JPH1150179A - Aluminum matrix composite and its production - Google Patents

Aluminum matrix composite and its production

Info

Publication number
JPH1150179A
JPH1150179A JP21058797A JP21058797A JPH1150179A JP H1150179 A JPH1150179 A JP H1150179A JP 21058797 A JP21058797 A JP 21058797A JP 21058797 A JP21058797 A JP 21058797A JP H1150179 A JPH1150179 A JP H1150179A
Authority
JP
Japan
Prior art keywords
powder
alloy
molten metal
particles
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21058797A
Other languages
Japanese (ja)
Other versions
JP3457155B2 (en
Inventor
Tetsuya Nukami
哲也 額見
Yukio Okochi
幸男 大河内
Kazuaki Sato
和明 佐藤
Toru Desaki
亨 出崎
Shoji Kamiya
荘司 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP21058797A priority Critical patent/JP3457155B2/en
Publication of JPH1150179A publication Critical patent/JPH1150179A/en
Application granted granted Critical
Publication of JP3457155B2 publication Critical patent/JP3457155B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dispersion strengthened Al matrix composite improved in strength to a greater extent than a TiC grain dispersion strengthened Al matrix composite. SOLUTION: In the Al matrix composite, TiC grains and Ti-Al-Si ternary compound grains are dispersed as reinforcement in an Al or Al-alloy matrix. A compact, which is composed of Ti powder, C powder, and Al or Al-alloy powder and in which the value of (Ti powder)/(C powder) by weight is regulated to 4.5-7.0, is impregnated with a molten Si-containing Al alloy and then heated, by which TiC grains and Ti-Al-Si ternary compound grains are formed. A compact, which is composed of Ti powder, C powder, and Al or Al-alloy powder and in which the value of (Ti powder)/(C powder) by weight is regulated to 4.5-7.0, is impregnated with a primary molten metal of Al or Al alloy and TiC grains and Ti-Al binary compound grains are formed while forming a secondary molten metal of Al alloy by heating, and then, a tertiary molten metal of Si- containing Al alloy is poured into the secondary molten metal or the solidified substance of the secondary molten metal, by which TiC grains and Ti-Al-Si ternary compound grains are formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強化材の強化作用
を向上させた分散強化型Al基複合材料およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersion-strengthened Al-based composite material in which the reinforcing effect of a reinforcing material is improved, and a method for producing the same.

【0002】[0002]

【従来の技術】これまで、分散強化型Al基複合材料に
おいて、強化材の体積率から混合則(複合則)により推
定される強度を実現することは非常に困難であり、期待
される強度に対して実際に得られる強度がかなり低いの
が一般的であった。例えば、Al−Si−Cu合金マト
リクス中に10 vol%のSi3 4 粒子を分散させて
も、このAl基複合材料の強度はマトリクス強度に対し
て高々5%程度しか向上しない。この場合、混合則から
はマトリクス強度に対して少なくとも10〜15%程度
の強度向上が見込まれるが、実際の複合材料ではその推
定強度を大きくした回る強度しか実現できない。その原
因は明らかではないが、強化材とマトリクスとの界面接
着力が低く強化材の特性が十分に発現できない、あるい
は強化材粒子のサイズが最大で44μm と比較的粗大で
ある、といった原因が考えられる。
2. Description of the Related Art Until now, it has been very difficult to achieve the strength estimated from the volume ratio of a reinforcing material by the mixing rule (composite rule) in a dispersion strengthened Al-based composite material. On the other hand, the strength actually obtained was generally quite low. For example, even if 10 vol% of Si 3 N 4 particles are dispersed in an Al—Si—Cu alloy matrix, the strength of the Al-based composite material is improved by only about 5% with respect to the matrix strength. In this case, from the mixing rule, an improvement in strength of at least about 10 to 15% with respect to the matrix strength is expected, but in an actual composite material, only a strength that increases the estimated strength can be realized. Although the cause is not clear, it is considered that the interfacial adhesion between the reinforcing material and the matrix is low and the characteristics of the reinforcing material cannot be sufficiently exhibited, or the size of the reinforcing material particles is relatively large at a maximum of 44 μm. Can be

【0003】TiC粒子分散強化型Al基複合材料およ
びその製造方法が、特開平6−17165号公報に開示
されている。この複合材料は、Ti粉末、黒鉛粉末、お
よびAlまたはAl合金粉末から成る圧粉成形体を作成
し、AlまたはAl合金溶湯を含浸させた後に、加熱し
てTiC粒子を生成させ、その後この成形体をAlまた
はAl合金の溶湯中に溶解することにより製造される。
[0003] JP-A-6-17165 discloses a TiC particle dispersion strengthened Al-based composite material and a method for producing the same. This composite material is prepared by forming a green compact including Ti powder, graphite powder, and Al or Al alloy powder, impregnating the molten Al or Al alloy, and then heating to generate TiC particles. It is produced by dissolving a body in a molten Al or Al alloy.

【0004】元来、上記と同様の圧粉成形体を作成し、
これを加熱してTiC粒子を生成させた後に、Alまた
はAl合金溶湯中に溶解させる方法が、特開昭63−8
3239号公報により知られていた。しかし、多孔質で
ある成形体と溶湯とは種々の要因で馴染みが悪いため、
実際には溶解させることが非常に困難であり、微細なT
iC粒子を均一に分散させた良好な組織のAl基複合材
料を得ることは極めて困難であり、現実の生産方法とし
て採用するには適当でなかった。
[0004] Originally, a green compact similar to the above was prepared,
Japanese Patent Application Laid-Open No. 63-8 / 1988 discloses a method in which TiC particles are generated by heating this and then dissolved in a molten Al or Al alloy.
No. 3239 was known. However, since the molded body and the molten metal are poorly familiar due to various factors,
In practice, it is very difficult to dissolve
It was extremely difficult to obtain an Al-based composite material having a good structure in which the iC particles were uniformly dispersed, and it was not suitable for being adopted as an actual production method.

【0005】前記特開平6−17165号公報に開示さ
れた技術は、上記と同様の圧粉成形体を作成し、これに
AlまたはAl合金溶湯を含浸させてから、加熱してT
iC粒子を生成させ、その後、AlまたはAl合金溶湯
に溶解させる。この方法によれば、含浸により圧粉成形
体の空隙がAlまたはAl合金で充填されるため、最終
的に成形体を溶解するAlまたはAl合金溶湯との馴染
みが非常に良くなり、溶解が極めて容易にできるように
なる。そのため、微細なTiC粒子が均一に分散した良
好な組織を持つAl基複合材料を製造することができ
る。この技術の一つのポイントは、成形体を加熱する前
に含浸を行う点にあり、加熱によりTiCとなる前のT
iが含浸工程においてゲッター作用を発現し、成形体の
空隙内の空気(酸素・窒素)を除去して真空状態を生起
し吸引作用を誘起するため、溶湯は加圧されなくとも空
隙内に容易に浸透し、十分良好な含浸が行われる。
[0005] The technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 6-17165 is to produce a green compact similar to that described above, impregnate it with Al or an Al alloy melt, and then heat it to form a compact.
The iC particles are generated and then dissolved in Al or Al alloy melt. According to this method, since the voids of the green compact are filled with Al or an Al alloy by impregnation, the compatibility with the Al or Al alloy melt that finally dissolves the green compact becomes very good, and the melting is extremely high. It will be easy. Therefore, an Al-based composite material having a good structure in which fine TiC particles are uniformly dispersed can be manufactured. One of the points of this technique is that the impregnation is performed before the molded body is heated.
Since i exerts a getter function in the impregnation step and removes air (oxygen / nitrogen) in the voids of the molded body to create a vacuum and induces a suction action, the molten metal can easily enter the voids without being pressurized. And good impregnation is achieved.

【0006】上記のように、特開平6−17165号公
報の技術により良好な特性を持つTiC粒子分散強化A
l基複合材料が得られるが、やはり混合則から期待され
る推定強度に対してかなり低い強度しか実現できず、よ
り一層の強度向上が望まれていた。
As described above, according to the technique disclosed in Japanese Patent Application Laid-Open No. 6-17165, TiC particle dispersion strengthening A having good characteristics is used.
Although an l-based composite material can be obtained, it is still possible to realize a considerably lower strength than the estimated strength expected from the mixing rule, and further improvement in strength has been desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来の
TiC粒子分散強化Al基複合材料よりも更に強度を向
上させた分散強化型Al基複合材料およびその製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a dispersion-strengthened Al-based composite material whose strength is further improved as compared with the conventional TiC particle dispersion-strengthened Al-based composite material, and a method for producing the same. I do.

【0008】[0008]

【課題を解決するための手段】上記の目的は、本発明に
よれば、AlまたはAl合金のマトリクス中にTiC粒
子およびTi−Al−Si3元化合物粒子が強化材とし
て分散していることを特徴とするAl基複合材料によっ
て達成される。上記本発明のAl基複合材料を製造する
方法は、第1の観点によれば、Ti粉末、黒鉛粉末、お
よびAlまたはAl合金粉末から成りTi粉末と黒鉛粉
末の重量比Ti/Cが4.5〜7.0である混合粉末の
圧粉成形体を作成する工程、該成形体にSi含有Al合
金の溶湯を含浸させて一体の含浸体とする工程、および
該含浸体を加熱することによりTiC粒子およびTi−
Al−Si3元化合物粒子を生成させる工程を含むこと
を特徴とする。
According to the present invention, there is provided according to the present invention, wherein TiC particles and Ti-Al-Si ternary compound particles are dispersed as a reinforcing material in a matrix of Al or an Al alloy. And an Al-based composite material. According to the first aspect, the method for producing an Al-based composite material of the present invention comprises Ti powder, graphite powder, and Al or Al alloy powder and has a Ti / C powder weight ratio of 4. A step of preparing a green compact of a mixed powder having a particle size of 5 to 7.0, a step of impregnating the molten body of the Si-containing Al alloy into the compact to form an integrated impregnated body, and heating the impregnated body. TiC particles and Ti-
The method includes a step of generating Al-Si ternary compound particles.

【0009】更に、第2の観点によれば、本発明のAl
基複合材料を製造する方法は、Ti粉末、黒鉛粉末、お
よびAlまたはAl合金粉末から成りTi粉末と黒鉛粉
末の重量比Ti/Cが4.5〜7.0である混合粉末の
圧粉成形体を作成する工程、該成形体にAlまたはAl
合金の第1溶湯を含浸させて一体の含浸体とする工程、
該含浸体を加熱することにより、Al合金の第2溶湯を
形成しつつ該第2合金中にTiC粒子およびTi−Al
2元化合物粒子を生成させる工程、および該第2溶湯ま
たは該第2溶湯の凝固物に、Si含有Al合金の第3溶
湯を注湯することにより、TiC粒子およびTi−Al
−Si3元化合物粒子を生成させる工程、を含むことを
特徴とする。
Further, according to a second aspect, the Al of the present invention
The method for producing the matrix composite material is a green compaction of a mixed powder comprising Ti powder, graphite powder, and Al or Al alloy powder and having a Ti / C weight ratio Ti / C of 4.5 to 7.0. Step of forming a body, Al or Al
A step of impregnating the first molten metal of the alloy to form an integral impregnated body;
By heating the impregnated body, TiC particles and Ti-Al are contained in the second alloy while forming a second molten metal of the Al alloy.
A step of generating binary compound particles, and pouring a third molten metal of an Si-containing Al alloy into the second molten metal or the solidified product of the second molten metal, thereby obtaining TiC particles and Ti-Al
Generating a Si ternary compound particle.

【0010】本発明者は、Al基複合材料の強化材とし
て、従来からに用いられていたTiC粒子に加えてTi
−Al−Si3元化合物粒子が共存することにより、両
方の粒子の合計体積率に基づく混合則から見積もられる
よりも遙かに大きい強化作用が得られるという全く新し
い事実を見出し、この新規な知見に基づき本発明を完成
させたものである。
The inventor of the present invention has proposed that, as a reinforcing material for an Al-based composite material, in addition to TiC particles conventionally used, Ti
The present inventors have found a completely new fact that the coexistence of -Al-Si ternary compound particles can provide a much larger strengthening effect than estimated from the mixing rule based on the total volume ratio of both particles, and found this new finding. Based on this, the present invention has been completed.

【0011】AlまたはAl合金マトリクス中に、強化
材としてTiC粒子とTi−Al−Si3元化合物粒子
とを共存させるには、上記第1観点および第2観点のい
ずれかの方法によればよい。すなわち、第1観点の方法
では、Ti粉末、黒鉛粉末、およびAlまたはAl合金
粉末から成る圧粉成形体にSi含有Al合金の溶湯を含
浸した後、加熱することによりTiC粒子およびTi−
Al−Si3元化合物粒子を生成させる。
The coexistence of TiC particles and Ti-Al-Si ternary compound particles as a reinforcing material in an Al or Al alloy matrix can be achieved by any one of the first and second aspects. That is, in the method according to the first aspect, a compact formed from Ti powder, graphite powder, and Al or Al alloy powder is impregnated with a molten metal of a Si-containing Al alloy, and then heated to heat the TiC particles and Ti-
Al-Si ternary compound particles are generated.

【0012】第1観点の方法により製造されるAl基複
合材料は、強化材粒子を高濃度で含有しているので、主
たる用途としては、更に別のAlまたはAl合金(Si
を含有してもしなくてもよい)溶湯に溶解し強化材濃度
を希釈して別のAl基複合材料を製造するための強化材
導入用を想定している。もちろん、用途によっては、そ
のままで構造部材等として用いることも制限はしない。
Since the Al-based composite material produced by the method of the first aspect contains a high concentration of reinforcing particles, it is mainly used as another Al or Al alloy (Si
(It may or may not be contained.) It is assumed that the reinforcing material is introduced into the molten metal to dilute the reinforcing material concentration to produce another Al-based composite material. Of course, depending on the use, there is no limitation on using the same as a structural member or the like.

【0013】また、第2観点の方法によれば、Ti粉
末、黒鉛粉末、およびAlまたはAl合金粉末から成る
圧粉成形体に、先ずAlまたはAl合金の第1溶湯を含
浸させて一体の含浸体とし、この含浸体を加熱すること
によりAl合金の第2溶湯を形成しつつ該第2溶湯中に
TiC粒子およびTi−Al2元化合物粒子を生成さ
せ、次に該第2溶湯または該第2溶湯の凝固物に、Si
含有Al合金の第3溶湯を注湯することによりTiC粒
子およびTi−Al−Si3元化合物粒子を生成させ
る。
According to the method of the second aspect, a green compact comprising Ti powder, graphite powder, and Al or Al alloy powder is first impregnated with a first molten metal of Al or Al alloy to be integrally impregnated. A TiC particle and a Ti-Al binary compound particle are generated in the second molten metal while forming the second molten metal of the Al alloy by heating the impregnated body, and then the second molten metal or the second molten metal is formed. Si to the solidified material of the molten metal
By pouring a third molten metal of the contained Al alloy, TiC particles and Ti-Al-Si ternary compound particles are generated.

【0014】第2観点の方法により製造されるAl基複
合材料は、第1観点の方法で製造されるAl基複合材料
と比較すると、既に第3溶湯で希釈されており、用途と
しては、そのまま構造部材等として用いることが適当で
ある。更に別の溶湯中に溶解すると希釈され過ぎてしま
い、強化材濃度が低くなり強度向上効果は期待できな
い。
The Al-based composite material manufactured by the method of the second aspect is already diluted with the third molten metal as compared with the Al-based composite material manufactured by the method of the first aspect. It is appropriate to use it as a structural member or the like. Further, when dissolved in another molten metal, it is excessively diluted, the concentration of the reinforcing material becomes low, and the effect of improving the strength cannot be expected.

【0015】いずれの方法も、前出の特開平6−171
65号公報と同じく圧粉成形体中のTiのゲッター効果
を利用して成形体に溶湯を含浸させて含浸体の形にする
ので、溶湯との馴染みが良く、溶湯中への溶解が容易に
行える。第1および第2観点にいずれにおいても、圧粉
成形体の構成成分であるTi粉末と黒鉛粉末との重量比
Ti/Cを4.5〜7.0の範囲とすることにより、T
iC粒子とTi−Al−Si3元化合物粒子との共存に
より、両方の粒子の合計体積率に基づく混合則よりも遙
かに大きい強度向上効果が得られる。重量比Ti/Cが
4.5より小さいと生成粒子の量が少なくなり、逆に
7.0より大きいと生成粒子のサイズが大きくなり、い
ずれの場合も強化作用が低下し、混合則を超える強度向
上効果は得られない。
Both methods are disclosed in Japanese Patent Laid-Open No. Hei 6-171.
As in JP-A-65, the molded body is impregnated with the molten metal by using the getter effect of Ti in the green compact to form the impregnated body, so that the molded body has good familiarity with the molten metal and is easily dissolved in the molten metal. I can do it. In any of the first and second aspects, the weight ratio Ti / C between the Ti powder and the graphite powder, which are the constituent components of the green compact, is in the range of 4.5 to 7.0, so that T
By the coexistence of the iC particles and the Ti-Al-Si ternary compound particles, a much higher strength improving effect can be obtained than the mixing rule based on the total volume ratio of both particles. When the weight ratio Ti / C is smaller than 4.5, the amount of the generated particles is reduced, and when the weight ratio is larger than 7.0, the size of the generated particles is increased. In any case, the strengthening action is reduced, and the mixing rule is exceeded. No strength improvement effect can be obtained.

【0016】[0016]

【発明の実施の形態】本発明のAl基複合材料の製造方
法に用いるSi含有Al合金は、基本的にはSiを含有
するAl基合金であれば本発明の効果が得られるが、S
i含有量が0.3〜18wt%であることが望ましく、
1.0〜18wt%であることが更に望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The effect of the present invention can be obtained from a Si-containing Al alloy used in the method for producing an Al-based composite material of the present invention, if the Al-based alloy basically contains Si.
Preferably, the i content is 0.3 to 18% by weight,
More preferably, the content is 1.0 to 18% by weight.

【0017】Siが0.3wt%以上存在することによ
り、TiC粒子に加えてTi−Al−Si3元化合物粒
子が共存する効果が明瞭になり、TiC粒子のみを分散
させた場合に比べて、2種類の強化材粒子の合計体積率
に基づく混合則よりも大きい強度向上効果が得られる。
この効果はSi含有量が1.0wt%以上になると更に顕
著になり、Si含有量の増加に伴い効果も大きくなる。
ただし、Siが18wt%を超えて存在すると、Al基複
合材料が脆化する傾向が顕著になり、生産性の観点から
実用的でない。
When Si is present in an amount of 0.3% by weight or more, the effect of coexistence of Ti-Al-Si ternary compound particles in addition to TiC particles becomes clear, and compared with the case where only TiC particles are dispersed, the effect of Ti-Al-Si ternary compound particles is 2%. A greater strength improvement effect is obtained than the mixing rule based on the total volume fraction of the types of reinforcing material particles.
This effect becomes more remarkable when the Si content is 1.0 wt% or more, and the effect becomes larger as the Si content increases.
However, when Si exceeds 18 wt%, the Al-based composite material tends to be embrittled, which is not practical from the viewpoint of productivity.

【0018】[0018]

【実施例】【Example】

〔実施例1〕TiC粒子とTi−Al−Si3元化合物
粒子を強化材とする分散強化型Al基複合材料を以下の
手順で製造した。 [圧粉成形体の作成]0.9〜1.5g(0.1gきざ
み、7水準)のTi粉末(住友シチックス製、−325
メッシュ)、0.2gの黒鉛粉末(AESAR製、−3
25メッシュ)、および0.5gの純Al粉末(東洋ア
ルミニウム製、−100メッシュ)を秤量混合した。得
られた混合粉末を金型圧縮法にて面圧4トンでφ11.
3mm×5mmの円柱状に成形した。これにより、Ti
含有量が7水準に異なる7種類の圧粉成形体が得られ
た。
[Example 1] A dispersion-strengthened Al-based composite material using TiC particles and Ti-Al-Si ternary compound particles as a reinforcing material was produced by the following procedure. [Preparation of green compact] 0.9 to 1.5 g (0.1 g steps, 7 levels) of Ti powder (Sumitomo Citix, -325)
0.2 g of graphite powder (manufactured by AESAR, -3)
25 mesh) and 0.5 g of pure Al powder (-100 mesh made by Toyo Aluminum) were weighed and mixed. The obtained mixed powder was pressed at a surface pressure of 4 tons by a metal mold compression method into φ11.
It was formed into a 3 mm × 5 mm cylindrical shape. Thereby, Ti
Seven types of green compacts having different contents at seven levels were obtained.

【0019】[圧粉成形体への溶湯含浸(含浸体の作
成)]これらの圧粉成形体を、純Al溶湯(温度:780
℃)中に30秒間浸漬した後、取り出して赤熱しないよ
うに凝固させ、含浸体とした。 [含浸体の加熱(強化粒子の予備生成過程)]上記含浸体
をArガス雰囲気中にて5℃/分の加熱速度で1200
℃まで加熱した後、加熱を停止して同雰囲気中で室温ま
で自然冷却してペレットを得た。
[Impregnation of Molten Metal into Compacts (Preparation of Impregnated Body)] These compacts are melted in pure Al (temperature: 780).
C.) for 30 seconds, then taken out and solidified so as not to glow red to obtain an impregnated body. [Heating of impregnated body (preliminary generation process of reinforcing particles)] The impregnated body was heated in an Ar gas atmosphere at a heating rate of 5 ° C / min.
After heating to ° C., the heating was stopped and the mixture was naturally cooled to room temperature in the same atmosphere to obtain pellets.

【0020】冷却後、各ペレットの組織を観察したとこ
ろ、Ti含有量によらず全ての試料においてサブミクロ
ンサイズのTiC粒子とTiAl3 粒子が微細に分散し
た組織を有するペレットが得られたことが確認された。 [Si含有Al合金溶湯中への溶解(最終的な強化粒子
の生成)]最終的にAl基複合材料中でのTiC粒子の体
積率が0.5 vol%となるように、上記7種類のペレッ
トを各々適量秤量し、JIS−A4032合金(Al−
12wt%Si−1wt%Cu−1wt%Mg−1wt%Ni)
の溶湯100g(温度:750℃)中に溶解した。凝固
後に組織を観察したところ、Al合金マトリクス中に微
細なTiC粒子とTi−Al−Si3元化合物粒子が均
一に分散しており、良好な組織を持つAl基複合材料が
得られたことが確認された。
After cooling, the structure of each pellet was observed. As a result, it was found that pellets having a structure in which submicron-sized TiC particles and TiAl 3 particles were finely dispersed were obtained in all samples regardless of the Ti content. confirmed. [Dissolution in molten Si-containing Al alloy (final formation of reinforcing particles)] The above seven kinds of the above-mentioned seven types were so adjusted that the volume ratio of TiC particles in the Al-based composite material was finally 0.5 vol%. An appropriate amount of the pellet is weighed, and the JIS-A4032 alloy (Al-
12wt% Si-1wt% Cu-1wt% Mg-1wt% Ni)
In 100 g of molten metal (temperature: 750 ° C.). When the structure was observed after solidification, it was confirmed that fine TiC particles and Ti-Al-Si ternary compound particles were uniformly dispersed in the Al alloy matrix, and an Al-based composite material having a good structure was obtained. Was done.

【0021】上記7種類のAl基複合材料にT6処理を
施した後、機械加工により試験片を作成し常温で引張試
験を行った。得られた結果を図1に示す。図1に示した
ように、圧粉成形体中のTi粉末配合量が0.9〜1.
4gの場合に、マトリクス合金JIS−A4032の強
度に対して混合則による推定強度を大幅に上回る強度が
得られた。
After subjecting the above seven types of Al-based composite materials to T6 treatment, test pieces were prepared by machining and subjected to a tensile test at room temperature. The results obtained are shown in FIG. As shown in FIG. 1, the compounding amount of Ti powder in the green compact was 0.9 to 1.
In the case of 4 g, the strength of the matrix alloy JIS-A4032 was much higher than the strength estimated by the mixing rule.

【0022】すなわち、従来TiC粒子が0.5 vol%
存在するだけではマトリクス強度に対して高々数%の強
度向上しか得られなかったのに対して、本発明によりT
iC粒子とTi−Al−Si3元化合物粒子とを共存さ
せることによって、マトリクス強度に対して20%近い
強度向上が得られた。上記Ti粉末配合量0.9〜1.
4gの範囲は、成形体構成成分の比率に換算するとT
i:Al:C=9〜14:5:2であるから、Ti粉末
と黒鉛粉末の配合比で表すと重量比Ti/C=4.5〜
7となる。この範囲の重量比でTi粉末と黒鉛粉末を配
合して圧粉成形体を作成することにより、最終的なAl
基複合材料において混合則からの推定を大きく上回る強
度向上が得られる。
That is, the conventional TiC particles have 0.5 vol%
While the presence of the matrix alone could only improve the matrix strength by at most a few percent, the present invention provides T
By coexisting the iC particles and the Ti-Al-Si ternary compound particles, a strength improvement of nearly 20% with respect to the matrix strength was obtained. The above-mentioned Ti powder compounding amount 0.9-1.
When the range of 4 g is converted into the ratio of the constituent components of the molded body, T
Since i: Al: C = 9 to 14: 5: 2, the weight ratio of Ti / C is 4.5 to 4.5 in terms of the mixing ratio of Ti powder and graphite powder.
It becomes 7. By mixing the Ti powder and the graphite powder at a weight ratio in this range to form a green compact, the final Al
In the basic composite material, a strength improvement far exceeding that estimated from the mixing rule can be obtained.

【0023】〔実施例2〕含浸体の加熱を昇温速度3℃
/分に遅くして行った以外は実施例1と同じ手順と条件
で7種類のTiC粒子・Ti−Al−Si3元化合物粒
子分散強化Al基複合材料を製造した。実施例1と同じ
T6処理を施した後、引張試験を行ったところ、Ti/
C=4.5〜7の範囲で実施例1とほぼ同様の強度向上
効果が得られた。加熱時の昇温速度は生成する強化粒子
のサイズに影響するが、3℃/分と5℃/分の昇温速度
の差では強度特性が実質的な変動するような粒子サイズ
の差は生じないことがわかる。
Example 2 Heating of the impregnated body was performed at a heating rate of 3 ° C.
Seven kinds of TiC particles / Ti-Al-Si ternary compound particle dispersion strengthened Al-based composite materials were produced in the same procedure and under the same conditions as in Example 1 except that the reaction was carried out at a lower speed. After performing the same T6 treatment as in Example 1, a tensile test was performed.
In the range of C = 4.5-7, almost the same strength improving effect as in Example 1 was obtained. The heating rate during heating affects the size of the produced strengthening particles, but a difference in heating rate between 3 ° C./min and 5 ° C./min causes a difference in particle size such that the strength characteristics fluctuate substantially. It turns out there is no.

【0024】〔実施例3〕加熱処理後の含浸体を溶解す
るSi含有Al合金の組成を、JIS−A4032(A
l−12wt%Si−1wt%Cu−1wt%Mg−1wt%N
i)に代えてAl−12wt%Si−4wt%Cuとした以
外は、実施例1と同じ手順と条件で7種類のTiC粒子
・Ti−Al−Si3元化合物粒子分散強化Al基複合
材料を製造した。
Example 3 The composition of a Si-containing Al alloy that dissolves the impregnated body after the heat treatment was determined according to JIS-A4032 (A
1-12wt% Si-1wt% Cu-1wt% Mg-1wt% N
Seven kinds of TiC particles / Ti-Al-Si ternary compound particle dispersion strengthened Al-based composite material were produced by the same procedure and conditions as in Example 1, except that Al-12 wt% Si-4 wt% Cu was used instead of i). did.

【0025】実施例1と同じT6処理を施した後、引張
試験を行ったところ、Ti/C=4.5〜7の範囲で実
施例1とほぼ同様の強度向上効果が得られた。含浸体を
溶解する合金の組成を、実施例1と対比するとMgおよ
びNiが存在せずCu量が多いがSiは12wt%で同じ
であるため、同様な強度向上効果が得られたものと考え
られる。
After performing the same T6 treatment as in Example 1, a tensile test was carried out. As a result, almost the same strength improving effect as in Example 1 was obtained in the range of Ti / C = 4.5-7. Compared to Example 1, the composition of the alloy that dissolves the impregnated body is free of Mg and Ni and has a large amount of Cu, but Si is the same at 12% by weight, so it is considered that a similar strength improving effect was obtained. Can be

【0026】なお、上記実施例1〜3においては、第2
観点の製造方法により直接構造部材等として用いられる
Al基複合材料を製造する例を示したが、第1観点の製
造方法により強化材粒子を高濃度で含有するAl基複合
材料を製造した場合にも、上記と同様に混合則を上回る
強度向上効果が得られた。
In the first to third embodiments, the second
An example in which an Al-based composite material used directly as a structural member or the like is manufactured by the manufacturing method according to the first aspect has been described. However, when an Al-based composite material containing reinforcing material particles at a high concentration is manufactured by the manufacturing method according to the first aspect, As in the above, an effect of improving strength exceeding the mixing rule was obtained.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
従来のTiC粒子分散強化Al基複合材料よりも更に強
度を向上させた、TiC粒子とTi−Al−Si3元化
合物粒子が共存する分散強化型Al基複合材料およびそ
の製造方法が提供される。
As described above, according to the present invention,
Disclosed is a dispersion-strengthened Al-based composite material in which TiC particles and Ti-Al-Si ternary compound particles coexist, and a method for producing the same, in which the strength is further improved compared to the conventional TiC particle dispersion-strengthened Al-based composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、圧粉成形体中のTi粉末配合量とAl
基複合材料の引張強さとの関係をAl合金マトリクス強
度と対比して示すグラフである。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing Ti powder content and Al content in a green compact.
5 is a graph showing the relationship between the tensile strength of the base composite material and the Al alloy matrix strength.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 和明 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 出崎 亨 愛知県豊田市緑ヶ丘3丁目65番地 大豊工 業株式会社内 (72)発明者 神谷 荘司 愛知県豊田市緑ヶ丘3丁目65番地 大豊工 業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kazuaki Sato 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Toru Dezaki 3-65 Midorigaoka, Toyota City, Aichi Prefecture Daitoyo Kogyo Co., Ltd. (72) Inventor Shoji Kamiya 3-65 Midorigaoka, Toyota-shi, Aichi Prefecture Inside Daitoyo Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 AlまたはAl合金のマトリクス中にT
iC粒子およびTi−Al−Si3元化合物粒子が強化
材として分散していることを特徴とするAl基複合材
料。
1. The method according to claim 1, wherein T or T
An Al-based composite material comprising iC particles and Ti-Al-Si ternary compound particles dispersed as a reinforcing material.
【請求項2】 Ti粉末、黒鉛粉末、およびAlまたは
Al合金粉末から成りTi粉末と黒鉛粉末の重量比Ti
/Cが4.5〜7.0である混合粉末の圧粉成形体を作
成する工程、 該成形体にSi含有Al合金の溶湯を含浸させて一体の
含浸体とする工程、および該含浸体を加熱することによ
りTiC粒子およびTi−Al−Si3元化合物粒子を
生成させる工程を含むことを特徴とするAl基複合材料
の製造方法。
2. A weight ratio of Ti powder to graphite powder, which is composed of Ti powder, graphite powder, and Al or Al alloy powder.
A step of preparing a green compact of a mixed powder having a / C of 4.5 to 7.0; a step of impregnating the molten body of the Si-containing Al alloy into the compact to form an integral impregnated body; and the impregnated body. A step of generating TiC particles and Ti-Al-Si ternary compound particles by heating the Al-based composite material.
【請求項3】 Ti粉末、黒鉛粉末、およびAlまたは
Al合金粉末から成りTi粉末と黒鉛粉末の重量比Ti
/Cが4.5〜7.0である混合粉末の圧粉成形体を作
成する工程、 該成形体にAlまたはAl合金の第1溶湯を含浸させて
一体の含浸体とする工程、 該含浸体を加熱することにより、Al合金の第2溶湯を
形成しつつ該第2溶湯中にTiC粒子およびTi−Al
2元化合物粒子を生成させる工程、および該第2溶湯ま
たは該第2溶湯の凝固物に、Si含有Al合金の第3溶
湯を注湯することにより、TiC粒子およびTi−Al
−Si3元化合物粒子を生成させる工程、を含むことを
特徴とするAl基複合材料の製造方法。
3. A weight ratio of Ti powder to graphite powder, comprising Ti powder, graphite powder, and Al or Al alloy powder.
A step of preparing a green compact of a mixed powder having a / C of 4.5 to 7.0; a step of impregnating the compact with a first molten metal of Al or an Al alloy to form an integral impregnated body; By heating the body, TiC particles and Ti-Al are contained in the second molten metal while forming a second molten metal of the Al alloy.
A step of generating binary compound particles, and pouring a third molten metal of an Si-containing Al alloy into the second molten metal or the solidified product of the second molten metal, thereby obtaining TiC particles and Ti-Al
A method for producing Al ternary compound particles, the method comprising: producing Si ternary compound particles.
JP21058797A 1997-08-05 1997-08-05 Al-based composite material and method for producing the same Expired - Fee Related JP3457155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21058797A JP3457155B2 (en) 1997-08-05 1997-08-05 Al-based composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21058797A JP3457155B2 (en) 1997-08-05 1997-08-05 Al-based composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1150179A true JPH1150179A (en) 1999-02-23
JP3457155B2 JP3457155B2 (en) 2003-10-14

Family

ID=16591795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21058797A Expired - Fee Related JP3457155B2 (en) 1997-08-05 1997-08-05 Al-based composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3457155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182802A (en) * 2018-11-12 2019-01-11 华北电力大学(保定) A kind of carbon material enhancing copper/aluminum matrix composite preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109182802A (en) * 2018-11-12 2019-01-11 华北电力大学(保定) A kind of carbon material enhancing copper/aluminum matrix composite preparation method

Also Published As

Publication number Publication date
JP3457155B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
US5083602A (en) Stepped alloying in the production of cast composite materials (aluminum matrix and silicon additions)
EP0500531A1 (en) Dual processing of aluminum base metal matrix composites
KR101326498B1 (en) Method for manufacturing nano-particle reinforced metal matrix composites and the metal matrix composite
JP3283516B2 (en) Method for producing cast composite material containing aluminum-magnesium matrix alloy
JPH1150179A (en) Aluminum matrix composite and its production
JP4872314B2 (en) Particle reinforced aluminum alloy composite and method for producing the same
JP2014505789A (en) Improved aluminum alloy powder metal with transition elements
JPH02200743A (en) Method for compacting ti-al series intermetallic compound member
JPH0635602B2 (en) Manufacturing method of aluminum alloy sintered forgings
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPH0913101A (en) Iron based mixture for powder metallurgy and its production
JP2000345254A (en) Aluminum base composite material and its production
JPS6354056B2 (en)
JP2002522636A (en) Method of manufacturing composite material
JPH0711045B2 (en) Method for producing SiC dispersed casting composite material
JPH08325654A (en) Production of magnesium-group composite material
JPH079113A (en) Production of composite material
JPS6186064A (en) Production of composite metallic body compounded with inorganic fibers
JPS63183141A (en) Manufacture of high-toughness aluminum alloy
JPH0987778A (en) Production of magnesium base composite material
JPH079114A (en) Production of composite material
JPH10245642A (en) Production of aluminum base hyperfine grained oxide composite material
JPH10158764A (en) Aluminum base composite material excellent in coagulation resistance and strength and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070801

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080801

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees