JPH1147544A - Discharge suction system gas treatment method - Google Patents

Discharge suction system gas treatment method

Info

Publication number
JPH1147544A
JPH1147544A JP21168597A JP21168597A JPH1147544A JP H1147544 A JPH1147544 A JP H1147544A JP 21168597 A JP21168597 A JP 21168597A JP 21168597 A JP21168597 A JP 21168597A JP H1147544 A JPH1147544 A JP H1147544A
Authority
JP
Japan
Prior art keywords
gas
discharge
active species
processing
discharge reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21168597A
Other languages
Japanese (ja)
Other versions
JP3106181B2 (en
Inventor
Masazumi Fujiwara
正純 藤原
Mitsushi Tanimoto
充司 谷本
Masayoshi Ishida
政義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP09211685A priority Critical patent/JP3106181B2/en
Publication of JPH1147544A publication Critical patent/JPH1147544A/en
Application granted granted Critical
Publication of JP3106181B2 publication Critical patent/JP3106181B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress recombination loss of an active species and consumption of treatment gas while encouraging high formation efficiency of the active species. SOLUTION: In the case wherein a gas treatment apparatus is used as an ozonizer, an interior of a discharge reaction container 1 is evacuated by a vacuum pump 3, a first valve 4 is opened and closed instantaneously in order to pulsatively introduce into the discharge reaction chamber 1 a small amount of oxygen as a treatment gas and then a pulse voltage is applied between the discharge reaction chamber 1 and an electrode 2 and an oxygen atom as an active species is formed by effecting pulse discharge. Then, a second valve 5 is opened and the gas to be treated which has atmospheric pressure or a higher pressure is injected into the discharge reaction container 1 at a high speed and an ozone is formed and then discharged through the vacuum pump 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、処理用ガス中の放
電によって生成した活性種を使用して被処理用ガスを処
理する放電吸引式ガス処理方法に関するもので、オゾナ
イザ,空気清浄器,または排ガス処理装置等に使用され
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge suction type gas treatment method for treating a gas to be treated by using active species generated by electric discharge in the gas for treatment. It is used in exhaust gas treatment equipment and the like.

【0002】[0002]

【従来の技術】従来から使用されている通常の放電ガス
処理装置(方法)は種々あるが、図3に示すものは、従
来の直通式放電ガス処理装置の一例を示す概略構成図
で、大気圧の放電反応容器1に被処理用ガスを流通さ
せ、放電反応容器1と電極2との間に高電圧を印加し、
放電により生成した活性種を介した化学反応を通してガ
ス処理を行う(例えば、電気学会論文集B.113-5,P463
(1993))。用途としては、被処理用ガスとして燃焼排ガ
スを用いて、NOX やSO2 を除去する装置や、揮発性
有機物を含む汚染空気を浄化する装置がある。また、被
処理用ガスとして大気を用い、オゾナイザとして利用す
る装置もある。しかし、これらの装置では、生成する活
性種を選択することができず、酸化と還元反応の両方が
同時に進行するため、有害な反応生成物が生成される場
合がある。
2. Description of the Related Art There are various types of conventional discharge gas processing apparatuses (methods) conventionally used. FIG. 3 is a schematic diagram showing an example of a conventional direct discharge gas processing apparatus. The gas to be treated is allowed to flow through the atmospheric pressure discharge reaction vessel 1, and a high voltage is applied between the discharge reaction vessel 1 and the electrode 2,
Gas treatment is performed through a chemical reaction via active species generated by discharge (for example, IEEJ Transactions on Materials B. 113-5, P463).
(1993)). Applications include a device that removes NO X and SO 2 by using combustion exhaust gas as a gas to be treated, and a device that purifies contaminated air containing volatile organic substances. There is also an apparatus that uses the atmosphere as a gas to be treated and uses it as an ozonizer. However, in these apparatuses, the active species to be generated cannot be selected, and both the oxidation and reduction reactions proceed simultaneously, so that harmful reaction products may be generated.

【0003】そこで、反応の選択性を高める方式とし
て、外部注入式放電ガス処理装置が研究されており、こ
れを図4に示す。
[0003] In order to improve the selectivity of the reaction, an external injection type discharge gas treatment apparatus has been studied, and this is shown in FIG.

【0004】図4は、従来の外部注入式放電ガス処理装
置の一例を示す概略構成図で、この方式は、処理用ガス
を放電処理して得られた活性ガスを、被処理用ガス中へ
注入するという方式で、放電容器6に処理用ガスを流通
させ、放電容器6と電極2との間で放電処理を行った
後、反応容器7へ注入し、被処理用ガスと混合するとい
うものである。この場合も、放電は大気圧で行われる。
具体的には、処理用ガスとして窒素ガスを用い、放電に
より窒素原子を生成し、排ガス中に注入することにより
NOX を還元処理する方式が研究されている(例えば、
日本機械学会論文集B.60-576.P2931(1994))。
FIG. 4 is a schematic diagram showing an example of a conventional external injection type discharge gas processing apparatus. In this system, an active gas obtained by performing discharge processing on a processing gas is introduced into a gas to be processed. In the method of injecting, a processing gas is circulated through the discharge vessel 6, a discharge process is performed between the discharge vessel 6 and the electrode 2, then injected into the reaction vessel 7, and mixed with the gas to be processed. It is. Also in this case, the discharge is performed at the atmospheric pressure.
Specifically, the nitrogen gas used as the processing gas, discharged by generating a nitrogen atom, a method of reduction treatment NO X by injecting into the exhaust gas has been studied (for example,
Transactions of the Japan Society of Mechanical Engineers B. 60-576.P2931 (1994)).

【0005】また、放電処理の効率を高めるために、処
理用ガスを減圧下で放電処理した後、大気圧の被処理用
ガス中へ注入する方式もある。この方式の典型的な例を
図5に示す。
In order to enhance the efficiency of the discharge process, there is also a method in which the process gas is subjected to a discharge process under reduced pressure and then injected into the gas to be processed at atmospheric pressure. FIG. 5 shows a typical example of this method.

【0006】図5は、従来の減圧注入式放電ガス処理装
置の一例を示す概略構成図で、減圧手段として真空ポン
プ3で放電容器6内を減圧するもので、放電容器6と電
極2との間の減圧下で放電を行い活性種を生成した後、
真空ポンプ3の排気側に接続した反応容器7で、大気圧
または大気圧以上に加圧された被処理用ガスと混合する
方式である。この方式では、減圧下で放電処理を行うた
め、放電により生成する電子の加速が進み、その結果と
して、活性種の生成効率が向上する。具体的には、処理
用ガスとして酸素ガスを用い、放電により酸素原子を生
成し、空気と混合しオゾンを生成する方式に関して、真
空ポンプ3として噴流ポンプを用いて、放電容器6の減
圧気体と大気圧気体との混合を行う方式が提案されてい
る(電気学会論文誌A.116-9,P791(1996))。なお、図
3〜図5では放電手段の高圧電源等は省略されている。
FIG. 5 is a schematic diagram showing an example of a conventional reduced pressure injection type discharge gas processing apparatus, in which the inside of a discharge vessel 6 is depressurized by a vacuum pump 3 as a pressure reducing means. After discharging under reduced pressure to generate active species,
This is a method in which the reaction vessel 7 connected to the exhaust side of the vacuum pump 3 is mixed with the gas to be treated, which is pressurized to the atmospheric pressure or higher than the atmospheric pressure. In this method, since the discharge treatment is performed under reduced pressure, the acceleration of the electrons generated by the discharge proceeds, and as a result, the generation efficiency of the active species is improved. Specifically, regarding a method of using oxygen gas as a processing gas, generating oxygen atoms by discharging, and mixing with air to generate ozone, a jet pump is used as the vacuum pump 3 to reduce the pressure of the discharge vessel 6 with the depressurized gas. A method of mixing with atmospheric pressure gas has been proposed (Transactions of the Institute of Electrical Engineers of Japan, A. 116-9, P791 (1996)). 3 to 5, the high-voltage power supply and the like of the discharging means are omitted.

【0007】[0007]

【発明が解決しようとする課題】このような従来の放電
ガス処理装置における問題点は、放電により生じた活性
種を被処理用ガスと混合する際の注入とガス混合の速度
にある。活性種の寿命はガスの混合速度に比し短いた
め、生成した活性種が再結合反応等により消滅する割合
が高い。特に、図4および図5の外部注入方式では、こ
のような消滅反応の抑制が重要な課題となっている。そ
のためには、被処理用ガス中への高速注入・高速混合が
必要である。
A problem with such a conventional discharge gas processing apparatus is the rate of injection and gas mixing when the active species generated by the discharge are mixed with the gas to be processed. Since the lifetime of the active species is shorter than the mixing speed of the gas, the rate at which the generated active species disappears due to a recombination reaction or the like is high. In particular, in the external injection method shown in FIGS. 4 and 5, suppression of such annihilation reaction is an important issue. For that purpose, high-speed injection and high-speed mixing into the gas to be treated are required.

【0008】しかし、大気圧の放電ガスを注入する図4
の外部注入式放電ガス処理装置では、高速注入に伴い処
理用ガスが大量に必要となるという問題点があり、高速
注入には限界がある。
However, FIG.
However, the external injection type discharge gas processing apparatus has a problem that a large amount of processing gas is required for high-speed injection, and high-speed injection is limited.

【0009】一方、減圧下で活性種を生成する図5の減
圧注入式放電ガス処理装置においては、大気圧または大
気圧以上の被処理用ガスと混合する過程において、活性
種である活性ガスが一旦大気圧程度または大気圧以上に
加圧した後に被処理用ガスとの混合が生ずることにな
る。したがって、この場合にも、活性種の再結合損失を
抑制することが困難である。
On the other hand, in the reduced pressure injection type discharge gas treatment apparatus shown in FIG. 5, which generates active species under reduced pressure, the active gas as the active species is mixed with the gas to be treated at atmospheric pressure or a pressure higher than atmospheric pressure. Once pressurized to about atmospheric pressure or higher than atmospheric pressure, mixing with the gas to be processed occurs. Therefore, also in this case, it is difficult to suppress the recombination loss of the active species.

【0010】本発明における放電吸引式ガス処理方法の
目的は、外部注入方式の利点である反応の選択性と、高
い生成効率を生かしつつ、欠点である再結合損失の問題
を解決することにある。
It is an object of the present invention to solve the drawback of recombination loss while taking advantage of the selectivity of the reaction and the high production efficiency, which are the advantages of the external injection method. .

【0011】[0011]

【課題を解決するための手段】本発明の放電吸引式ガス
処理方法は、大気圧または減圧された放電反応容器内
に、処理用ガスを供給した後、処理用ガスにパルス放電
を印加して活性種を生成した直後に、放電反応容器内に
被処理用ガスを高速供給するようにしたものである。
According to the discharge suction type gas processing method of the present invention, a processing gas is supplied into a discharge reaction vessel at an atmospheric pressure or a reduced pressure, and then a pulse discharge is applied to the processing gas. Immediately after the generation of the active species, the gas to be treated is supplied into the discharge reaction vessel at a high speed.

【0012】[0012]

【発明の実施の形態】本発明の放電吸引式ガス処理方法
は、大気圧または真空ポンプによって減圧された放電反
応容器内へ処理用ガスを第1のバルブ等から供給し、放
電反応容器内の処理用ガスに放電手段によりパルス放電
して前記処理用ガスの活性種を生成せしめ、前記放電反
応容器内に生成された前記活性種により処理される被処
理用ガスを第2のポンプ等から供給するものである。ま
た、処理されたガスは真空ポンプによって排出される。
BEST MODE FOR CARRYING OUT THE INVENTION In a discharge suction type gas processing method of the present invention, a processing gas is supplied from a first valve or the like into a discharge reaction vessel depressurized by an atmospheric pressure or a vacuum pump, and the gas in the discharge reaction vessel is discharged. The processing gas is pulse-discharged by a discharge means to generate active species of the processing gas, and a gas to be processed by the active species generated in the discharge reaction vessel is supplied from a second pump or the like. Is what you do. The processed gas is discharged by a vacuum pump.

【0013】また、処理用ガスは、酸素もしくは窒素、
または空気あるいはそれらのガス中に水蒸気,過酸化水
素,アンモニア,炭化水素類、もしくはアルコール類を
添加したものである。
The processing gas may be oxygen or nitrogen,
Alternatively, steam, hydrogen peroxide, ammonia, hydrocarbons, or alcohols are added to air or their gases.

【0014】このように、放電直後に被処理用ガスの方
を高速注入することにより、高速ガス混合が実現でき
る。したがって、活性種の再結合損失は大幅に抑制する
ことができる。また、処理用ガスの消費量も抑制するこ
とができる。その上、パルス放電を減圧下で行えば、活
性種は高効率で生成することができる。
As described above, high-speed gas mixing can be realized by injecting the gas to be treated at a high speed immediately after the discharge. Therefore, recombination loss of active species can be significantly suppressed. Further, the consumption of the processing gas can be suppressed. In addition, if pulse discharge is performed under reduced pressure, active species can be generated with high efficiency.

【0015】[0015]

【実施例】図1は、本発明の一実施例を示すガス処理方
法に使用するガス処理装置の一例の概略構成図である。
FIG. 1 is a schematic diagram showing an example of a gas processing apparatus used in a gas processing method according to an embodiment of the present invention.

【0016】図1の実施例が従来例と異なる点は、放電
反応容器1内へ処理用ガスを供給する第1の供給手段で
ある第1のバルブ4と、放電反応容器1内へ被処理用ガ
スを供給する第2の供給手段である第2のバルブ5を設
けたことにある。なお、放電手段を構成する高圧電源等
は省略してある。
The embodiment shown in FIG. 1 is different from the conventional example in that the first valve 4 which is the first supply means for supplying the processing gas into the discharge reaction vessel 1 and the processing gas is supplied into the discharge reaction vessel 1. That is, a second valve 5, which is a second supply means for supplying the use gas, is provided. Note that a high-voltage power supply and the like constituting the discharging means are omitted.

【0017】次に、図1のガス処理装置をオゾナイザと
して使用する場合の動作について説明する。
Next, the operation when the gas processing apparatus of FIG. 1 is used as an ozonizer will be described.

【0018】第1のバルブ4,第2のバルブ5を閉じ、
真空ポンプ3を駆動して放電反応容器1内の圧力を減圧
する。次いで、第1のバルブ4を瞬間的に開閉して、放
電反応容器1内に処理用ガスである酸素をパルス的に微
量導入する。次いで、放電手段の構成部材である放電反
応容器1と電極2との間にパルス電圧を印加し、パルス
放電を行うことにより、活性種である酸素原子を生成す
る。次いで、第2のバルブ5を開け被処理用ガスとして
大気圧または大気圧以上に加圧された空気を放電反応容
器1内に高速注入してオゾンを生成し、このオゾンを真
空ポンプ3を通して排出する。次いで、第2のバルブ5
を閉じて最初の一工程を終了した後、最初の動作に戻
り、再び、上記と同じ工程を繰り返す。
The first valve 4 and the second valve 5 are closed,
The pressure inside the discharge reaction vessel 1 is reduced by driving the vacuum pump 3. Next, the first valve 4 is momentarily opened and closed to introduce a small amount of oxygen as a processing gas into the discharge reaction vessel 1 in a pulsed manner. Next, a pulse voltage is applied between the discharge reaction vessel 1 and the electrode 2, which are constituent members of the discharge means, and a pulse discharge is performed to generate oxygen atoms as active species. Next, the second valve 5 is opened, and ozone is generated by injecting air pressurized to the atmospheric pressure or higher than the atmospheric pressure as the gas to be treated into the discharge reaction vessel 1 at high speed, and the ozone is discharged through the vacuum pump 3. I do. Then, the second valve 5
Is closed to complete the first step, return to the initial operation, and repeat the same steps as above.

【0019】図2にパルス放電と処理用ガスおよび被処
理用ガスのパルス的供給のタイミングの一例を示す。
FIG. 2 shows an example of the timing of the pulse discharge and the pulsed supply of the processing gas and the gas to be processed.

【0020】また、本発明の放電吸引式ガス処理方法
は、燃焼排ガスのNOX 処理方法としても利用すること
ができる。この場合、第1のバルブ4を開閉して処理用
ガスとして活性種である窒素ガスを供給し、第2のバル
ブ5を開けて被処理用ガスとして燃焼排ガスを高速注入
し、NOX の還元処理を行う。
Further, the discharge suction type gas treatment method of the present invention can also be used as NO X processing method of the combustion exhaust gas. In this case, the first valve 4 is opened and closed to supply a nitrogen gas, which is an active species, as a processing gas, and the second valve 5 is opened to inject combustion exhaust gas as a gas to be processed at a high speed to reduce NO X. Perform processing.

【0021】同様に、本発明の放電吸引式ガス処理方法
は揮発性有機物等を含む汚染空気の浄化方法としても利
用できる。この場合、上記と同様に第1のバルブ4を開
閉して処理用ガスとして酸素を供給し、バルブ5より被
処理用ガスとして汚染空気を供給し、有機物の酸化処理
を行う。
Similarly, the discharge suction type gas treatment method of the present invention can also be used as a method for purifying contaminated air containing volatile organic substances and the like. In this case, the first valve 4 is opened and closed in the same manner as described above, oxygen is supplied as a processing gas, and contaminated air is supplied from the valve 5 as a gas to be processed, thereby oxidizing organic substances.

【0022】また、その他、処理用ガスとして、空気の
中に水蒸気,過酸化水素,アンモニア,炭化水素類,ア
ルコール類を含むガスを用いることにより、より反応性
の強い活性種を発生させ、ガスの処理効率を高めること
も可能である。
In addition, by using a gas containing water vapor, hydrogen peroxide, ammonia, hydrocarbons, and alcohols in the air as a processing gas, more reactive active species are generated, and It is also possible to increase the processing efficiency.

【0023】[0023]

【発明の効果】以上説明したように、本発明の請求項1
に記載の発明は、放電により生成した活性種と被処理
用ガスとの高速混合による再結合損失が低減され、処
理用ガスの必要量を抑制することができる。
As described above, according to the first aspect of the present invention,
In the invention described in (1), the recombination loss due to high-speed mixing of the active species generated by the discharge and the gas to be treated is reduced, and the required amount of the processing gas can be suppressed.

【0024】また、本発明の請求項2に記載の発明は、
パルス放電を減圧下で行うことにより、活性種を高効率
で生成することができる。
Further, the invention according to claim 2 of the present invention provides:
By performing the pulse discharge under reduced pressure, active species can be generated with high efficiency.

【0025】また、本発明の請求項3に記載の発明は、
より反応性の強い活性種を発生させ、ガスの処理効率を
高めることができる。
Further, the invention according to claim 3 of the present invention provides:
A more reactive active species can be generated, and the gas processing efficiency can be increased.

【0026】したがって、本発明により、放電ガス処理
の性能向上が可能となる。
Therefore, according to the present invention, the performance of the discharge gas treatment can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すガス処理方法に使用さ
れるガス処理装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a gas processing apparatus used in a gas processing method according to an embodiment of the present invention.

【図2】本発明におけるパルス放電と処理用ガスおよび
被処理用ガスのパルス的供給のタイミングチャートであ
る。
FIG. 2 is a timing chart of pulse discharge and pulse supply of a processing gas and a gas to be processed in the present invention.

【図3】従来の直通式放電ガス処理装置の一例を示す概
略構成図である。
FIG. 3 is a schematic configuration diagram showing an example of a conventional direct discharge gas treatment apparatus.

【図4】従来の外部注入式放電ガス処理装置の一例を示
す概略構成図である。
FIG. 4 is a schematic configuration diagram showing an example of a conventional external injection type discharge gas processing apparatus.

【図5】従来の減圧注入式放電ガス処理装置の一例を示
す概略構成図である。
FIG. 5 is a schematic configuration diagram showing an example of a conventional reduced pressure injection type discharge gas processing apparatus.

【符号の説明】[Explanation of symbols]

1 放電反応容器 2 電極 3 真空ポンプ 4 第1のバルブ 5 第2のバルブ DESCRIPTION OF SYMBOLS 1 Discharge reaction container 2 Electrode 3 Vacuum pump 4 First valve 5 Second valve

フロントページの続き (72)発明者 谷本 充司 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 石田 政義 茨城県つくば市天王台1−1−4 筑波大 学構造工学系内Continuing from the front page (72) Inventor Mitsuji Tanimoto 1-1-4 Umezono, Tsukuba City, Ibaraki Prefecture Within the Institute of Electronics and Technology (72) Inventor Masayoshi Ishida 1-1-4 Tennodai, Tsukuba City, Ibaraki Prefecture University of Tsukuba In structural engineering

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 放電反応容器内へ処理用ガスを供給して
充填し、前記放電反応容器内でパルス放電を行って前記
処理用ガスの活性種を生成し、次いで、前記放電反応容
器内へ被処理用ガスを供給して前記活性種により前記被
処理用ガスの処理を行うことを特徴とする放電吸引式ガ
ス処理方法。
1. A process gas is supplied and charged into a discharge reaction vessel, and a pulse discharge is performed in the discharge reaction container to generate active species of the process gas. A discharge suction type gas processing method, comprising supplying a gas to be treated and treating the gas to be treated with the active species.
【請求項2】 放電反応容器内の気体を減圧手段で減圧
し、この減圧された前記放電反応容器内へ第1の供給手
段から処理用ガスをパルス的に供給し、前記放電反応容
器内でパルス放電を行って前記処理用ガスの活性種を生
成し、次いで、前記放電反応容器内へ第2の供給手段か
ら被処理用ガスを供給して前記活性種により前記被処理
用ガスの処理を行うことを特徴とする放電吸引式ガス処
理方法。
2. A gas in a discharge reaction vessel is depressurized by a pressure reducing means, and a processing gas is supplied in a pulsed manner from a first supply means into the decompressed discharge reaction vessel. A pulse discharge is performed to generate an active species of the processing gas, and then a gas to be processed is supplied from a second supply unit into the discharge reaction vessel to process the gas to be processed with the active species. A discharge suction type gas processing method characterized by performing.
【請求項3】 処理用ガスは、酸素もしくは窒素、また
は空気の中に水蒸気,過酸化水素,アンモニア,炭化水
素類、もしくはアルコール類を添加したものであること
を特徴とする請求項1または2記載の放電吸引式ガス処
理方法。
3. The processing gas according to claim 1, wherein the processing gas is oxygen or nitrogen, or air to which steam, hydrogen peroxide, ammonia, hydrocarbons, or alcohols are added. The discharge suction type gas treatment method described in the above.
JP09211685A 1997-08-06 1997-08-06 Discharge suction type gas treatment method Expired - Lifetime JP3106181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09211685A JP3106181B2 (en) 1997-08-06 1997-08-06 Discharge suction type gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09211685A JP3106181B2 (en) 1997-08-06 1997-08-06 Discharge suction type gas treatment method

Publications (2)

Publication Number Publication Date
JPH1147544A true JPH1147544A (en) 1999-02-23
JP3106181B2 JP3106181B2 (en) 2000-11-06

Family

ID=16609900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09211685A Expired - Lifetime JP3106181B2 (en) 1997-08-06 1997-08-06 Discharge suction type gas treatment method

Country Status (1)

Country Link
JP (1) JP3106181B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2389789A (en) * 2002-05-22 2003-12-24 Bioquell Uk Ltd Apparatus for decontamination of enclosed spaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2389789A (en) * 2002-05-22 2003-12-24 Bioquell Uk Ltd Apparatus for decontamination of enclosed spaces
GB2389789B (en) * 2002-05-22 2006-05-31 Bioquell Uk Ltd Improvements in or relating to apparatus for decontaminating enclosed spaces

Also Published As

Publication number Publication date
JP3106181B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
CN116157197A (en) Method and device for controlling nitrogen oxides and method for producing water containing nitrogen oxides
Nakajima et al. Relativistic effects for polarizabilities and hyperpolarizabilities of rare gas atoms
Schroeder et al. Plasma-enhanced NOx remediation using nanosecond pulsed discharges in a water aerosol matrix
JP4621848B2 (en) Method for making oxide thin film
JP3106181B2 (en) Discharge suction type gas treatment method
JPH09171999A (en) Plasma cleaning treatment method
WO2002066145A1 (en) Gas processing device and method
CN209968113U (en) Heterogeneous discharge system for removing VOCs with different solubilities through catalysis and synergy
Grabowski et al. Removal of phenol from water: a comparison of energization methods
JP2004223469A (en) Method for regenerating activated carbon containing organic harmful substance and regenerating apparatus
JPS62136573A (en) Plasma treatment device
JP3455815B2 (en) Discharge gas treatment method with adsorbent
JPH06100301A (en) Ozonizer
JPS5621330A (en) Method of dry etching
Ravi et al. Studies on nitrogen oxides removal using plasma assisted catalytic reactor
JP2785485B2 (en) Gas purifier
JP3250007B2 (en) Ozone gas removal method
Pacheco et al. Application of non-thermal plasma on gas cleansing
CN109908749A (en) A kind of multiphase discharge system of catalyzing cooperation removal different solubilities VOCs
JP2004331407A (en) Apparatus and method of producing hydrogen
JPS5477573A (en) Operating method of plasma treating apparatus
KR940027083A (en) Etching Method of SiO₂ Film
KR20080104687A (en) Method and device for simultaneous reduction of nitrogen oxides and nitrous oxide from exhaust gas by nitrogen radical
KR20030039871A (en) Apparatus and method for treatment of waste matter using plasma
JP2503763B2 (en) Fluid treatment device and method for stopping the same

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term