the spark plug 30, and is optically connected to the light source 10 and the light receiving intensity detecting unit 20. The light of the light source 10 is emitted from the optical element end 41, which is the end of the tip side Y1 in the plug axial direction Y, and the light incident from the optical element end 41 is transmitted to the light receiving intensity detection unit 20.
As shown in FIGS. 2 and 3, the reflection portion 50 is formed at a position of the ground electrode 35 facing the optical element end portion 41, and directs the light emitted from the optical element end portion 41 toward the optical element end portion 41. Reflects.

図3に示すように、被計測部60は、光学素子端部41と反射部50との間の空間であって、光学素子端部41から出射されて反射部50により反射される光が透過する。
そして、ガス濃度計測装置1は被計測部60を透過して光学素子端部41から入射した光の強度の減衰に基づいて燃料ガス濃度を計測するように構成されている。
接地電極チップ36が、接地電極35において、光学素子端部41をプラグ軸方向Yに投影してなる投影領域S1の外側に位置している。
As shown in FIG. 3, the measured portion 60 is a space between the optical element end portion 41 and the reflecting portion 50, and the light emitted from the optical element end portion 41 and reflected by the reflecting portion 50 is transmitted. To do.
The gas concentration measuring device 1 is configured to measure the fuel gas concentration based on the attenuation of the intensity of the light transmitted from the measured unit 60 and incident from the optical element end 41.
The ground electrode tip 36 is located on the ground electrode 35 outside the projection region S1 formed by projecting the end portion 41 of the optical element in the plug axial direction Y.

なお、図1に示すように、ガス濃度計測装置1において、燃焼室101へ挿入される側を先端側Y1、その反対側を基端側Y2とする。また、本明細書において、プラグ軸方向Yとは、図2に示すように、点火プラグ30の中心30aに平行な方向を意味する。 As shown in FIG. 1, in the gas concentration measuring device 1, the side inserted into the combustion chamber 101 is the tip side Y1, and the opposite side is the base end side Y2. Further, in the present specification, the plug axial direction Y means a direction parallel to the center line 30a of the spark plug 30, as shown in FIG.

以下、本実施形態のガス濃度計測装置1について、詳述する。
図1に示すように、本実施形態にでは、ガス濃度計測装置1は、直噴型の内燃機関100の燃焼室101に取り付けられている。
ガス濃度計測装置1は、燃焼室101内の混合気に点火するための点火プラグ30を含んでいる。点火プラグ30は、図2に示すように、略棒状の中心電極31と、中心電極31を内側に保持する筒状の絶縁碍子37と、絶縁碍子37を内側に保持する筒状のハウジング38を備える。そして、ハウジング38におけるプラグ軸方向Yの先端側Y1の端部381に接地電極35が突出形成されている。ハウジング38及び接地電極35の形成材料は、例えば、インコネル、SUS316とすることができる。
Hereinafter, the gas concentration measuring device 1 of the present embodiment will be described in detail.
As shown in FIG. 1, in the present embodiment, the gas concentration measuring device 1 is attached to the combustion chamber 101 of the direct injection type internal combustion engine 100.
The gas concentration measuring device 1 includes a spark plug 30 for igniting the air-fuel mixture in the combustion chamber 101. As shown in FIG. 2, the spark plug 30 includes a substantially rod-shaped center electrode 31, a tubular insulating insulator 37 that holds the center electrode 31 inside, and a tubular housing 38 that holds the insulating insulator 37 inside. Be prepared. A ground electrode 35 is formed so as to project from the end 381 of the tip side Y1 in the plug axial direction Y of the housing 38. The material for forming the housing 38 and the ground electrode 35 can be, for example, Inconel or SUS316.

図2、図3に示すように、絶縁碍子37におけるプラグ軸方向Yの先端側Y1の先端部371は、ハウジング38の先端側Y1の端部381よりも先端側Y1に位置している。また、中心電極31の先端部32は、絶縁碍子37の先端部371よりも先端側Y1に位置している。中心電極31の形成材料は、後述の光学素子40の形成材料が有する熱膨張係数と近い熱膨張係数を有する金属材料からなることが好ましい。両者をメタライズして接合することが容易となるからである。本実施形態では、中心電極31はコバールからなる。 As shown in FIGS. 2 and 3, the tip portion 371 of the tip side Y1 of the insulating insulator 37 in the plug axial direction Y is located closer to the tip side Y1 than the end portion 381 of the tip side Y1 of the housing 38. Further, the tip portion 32 of the center electrode 31 is located on the tip side Y1 of the tip portion 371 of the insulating insulator 37. The material for forming the center electrode 31 is preferably a metal material having a coefficient of thermal expansion close to that of the material for forming the optical element 40 described later. This is because it becomes easy to metallize and join the two. In this embodiment, the center electrode 31 is made of Kovar.

そして、本実施形態において、点火プラグ30における中心電極31、接地電極35、絶縁碍子37、ハウジング38の配置は、従来の量産型の点火プラグの場合と同等となっている。 In the present embodiment, the arrangement of the center electrode 31, the ground electrode 35, the insulating insulator 37, and the housing 38 in the spark plug 30 is the same as that in the case of the conventional mass-produced spark plug.

さらに、本実施形態の点火プラグ30には、図2、図3に示すように、光学素子40が設けられている。光学素子40は、点火プラグ30の中心30aに沿って中心電極31の内部に位置している。光学素子40は赤外領域の波長の光の吸収率が低い材料からなることが好ましく、本実施形態では、サファイアからなる。本例では、光学素子40の先端側Y1の端部である光学素子端部41は、プラグ軸方向Yにおいて、中心電極31の先端部32と同じ位置に位置している。すなわち、光学素子端部41と先端部32とが面一となっている。 Further, as shown in FIGS. 2 and 3, the spark plug 30 of the present embodiment is provided with an optical element 40. The optical element 40 is located inside the center electrode 31 along the center line 30a of the spark plug 30. The optical element 40 is preferably made of a material having a low absorption rate of light having a wavelength in the infrared region, and in the present embodiment, is made of sapphire. In this example, the optical element end 41, which is the end of the optical element 40 on the tip side Y1, is located at the same position as the tip 32 of the center electrode 31 in the plug axial direction Y. That is, the end portion 41 of the optical element and the tip portion 32 are flush with each other.

図1に示すように、光学素子40のプラグ軸方向Yの基端側Y2の端部である基端部42には、光ファイバ11が接続されている。光ファイバ11の一端11aは光学素子40の基端部42に接続され、光ファイバ11の他端11bは二股に分かれて第1端部111が光源10に接続され、第2端部112が受光強度検出部20に接続されている。これにより、光源10から放射された光は、光ファイバ11の第1端部111から、光ファイバ11に入射して光ファイバ11を伝播して、一端11aから光学素子40の基端部42に入射する。光学素子40の基端部42から入射した光は、図3において符号F1で示すように、光学素子40の光学素子端部41から出射される。 As shown in FIG. 1, the optical fiber 11 is connected to the base end portion 42, which is the end portion of the base end side Y2 in the plug axial direction Y of the optical element 40. One end 11a of the optical fiber 11 is connected to the base end 42 of the optical element 40, the other end 11b of the optical fiber 11 is bifurcated, the first end 111 is connected to the light source 10, and the second end 112 receives light. It is connected to the intensity detection unit 20. As a result, the light radiated from the light source 10 enters the optical fiber 11 from the first end 111 of the optical fiber 11 and propagates through the optical fiber 11, and from one end 11a to the base end 42 of the optical element 40. Incident. The light incident from the base end portion 42 of the optical element 40 is emitted from the optical element end portion 41 of the optical element 40 as shown by reference numeral F1 in FIG.

光源10は、燃料の蒸気に吸収されて強度が減衰する特定の波長の光を出射するように構成されている。例えば、光源10として、波長が1.3〜1.4μm、3.39μm、4.3μm等の赤外線レーザ光を出射することができるものを採用することができる。本例では、光源10として、出射光の波長が可変であるものを採用し、測定対象となる燃料ガスの成分に応じて、出射光の波長を変更して使用している。 The light source 10 is configured to emit light having a specific wavelength that is absorbed by the vapor of the fuel and whose intensity is attenuated. For example, as the light source 10, a light source capable of emitting infrared laser light having a wavelength of 1.3 to 1.4 μm, 3.39 μm, 4.3 μm or the like can be adopted. In this example, as the light source 10, a light source in which the wavelength of the emitted light is variable is adopted, and the wavelength of the emitted light is changed and used according to the component of the fuel gas to be measured.

点火プラグ30に設けられる接地電極35は、図2、図3に示すように、中心電極31の先端側Y1の先端部32と所定間隔をおいて対向するように屈曲された屈曲部351を有している。そして、図3、図4に示すように、屈曲部351において、光学素子端部41に対向する領域S0に、光学素子端部41から放射される光を光学素子端部41に向けて反射する反射部50が形成されている。 As shown in FIGS. 2 and 3, the ground electrode 35 provided in the spark plug 30 has a bent portion 351 bent so as to face the tip portion 32 of the tip side Y1 of the center electrode 31 at a predetermined interval. doing. Then, as shown in FIGS. 3 and 4, in the bent portion 351, the light radiated from the optical element end portion 41 is reflected toward the optical element end portion 41 in the region S0 facing the optical element end portion 41. The reflective portion 50 is formed.

屈曲部351において、反射部50は、投影領域S1を内包して投影領域S1よりも広い領域に形成されていることが好ましい。本例では、図3に示すように、反射部50は、屈曲部351において、投影領域S1及び中心電極31の先端部32に対向する投影領域S2を含んだ領域S0に形成されている。反射部50は、例えば、領域S0に鏡面処理を施したり、領域S0に反射率の高い金属皮膜を形成したりすることにより形成することができる。そして、光学素子端部41と反射部50との間に被計測部60が形成される。後述するように、被計測部60に存在する混合気における燃料ガス濃度が計測されることとなる。 In the bent portion 351, the reflecting portion 50 preferably includes the projection region S1 and is formed in a region wider than the projection region S1. In this example, as shown in FIG. 3, the reflection portion 50 is formed in the bending portion 351 in a region S0 including a projection region S1 and a projection region S2 facing the tip end portion 32 of the center electrode 31. The reflecting portion 50 can be formed, for example, by subjecting the region S0 to a mirror surface treatment or forming a metal film having a high reflectance in the region S0. Then, the measured portion 60 is formed between the optical element end portion 41 and the reflecting portion 50. As will be described later, the fuel gas concentration in the air-fuel mixture existing in the unit to be measured 60 will be measured.

図3、図4に示すように、接地電極35には、屈曲部351に接地電極チップ36が形成されている。接地電極チップ36は、中心電極31の先端部32との間に放電部Gを形成している。すなわち、点火プラグ30は、中心電極31の先端部32と接地電極チップ36との間に火花放電を発生させて、周囲の燃料ガスを着火するように構成されている。接地電極チップ36は、例えば、イリジウム、白金等の合金からなる。接地電極チップ36は、接地電極35において、光学素子端部41をプラグ軸方向Yに投影してなる投影領域S1の外側に位置している。さらに、本例では、図3に示すように、接地電極チップ36の少なくとも一部が、接地電極35において、中心電極31の先端部32をプラグ軸方Yに投影してなる投影領域S2に位置している。 As shown in FIGS. 3 and 4, the ground electrode 35 is formed with a ground electrode tip 36 at the bent portion 351. The ground electrode tip 36 forms a discharge portion G with the tip portion 32 of the center electrode 31. That is, the spark plug 30 is configured to generate a spark discharge between the tip 32 of the center electrode 31 and the ground electrode tip 36 to ignite the surrounding fuel gas. The ground electrode tip 36 is made of, for example, an alloy such as iridium or platinum. The ground electrode tip 36 is located on the ground electrode 35 outside the projection region S1 formed by projecting the end 41 of the optical element in the plug axial direction Y. Further, in this example, as shown in FIG. 3, at least a part of the ground electrode tip 36 is located in the projection region S2 formed by projecting the tip portion 32 of the center electrode 31 toward the plug axis Y in the ground electrode 35. doing.

図3に示すように、光学素子端部41から放射された光F1は、被計測部60を通過して反射部50に到達し、当該反射部50によって光学素子端部41に向けて反射される。当該反射光F2は、被計測部60を通過して、光学素子端部41から光学素子40に入射する。光学素子端部41から放射された光F1及び反射光F2は、被計測部60を通過する際に被計測部60に存在する燃料ガスによってその一部が吸収されることとなる。そして、光学素子端部41から入射した光は、光学素子40の基端部42から光ファイバ11を介して第2端部112に接続された受光強度検出部20に伝播され、その強度が検出される。そして、図1に示すように、受光強度検出部20に接続されたガス濃度演算手段21により、当該光の強度に基づいてガス濃度が算出される。 As shown in FIG. 3, the light F1 radiated from the optical element end 41 passes through the measured unit 60, reaches the reflective unit 50, and is reflected by the reflective unit 50 toward the optical element end 41. To. The reflected light F2 passes through the unit to be measured 60 and is incident on the optical element 40 from the end portion 41 of the optical element. A part of the light F1 and the reflected light F2 radiated from the end portion 41 of the optical element is absorbed by the fuel gas existing in the measured unit 60 when passing through the measured unit 60. Then, the light incident from the end portion 41 of the optical element is propagated from the base end portion 42 of the optical element 40 to the light receiving intensity detection unit 20 connected to the second end portion 112 via the optical fiber 11, and the intensity is detected. Will be done. Then, as shown in FIG. 1, the gas concentration calculating means 21 connected to the light receiving intensity detecting unit 20 calculates the gas concentration based on the intensity of the light.

次に、本実施形態のガス濃度計測装置1における作用効果について、詳述する。
本例のガス濃度計測装置1によれば、反射部50と接地電極チップ36がいずれも接地電極35に形成されて、一体的に構成されている。これにより、反射部50とは別部材の接地電極を設ける必要がないため、放電部Gの気流形成が阻害されにくく、従来の量産型の点火プラグの場合と同様の気流形成を再現できる。そのため、内燃機関100の燃焼室101内のガス濃度を正確に計測することができ、空燃比を正確に導き出すことができる。これにより、本実施形態のように、直噴型の内燃機関100において成層化された混合気においても、ガス濃度を正確に計測することができ、空燃比を正確に導き出すことができる。
Next, the action and effect of the gas concentration measuring device 1 of the present embodiment will be described in detail.
According to the gas concentration measuring device 1 of this example, both the reflecting portion 50 and the ground electrode tip 36 are formed on the ground electrode 35 and are integrally formed. As a result, since it is not necessary to provide a ground electrode that is a separate member from the reflecting portion 50, the airflow formation of the discharge portion G is less likely to be hindered, and the same airflow formation as in the case of the conventional mass-produced spark plug can be reproduced. Therefore, the gas concentration in the combustion chamber 101 of the internal combustion engine 100 can be accurately measured, and the air-fuel ratio can be accurately derived. As a result, the gas concentration can be accurately measured and the air-fuel ratio can be accurately derived even in the air-fuel mixture stratified in the direct injection type internal combustion engine 100 as in the present embodiment.

さらに、接地電極チップ36が、接地電極35において、光学素子端部41をプラグ軸方向Yに投影してなる投影領域S1の外側に位置している。これにより、接地電極チップ36により、光学素子端部41から出射された光F1が被計測部60を進行するのを妨げられることが防止される。その結果、被計測部60におけるガス濃度を一層正確に計測することができ、空燃比を一層正確に導き出すことができる。 Further, the ground electrode chip 36 is located on the ground electrode 35 outside the projection region S1 formed by projecting the optical element end 41 in the plug axial direction Y. As a result, the ground electrode chip 36 prevents the light F1 emitted from the end portion 41 of the optical element from being prevented from traveling through the unit to be measured 60. As a result, the gas concentration in the unit to be measured 60 can be measured more accurately, and the air-fuel ratio can be derived more accurately.

さらに、放電部Gが量産型の点火プラグと略同様の位置に形成されるため、量産型の点火プラグの場合に比べて初期火花が絶縁碍子37によって冷却され易いということもない。その結果、量産型の点火プラグと同等の着火性が得られ、量産型の点火プラグにおける空燃比を再現することができる。 Further, since the discharge portion G is formed at a position substantially the same as that of the mass-produced spark plug, the initial spark is not easily cooled by the insulating insulator 37 as compared with the case of the mass-produced spark plug. As a result, ignitability equivalent to that of a mass-produced spark plug can be obtained, and the air-fuel ratio of the mass-produced spark plug can be reproduced.

また、本実施形態では、接地電極チップ36の少なくとも一部が、接地電極35において、中心電極31の先端部32をプラグ軸方向Yに投影してなる投影領域S2の内側に位置している。これにより、接地電極チップ36が中心電極31の先端部32に近接して配置されることとなるため、放電部Gにおける火花放電の発生を促すことができる。 Further, in the present embodiment, at least a part of the ground electrode tip 36 is located inside the projection region S2 formed by projecting the tip portion 32 of the center electrode 31 in the plug axial direction Y on the ground electrode 35. As a result, the ground electrode tip 36 is arranged close to the tip portion 32 of the center electrode 31, so that the generation of spark discharge in the discharge portion G can be promoted.

なお、本実施形態では、接地電極35の屈曲部351の先端部に接地電極チップ36を取り付けたが、これに替えて、図5に示す変形形態1のように、屈曲部351の先端部をプラグ軸方向Yの基端側Y2に屈曲させて、当該先端屈曲部を接地電極チップ360としてもよい。この場合においても、本実施形態と同等の作用効果を奏する。 In the present embodiment, the ground electrode tip 36 is attached to the tip of the bent portion 351 of the ground electrode 35, but instead of this, the tip of the bent portion 351 is attached as in the modified form 1 shown in FIG. It may be bent to the base end side Y2 in the plug axial direction Y, and the tip bent portion may be used as the ground electrode tip 360. Even in this case, the same effect as that of the present embodiment is obtained.

なお、本実施形態では、接地電極チップ36は一つ備えられていることとしたが、これに限定されず、複数備えられていてもよい。例えば、図6に示す変形形態2のように、接地電極チップ36が2個備えられていてもよい。当該変形形態では、光学素子端部41を投影してなる投影領域S1を挟むように接地電極チップ36が設けられている。そして、両接地電極チップ36は中心電極31の先端部32との距離が同一となるように配置されている。放電部Gにおける放電はいずれかの接地電極チップ36との間で生じるが、両接地電極チップ36は中心電極31の先端部32との距離が同一のため、放電が一方に偏りにくくなっている。これにより、放電によって光学素子端部41における放電部Gに近接する部分に生じる損傷を分散させて、光学素子端部41の損傷が局所的に大きくなることを抑制することができる。これにより、当該ガス濃度計測装置1の長寿命化に寄与する。 In the present embodiment, one ground electrode chip 36 is provided, but the present invention is not limited to this, and a plurality of ground electrode chips 36 may be provided. For example, as in the modified form 2 shown in FIG. 6, two ground electrode chips 36 may be provided. In this modified form, the ground electrode tip 36 is provided so as to sandwich the projection region S1 formed by projecting the end portion 41 of the optical element. The ground electrode tips 36 are arranged so that the distances from the tip 32 of the center electrode 31 are the same. Although occurring between the ground electrode tip 36 of the discharge Yes Zureka in the discharge section G, both the ground electrode tip 36 is the distance between the tip 32 of the center electrode 31 is the same, discharge is less likely to bias in one .. As a result, it is possible to disperse the damage caused by the electric discharge in the portion of the optical element end portion 41 close to the discharge portion G, and to prevent the damage to the optical element end portion 41 from becoming locally large. This contributes to extending the life of the gas concentration measuring device 1.

以上のごとく、本実施形態によれば、空燃比を正確に導き出すために、内燃機関の筒内ガス濃度を正確に計測することができるガス濃度計測装置1を提供することができる。 As described above, according to the present embodiment, in order to accurately derive the air-fuel ratio, it is possible to provide the gas concentration measuring device 1 capable of accurately measuring the in-cylinder gas concentration of the internal combustion engine.

(実施形態2)
実施形態1のガス濃度計測装置1では、図3に示すように、光学素子端部41と中心電極31の先端部32とが面一となっていることとしたが、これに替えて、本実施形態のガス濃度計測装置1では、図7に示すように、光学素子端部41は、中心電極31の先端部32よりも基端側Y2に位置している。本実施形態では、プラグ軸方向Yにおける中心電極31の先端部32と光学素子端部41との距離、すなわち、凹み量Pは、例えば、1.0mmとすることができる。
なお、本実施形態において、実施形態1と同等の構成には同一の符号を付してその説明を省略する。
(Embodiment 2)
In the gas concentration measuring device 1 of the first embodiment, as shown in FIG. 3, it is assumed that the end portion 41 of the optical element and the tip portion 32 of the center electrode 31 are flush with each other. In the gas concentration measuring device 1 of the embodiment, as shown in FIG. 7, the optical element end portion 41 is located on the proximal end side Y2 of the tip end portion 32 of the center electrode 31. In the present embodiment, the distance between the tip portion 32 of the center electrode 31 and the end portion 41 of the optical element in the plug axial direction Y, that is, the dent amount P can be set to 1.0 mm, for example.
In the present embodiment, the same reference numerals are given to the configurations equivalent to those in the first embodiment, and the description thereof will be omitted.

本実施形態のガス濃度計測装置1では、光学素子端部41が中心電極31の先端部32よりも基端側Y2に位置していることにより、光学素子端部41が放電部Gから離隔することとなる。これにより、放電部Gにおいて発生する火花放電により光学素子端部41が損傷を受けることが抑制され、被計測部を通過した光の強度を正確に検出することができる。 In the gas concentration measuring device 1 of the present embodiment, the optical element end portion 41 is located on the proximal end side Y2 of the central electrode 31 from the distal end portion 32, so that the optical element end portion 41 is separated from the discharge portion G. It will be. As a result, it is possible to prevent the end portion 41 of the optical element from being damaged by the spark discharge generated in the discharge unit G, and to accurately detect the intensity of the light that has passed through the unit to be measured.

さらに、本実施形態のガス濃度計測装置1では、図7に示すように、点火プラグ30は、中心電極31を内側に保持する円筒形の絶縁碍子37を備えており、絶縁碍子37の先端部371は中心電極31の先端部32よりも基端側Y2に位置しており、光学素子端部41は絶縁碍子37の上記先端部371よりも先端側Y1に位置している。これにより、光学素子端部41が放電部Gから所定範囲で離隔するため、上述の如く、放電部Gにおいて発生する火花放電により光学素子端部41が損傷を受けることが抑制されるとともに、光学素子端部41が放電部Gから離隔しすぎないため、放電部Gにおける気流のガス濃度を一層正確に測定することができる。なお、本実施形態においても、実施形態1の作用効果を奏する。 Further, in the gas concentration measuring device 1 of the present embodiment, as shown in FIG. 7, the spark plug 30 includes a cylindrical insulating insulator 37 that holds the center electrode 31 inside, and the tip portion of the insulating insulator 37. The 371 is located on the base end side Y2 of the center electrode 31 with respect to the tip end portion 32, and the optical element end portion 41 is located on the tip end side Y1 of the insulating insulator 37 with respect to the tip end portion 371. As a result, the end portion 41 of the optical element is separated from the discharge portion G within a predetermined range, so that the spark discharge generated in the discharge portion G suppresses the damage of the end portion 41 of the optical element and the optical element. Since the element end portion 41 is not too far from the discharge portion G, the gas concentration of the airflow in the discharge portion G can be measured more accurately. In addition, also in this embodiment, the effect of the first embodiment is exhibited.

本発明は上記各実施形態及び変形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の実施形態に適用することが可能である。例えば、変形形態1又は変形形態2における接地電極チップ36、360の構成と、実施形態2における光学素子端部41の構成とを組み合わせたものとしてもよい。 The present invention is not limited to each of the above embodiments and variants, and can be applied to various embodiments without departing from the gist thereof. For example, the configuration of the ground electrode tip 36, 360 in the modified form 1 or the modified form 2 may be combined with the configuration of the optical element end portion 41 in the second embodiment.

1 内燃機関用燃料ガス濃度計測装置
10 光源
20 受光強度検出部
30 点火プラグ
31 中心電極
32 先端部
35 接地電極
36 接地電極チップ
40 光学素子
41 光学素子端部
50 反射部
60 被計測部
S1、S2 投影領域
1 Fuel gas concentration measuring device for internal combustion engine 10 Light source 20 Light receiving intensity detector 30 Spark plug 31 Center electrode 32 Tip 35 Ground electrode 36 Ground electrode tip 40 Optical element 41 Optical element end 50 Reflecting part 60 Measured part S1, S2 Projection area

Claims (2)

燃料の蒸気によって吸収されて強度が減衰する所定波長の光を出射する光源(10)と、
光の強度を検出する受光強度検出部(20)と、
中心電極(31)と、該中心電極を内側に保持する円筒形の絶縁碍子(37)と、接地電極(35)とを有するとともに、上記中心電極の先端部(32)と上記接地電極に備えられた接地電極チップ(36)との間に放電部(G)が形成された点火プラグ(30)と、
該点火プラグの中心線(30a)に沿うように上記中心電極の内部に設けられて上記光源及び上記受光強度検出部に光学的に接続され、上記光源の光をプラグ軸方向(Y)における先端側(Y1)の端部である光学素子端部(41)から出射するとともに、上記光学素子端部から入射した光を上記受光強度検出部に伝送する光学素子(40)と、
上記接地電極における上記光学素子端部と対向する位置に形成されて上記光学素子端部から出射された光を上記光学素子端部に向けて反射する反射部(50)と、
上記光学素子端部と上記反射部との間の空間であって、上記光学素子端部から出射されて上記反射部により反射される光が透過する被計測部(60)と、
を備え、該被計測部を透過して上記光学素子端部から入射した光の強度の減衰に基づいて燃料ガス濃度を計測するように構成されており、
上記絶縁碍子の先端部(371)は、上記中心電極の上記先端部よりもプラグ軸方向の基端側(Y2)に位置しており、
上記光学素子端部は、上記中心電極の上記先端部よりもプラグ軸方向の基端側に位置しているとともに、上記絶縁碍子の上記先端部よりもプラグ軸方向の先端側に位置しており、
上記接地電極チップ、上記接地電極において、上記光学素子端部をプラグ軸方向に投影してなる投影領域(S1)の外側に位置しているとともに、上記接地電極チップの少なくとも一部は、上記接地電極において、上記中心電極の上記先端部をプラグ軸方向に投影してなる投影領域(S2)の内側に位置している、内燃機関用燃料ガス濃度計測装置(1)。
A light source (10) that emits light of a predetermined wavelength that is absorbed by fuel vapor and whose intensity is attenuated.
The light receiving intensity detection unit (20) that detects the light intensity,
It has a center electrode (31) , a cylindrical insulating porcelain (37) that holds the center electrode inside, and a ground electrode (35), and is provided with a tip portion (32) of the center electrode and the ground electrode. A spark plug (30) in which a discharge portion (G) is formed between the ground electrode tip (36) and the ground electrode tip (36).
It is provided inside the center electrode so as to be along the center line (30a) of the spark plug, and is optically connected to the light source and the light receiving intensity detection unit, and the light of the light source is directed to the tip in the plug axial direction (Y). An optical element (40) that emits light from the optical element end (41), which is the end of the side (Y1), and transmits light incident from the optical element end to the light receiving intensity detection unit.
A reflecting portion (50) formed at a position facing the end of the optical element on the ground electrode and reflecting light emitted from the end of the optical element toward the end of the optical element.
A space to be measured (60), which is a space between the end of the optical element and the reflection portion, through which light emitted from the end of the optical element and reflected by the reflection portion is transmitted.
It is configured to measure the fuel gas concentration based on the attenuation of the intensity of the light incident from the end of the optical element that has passed through the measured portion.
The tip end portion (371) of the insulating insulator is located on the proximal end side (Y2) in the plug axial direction with respect to the tip end portion of the center electrode.
The end of the optical element is located closer to the base end in the plug axial direction than the tip of the center electrode, and is located closer to the tip of the insulating insulator in the plug axial direction than the tip of the insulator. ,
The ground electrode tip is located outside the projection region (S1) formed by projecting the end of the optical element in the plug axis direction in the ground electrode, and at least a part of the ground electrode tip is the above. A fuel gas concentration measuring device (1) for an internal combustion engine, which is located inside a projection region (S2) formed by projecting the tip end portion of the center electrode in the ground electrode in the plug axis direction .
上記接地電極チップは、複数備えられている、請求項に記載の内燃機関用燃料ガス濃度計測装置。 The ground electrode tip has a plurality equipped, for an internal combustion engine fuel gas concentration measuring apparatus according to claim 1.
JP2016080617A 2016-04-13 2016-04-13 Fuel gas concentration measuring device for internal combustion engine Active JP6752042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080617A JP6752042B2 (en) 2016-04-13 2016-04-13 Fuel gas concentration measuring device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080617A JP6752042B2 (en) 2016-04-13 2016-04-13 Fuel gas concentration measuring device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017191008A JP2017191008A (en) 2017-10-19
JP6752042B2 true JP6752042B2 (en) 2020-09-09

Family

ID=60084660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080617A Active JP6752042B2 (en) 2016-04-13 2016-04-13 Fuel gas concentration measuring device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6752042B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19901795B4 (en) * 1999-01-19 2004-04-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Combustion diagnostic system
JP2005235789A (en) * 2000-10-03 2005-09-02 Nippon Soken Inc Spark plug and ignition apparatus utilizing the same
JP4543559B2 (en) * 2001-02-08 2010-09-15 株式会社デンソー Spark plug
JP2003056385A (en) * 2001-08-17 2003-02-26 Nissan Motor Co Ltd Cylinder condition measurement device and cylinder condition controller for internal combustion engine
JP2004093282A (en) * 2002-08-30 2004-03-25 Toyota Central Res & Dev Lab Inc Fuel vapor concentration measuring device for internal combustion engine

Also Published As

Publication number Publication date
JP2017191008A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
US9316201B2 (en) Laser spark plug
ES2233103T3 (en) DEVICE FOR THE SUPERVISION OF THE COMBUSTION PROCESS IN COMBUSTION ENGINES.
JP2010236425A (en) Combustion speed measurement device, and measurement method using the same
JP5109682B2 (en) Combustion chamber measuring device for internal combustion engine
KR20170125718A (en) Device for determining a 3d structure of an object
US10768088B2 (en) Photo-thermal interferometer
JP4807803B2 (en) Gas content measuring apparatus and method
JP6752042B2 (en) Fuel gas concentration measuring device for internal combustion engine
JP6088939B2 (en) Plug built-in type optical measurement probe and optical measurement apparatus having the same
JP6317277B2 (en) Fuel gas concentration measuring device for internal combustion engine
JP6687398B2 (en) Gas concentration detector
JP6216935B2 (en) Bore deformation measuring device
JP2008045496A (en) Light sensor-incorporated laser ignition device
JP3250491B2 (en) Air-fuel ratio detection device for internal combustion engine
JP3975838B2 (en) In-cylinder observation device for internal combustion engine
JP2016080661A (en) Detector for gas concentration in combustion chamber
JP2011089803A (en) Gas concentration measuring instrument of internal combustion engine and sensor plug
JP3368687B2 (en) Air-fuel ratio detection device for internal combustion engine
JP4493075B2 (en) Gas concentration detection device for internal combustion engine
JP2017083321A (en) Gas concentration measurement device
RU2336573C1 (en) Fire alarm device
KR101505886B1 (en) Air-fuel ratio control apparatus
JP7033777B2 (en) Optical sensor chip and optical gas sensor
JP5837459B2 (en) In-cylinder detection device for internal combustion engine
JP6480255B2 (en) Fuel concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200818

R150 Certificate of patent or registration of utility model

Ref document number: 6752042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250