JP3455815B2 - Discharge gas treatment method with adsorbent - Google Patents

Discharge gas treatment method with adsorbent

Info

Publication number
JP3455815B2
JP3455815B2 JP2000124380A JP2000124380A JP3455815B2 JP 3455815 B2 JP3455815 B2 JP 3455815B2 JP 2000124380 A JP2000124380 A JP 2000124380A JP 2000124380 A JP2000124380 A JP 2000124380A JP 3455815 B2 JP3455815 B2 JP 3455815B2
Authority
JP
Japan
Prior art keywords
nox
adsorbent
gas
discharge
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000124380A
Other languages
Japanese (ja)
Other versions
JP2001300249A (en
Inventor
正純 藤原
政義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000124380A priority Critical patent/JP3455815B2/en
Publication of JP2001300249A publication Critical patent/JP2001300249A/en
Application granted granted Critical
Publication of JP3455815B2 publication Critical patent/JP3455815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、放電を用いた排ガ
スNOx処理、大気中NOx処理、VOC汚染空気処理、ダイ
オキシン汚染ガス処理等のガス処理方法に関し、特に吸
着剤を併用した吸着剤併用式放電ガス処理方法に関す
る。
TECHNICAL FIELD The present invention relates to a gas treatment method such as exhaust gas NOx treatment using discharge, NOx treatment in the atmosphere, VOC contaminated air treatment, dioxin contaminated gas treatment, and the like, and in particular, an adsorbent combination type using an adsorbent in combination. The present invention relates to a discharge gas treatment method.

【0002】[0002]

【従来の技術】従来より放電を用いたガス処理の研究開
発が広く行われている。例えば排ガス中のNOxについて
も、これを放電により処理する方法について開発が進め
られており、その代表的な処理方法の原理は次のとおり
である。
2. Description of the Related Art Conventionally, research and development of gas treatment using electric discharge have been widely performed. For example, for NOx in exhaust gas, development of a method for treating NOx by discharge is in progress, and the principle of a typical treatment method is as follows.

【0003】即ち、放電により得られる高速電子を用い
てガス中のNやO、HOを解離し、N、O、OH
等の活性種を生成する。これらの活性種がNOxと酸化・
還元反応を行うことによりNOx除去を行う。この際、最
終生成物は、還元反応ではN とOに帰着するが、酸
化反応では硝酸を生成するため、硝酸の回収が必要であ
る。硝酸の回収方式として主に2種類があり、その一つ
は図4に示すように放電処理後、アンモニアの添加によ
り中和処理を行い、硝酸アンモニウムの微粒子として電
気集塵機を用いて回収する方式である。また、他の方法
は、例えば図5に示すように処理済の排ガスを水中でバ
ブリングさせ、硝酸を水に溶解させて回収する方法であ
る。
That is, using fast electrons obtained by discharge
N in gasTwoAnd OTwo, HTwoDissociates O, N, O, OH
Generate active species such as. These active species are NOx and oxidation
NOx is removed by performing a reduction reaction. At this time,
The final product is N in the reduction reaction. TwoAnd OTwoResulting in acid
The nitrification reaction produces nitric acid, so nitric acid must be recovered.
It There are two main methods for recovering nitric acid, one of which is
As shown in Fig. 4, after the discharge treatment, by adding ammonia,
Neutralization process, and then it is charged as ammonium nitrate particles.
This is a method of collecting using a dust collector. Also other ways
For example, as shown in Fig. 5, the treated exhaust gas is discharged in water.
This is a method in which bling is performed and nitric acid is dissolved in water and recovered.
It

【0004】また、VOC汚染空気を放電で処理する方
法も開発が進められており、その代表的な処理方法は、
放電で生成したOやOによる酸化反応を行い、CO2
やH O、Clに変換する方式である。
A method of treating VOC-contaminated air by electric discharge
The method is being developed, and the typical processing method is
O and O generated by electric dischargeThreeOxidation reaction by2
And H TwoO, ClTwoIt is a method of converting into.

【0005】ゴミ焼却により発生するダイオキシンに関
しては、活性炭等に吸着させて回収する技術が確立して
いる。
With respect to dioxins generated by incineration of garbage, a technique for adsorbing dioxin on activated carbon or the like and recovering it has been established.

【0006】[0006]

【発明が解決しようとする課題】NOxの放電処理に関し
ては、酸化反応により硝酸が生成するため、硝酸の回収
が必要となる。また、酸素が数%以上存在した場合、NO
x生成反応が進行し、還元反応を行うことが困難とな
る。このため、酸素濃度が10%程度であるディーゼル
排ガスの還元処理は、放電法では困難である。
With respect to the discharge treatment of NOx, nitric acid is produced by the oxidation reaction, and therefore nitric acid needs to be recovered. In addition, if oxygen is present in several% or more, NO
The x formation reaction proceeds, making it difficult to carry out the reduction reaction. For this reason, it is difficult to reduce the diesel exhaust gas having an oxygen concentration of about 10% by the discharge method.

【0007】VOCの放電処理に関しては、空気中の放
電であるため、NOxが生成することが問題となる。ま
た、ダイオキシン処理に関しては、吸着させた後の処理
方法や、吸着剤の再利用が問題となる。
With respect to the VOC discharge treatment, since it is discharge in air, NOx is a problem. Further, regarding the dioxin treatment, there are problems in the treatment method after adsorption and the reuse of the adsorbent.

【0008】したがって本発明は、NOxの処理に際して
硝酸等の副生成物の回収が必要なく、VOCの処理及び
ダイオキシン処理に際してはNOxが生成することなく、
またダイオキシン処理に際して吸着させた後の処理が容
易なガス処理方法を提供することを目的とする。
Therefore, according to the present invention, it is not necessary to recover by-products such as nitric acid when treating NOx, and NOx is not produced during VOC treatment and dioxin treatment.
It is another object of the present invention to provide a gas treatment method that is easy to treat after adsorption during dioxin treatment.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するため、請求項1に係る発明は、容器中に吸着剤を充
填し、NOx含有ガスを流通させることによりNOxを吸着
し、吸着剤充填容器内のガスを窒素ガスに置換し、容器
を密封し、吸着剤の温度を上昇させることにより吸着し
たNOxを放出させ、放出したNOxを放電反応器と吸着剤充
填容器の間で循環させると同時に、放電を行うことによ
りNOxの還元処理を行い、この一連の処理をNOxの還元に
伴い生成する酸素の濃度が上昇するまで継続することを
特徴とする吸着剤併用式放電ガス処理方法としたもので
ある。
[Means for Solving the Problems] In order to solve the above problems, the present invention according to claim 1 is characterized in that a container is filled with an adsorbent and NOx-containing gas is circulated to adsorb NOx, thereby adsorbing NOx. The gas in the agent filling container is replaced with nitrogen gas, the container is sealed, the adsorbed NOx is released by raising the temperature of the adsorbent, and the released NOx is charged with the discharge reactor and the adsorbent.
Hama simultaneously is circulated between the container, have a row reduction treatment of NOx by performing discharge, a series of processes for the reduction of NOx
This is an adsorbent-combined discharge gas treatment method characterized by continuing until the concentration of oxygen produced increases .

【0010】また、請求項2に係る発明は、容器中に吸
着剤を充填し、NOx含有ガスを流通させることによりNOx
を吸着し、吸着剤充填容器内のガスを窒素ガスに置換
し、容器を密封し、吸着剤充填容器を減圧することによ
り吸着したNOxを放出させ、放出したNOxを減圧下の放電
反応器と吸着剤充填容器の間で循環或いは往復させると
同時に、放電を行うことによりNOxの還元処理を行い
前記循環或いは往復において、放電処理したガスを吸着
剤充填容器に戻す際、前記減圧に要したエネルギーの一
部を回収し、この一連の処理をNOxの還元に伴い生成す
る酸素の濃度が上昇するまで継続することを特徴とする
吸着剤併用式放電ガス処理方法としたものである。
Further, the invention according to claim 2 is to fill the container with an adsorbent and to let the NOx-containing gas flow, thereby NOx.
Adsorbing, the gas adsorbent filling vessel was replaced with nitrogen gas, the vessel was sealed, and the adsorbed NOx is released, the discharge reactor under reduced pressure release was NOx by depressurizing the adsorbent filling containers When circulating or reciprocating between the adsorbent filling containers
At the same time, discharge is performed to reduce NOx ,
In the circulation or reciprocation, when returning the discharge-treated gas to the adsorbent-filled container, a part of the energy required for the decompression is recovered , and this series of treatments is generated along with the reduction of NOx.
The discharge gas treatment method using an adsorbent is characterized in that the treatment is continued until the oxygen concentration rises .

【0011】[0011]

【0012】また、請求項に係る発明は、容器中に吸
着剤を充填し、VOCまたはダイオキシン含有ガスを流
通させることによりVOCまたはダイオキシンを吸着
し、吸着剤充填容器内のガスを酸素ガスに置換し、容器
を密封し、吸着剤充填容器を減圧することにより吸着し
たVOCまたはダイオキシンを放出させ、放出したVO
Cまたはダイオキシンを放電反応器と吸着剤充填容器の
間で循環或いは往復させると同時に、放電を行うことに
よりVOCまたはダイオキシンの酸化処理を行い、前記
循環或いは往復において、放電処理したガスを吸着剤充
填容器に戻す際、前記減圧に要したエネルギーの一部を
回収することを特徴とする吸着剤併用式放電ガス処理方
法としたものである。
Further, in the invention according to claim 3 , the container is filled with an adsorbent, and the VOC or dioxin-containing gas is circulated to adsorb the VOC or dioxin, and the gas in the adsorbent-filled container is converted to oxygen gas. Substituting, sealing the container, depressurizing the adsorbent-filled container to release the adsorbed VOC or dioxin, and releasing the VO
C or dioxin is circulated or reciprocated between the discharge reactor and the adsorbent-filled container, and at the same time, VOC or dioxin is oxidized by discharging, and the discharge-treated gas is charged with the adsorbent in the circulation or reciprocation. When returning to the container, a part of the energy required for the decompression is recovered, which is a discharge gas treatment method using an adsorbent.

【0013】[0013]

【発明の実施の形態】本発明の実施の形態を説明するに
際して、最初本発明の基本的な考え方について説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION In describing the embodiments of the present invention, the basic concept of the present invention will be described first.

【0014】先ずNOx処理に際しては、還元反応を主体
とした反応系を構築すれば、副生成物の回収は必要では
ない。そのためには窒素ガス中で放電を行えばよい。特
に、 NO+N→N+O の反応速度は常温で、3.3×10-11cm3s-1であり、
非常に早い。ちなみに、 N+N→N の反応速度は、1.1×10-13cm3s-1である。このよ
うに、N原子は、NOxの主成分であるNOと選択的に反
応し還元する作用を有している。
First, in NOx treatment, if a reaction system mainly composed of a reduction reaction is constructed, recovery of by-products is not necessary. For that purpose, the discharge may be performed in nitrogen gas. In particular, the reaction rate of NO + N → N 2 + O is 3.3 × 10 −11 cm 3 s −1 at room temperature,
Very early. By the way, the reaction rate of N + N → N 2 is 1.1 × 10 −13 cm 3 s −1 . As described above, the N atom has a function of selectively reacting with and reducing NO, which is the main component of NOx.

【0015】そこで、本発明は、NOxを窒素ガス雰囲気
中で放電処理するための手段として、吸着剤によるNOx
吸着を行った後、容器中のガスを窒素へ置換し、加熱あ
るいは減圧により吸着NOxを脱離し、放電を適用しNOxの
還元処理を行う。
Therefore, according to the present invention, as means for performing discharge processing of NOx in a nitrogen gas atmosphere, NOx by an adsorbent is used.
After the adsorption, the gas in the container is replaced with nitrogen, and the adsorbed NOx is desorbed by heating or depressurizing, and discharge is applied to reduce the NOx.

【0016】また、VOCやダイオキシン処理の場合に
は、吸着剤による吸着の後、ガスを酸素へ置換し、放電
による酸化処理を行う。この場合、窒素濃度が非常に低
いため、放電に伴うNOx生成は抑制できる。
Further, in the case of VOC or dioxin treatment, after the adsorption by the adsorbent, the gas is replaced with oxygen and the oxidation treatment by discharge is performed. In this case, since the nitrogen concentration is extremely low, NOx generation due to discharge can be suppressed.

【0017】なお、本方式では、吸着剤は吸着と脱離を
繰返すため、吸着剤の回収・後処理は、材料劣化に伴う
交換時以外は必要がない。吸着剤としては、活性炭や活
性炭素繊維、アルミナ、ゼオライト等が利用できる。本
発明は、吸着とガス置換、放電処理を組み合わせてNOx
やVOC等のガス処理を行う方法である。
In this system, the adsorbent is repeatedly adsorbed and desorbed, so that the recovery and post-treatment of the adsorbent are not required except when the adsorbent is replaced due to deterioration of the material. As the adsorbent, activated carbon, activated carbon fiber, alumina, zeolite or the like can be used. The present invention combines NOx with adsorption, gas replacement, and discharge treatment.
It is a method of performing gas treatment such as VOC and VOC.

【0018】NOx処理の具体的手順は以下の通りであ
る。即ち、NOxを含有する排ガスもしくは大気を、吸着
剤を充填した容器中を流通させ、NOxを吸着させる。ガ
スの流通を停止し、容器内のガスを窒素と置換し、容器
を密封する。容器内を加熱あるいは減圧することにより
吸着したNOxを脱離する。容器内のガスを放電反応器に
循環させ、放電処理を行う。放電に伴い、NOxがN
に還元され、O濃度が上昇する。O濃度が数%
に達し、NOx生成反応が進行する状態に到達した場合に
は、再度、容器中ガスをNと置換し、同様の操作を繰
り返す。
The specific procedure of NOx treatment is as follows. That is, the exhaust gas or the atmosphere containing NOx is passed through the container filled with the adsorbent to adsorb NOx. The gas flow is stopped, the gas in the container is replaced with nitrogen, and the container is sealed. The adsorbed NOx is desorbed by heating or depressurizing the inside of the container. The gas in the container is circulated to the discharge reactor to perform discharge processing. With the discharge, NOx is reduced to N 2 and O 2 , and the O 2 concentration rises. O 2 concentration is a few%
When reaching the state where the NOx production reaction proceeds, the gas in the container is replaced with N 2 again, and the same operation is repeated.

【0019】本装置は、NOx汚染の著しい道路沿いの大
気処理装置として設置できるほか、自動車への車載も可
能である。置換用の窒素ガスを必要とする点は難点では
あるものの、窒素ガスの必要量が処理ガス量に比べて非
常に少ないため、窒素ガスの供給は小型の窒素ガス生成
機が適用できる。また、本装置を2系統用意すれば、交
互に切り替えることにより、連続的にガス処理が可能で
ある。また、本装置の吸着容器のみを着脱可能な形式で
車載化し、吸着ガスの放電処理をガソリンスタンド等で
行う方式も可能である。
This device can be installed as an air treatment device along a road where NOx pollution is remarkable, and can also be installed in a car. Although it is difficult to use nitrogen gas for replacement, the required amount of nitrogen gas is much smaller than the amount of processing gas, so a small nitrogen gas generator can be used to supply nitrogen gas. Moreover, if two systems of this apparatus are prepared, gas processing can be continuously performed by switching alternately. It is also possible to mount only the adsorption container of this device on a vehicle in a detachable form and perform the discharge process of the adsorbed gas at a gas station or the like.

【0020】一方、VOCやダイオキシン処理に関して
は、吸着剤に吸着させた後、容器内ガスを酸素ガスと置
換する。その後は、NOx処理と同様な手順により、酸化
処理を行う。放電に伴い、副生成物としてCOやH
Oが生成する。ダイオキシンやトリクロロエチレンのよ
うに塩素を含む化学種の処理を行う場合には、副生成物
としてCl2が生成するので、排気に当たってはCl
回収は必要であるが、この方式では、放電処理時の窒素
濃度が低いため、NOxは生成しない。
On the other hand, for VOC and dioxin treatment, after adsorbing the adsorbent, the gas in the container is replaced with oxygen gas. After that, the oxidation process is performed by the same procedure as the NOx process. With discharge, CO 2 and H 2 as by-products
O produces. When treating chemical species containing chlorine such as dioxins and trichlorethylene, Cl 2 is generated as a by-product, so it is necessary to recover Cl 2 when exhausting, but with this method, during discharge processing NOx is not generated due to the low nitrogen concentration of.

【0021】[実施例]以下、本発明を実施例により更
に詳細に説明する。
[Embodiment] The present invention will be described in more detail with reference to an embodiment.

【0022】図1に本発明の一実施例としての、排ガス
のNOx除去装置への応用例を示す。この装置における
操作手順は以下の通りである。初期状態としては、バル
ブ1〜4は閉じている。 バルブ1とバルブ2を開き、NOxを含む排ガスを吸着
剤を充填した吸着容器内に流通させる。この時、排ガス
中のNOxは吸着剤に吸着する。 バルブ1を閉じ、バルブ3を開き吸着容器と放電反応
器内のガスを窒素ガスと置換する。 バルブ2とバルブ3を閉じ、吸着容器と放電反応器を
密封する。 電気ヒータに通電し、吸着容器を加熱することにより
吸着したNOxを脱離する。 バルブ4を開き、循環ポンプを駆動すると共に、放電
反応器内の電極に高電圧を印加し、NOxの放電処理を行
う。 吸着容器に吸蔵したNOxの大部分の還元処理が完了し
た後、電気ヒータを停止する。 吸着容器の温度低下後、最初の手順に戻り、処理済
みガスの排気を行うと同時に、再び、吸着を開始する。
また、手順において、NOx還元処理の進行に伴い、循
環ガス中の酸素濃度が上昇し、放電によるNOx生成反応
が顕著となった場合には、放電と加熱を停止し、吸蔵し
たNOxの大部分の処理が完了するまで手順〜を繰り
返した後、手順に移行する。
FIG. 1 shows an example of application of the exhaust gas to a NOx removing device as one embodiment of the present invention. The operating procedure in this device is as follows. In the initial state, the valves 1 to 4 are closed. The valves 1 and 2 are opened, and the exhaust gas containing NOx is circulated in the adsorption container filled with the adsorbent. At this time, NOx in the exhaust gas is adsorbed by the adsorbent. The valve 1 is closed and the valve 3 is opened to replace the gas in the adsorption container and the discharge reactor with nitrogen gas. The valves 2 and 3 are closed, and the adsorption container and the discharge reactor are sealed. By energizing the electric heater and heating the adsorption container, the adsorbed NOx is desorbed. The valve 4 is opened, the circulation pump is driven, and a high voltage is applied to the electrode in the discharge reactor to perform NOx discharge treatment. After the reduction process for most of the NOx stored in the adsorption container is completed, the electric heater is stopped. After the temperature of the adsorption container is lowered, the procedure returns to the first step, the treated gas is exhausted, and at the same time, the adsorption is started again.
In addition, in the procedure, as the NOx reduction treatment progressed, the oxygen concentration in the circulating gas increased, and when the NOx production reaction due to discharge became remarkable, discharge and heating were stopped, and most of the stored NOx was stopped. Repeat steps (1) to (3) until the processing of (3) is completed, and then move to steps.

【0023】図2に別の実施例を示す。本実施例と図1
に示す前記実施例との相違点は、電気ヒータと循環ポン
プに換え、圧縮機、モータ、圧力容器、タービンを設置
した点である。なお、圧縮機とモータ及びタービンは同
軸の回転装置である。本実施例では、図1の実施例と同
様な過程によりNOx吸着と窒素ガス置換・密封を行った
後、吸着容器内で吸着したNOxの脱離を吸着容器内の減
圧により行う。本脱離過程においては、圧縮機をモータ
で駆動することにより吸着容器内のガスを放電反応器を
通して圧力容器内に導く。この際、吸着容器と放電反応
器を減圧し、同時に圧力容器を加圧する。圧力容器内の
ガスはタービンを通して吸着容器へ循環するが、この
際、圧力容器と吸着容器の圧力差を利用して、タービン
により駆動力を回収する。この回収した駆動力は、圧縮
機の動力の一部として活用する。本実施例では、放電反
応器内も減圧されることより、放電によるラジカル生成
効率の向上や印加電圧の低減が可能である。
FIG. 2 shows another embodiment. This embodiment and FIG.
The difference from the above-mentioned embodiment is that a compressor, a motor, a pressure vessel, and a turbine are installed instead of the electric heater and the circulation pump. The compressor, the motor and the turbine are coaxial rotating devices. In this embodiment, after NOx adsorption and nitrogen gas replacement / sealing are performed by the same process as in the embodiment of FIG. 1, desorption of NOx adsorbed in the adsorption container is performed by depressurizing the adsorption container. In this desorption process, the gas in the adsorption container is introduced into the pressure container through the discharge reactor by driving the compressor with a motor. At this time, the adsorption container and the discharge reactor are decompressed, and at the same time, the pressure container is pressurized. The gas in the pressure vessel circulates through the turbine to the adsorption vessel. At this time, the driving force is recovered by the turbine by utilizing the pressure difference between the pressure vessel and the adsorption vessel. The recovered driving force is utilized as a part of the power of the compressor. In this example, the pressure inside the discharge reactor is also reduced, so that the radical generation efficiency by discharge and the applied voltage can be reduced.

【0024】図3は別の実施例である。この実施例にお
いては、吸着容器の減圧をピストン・シリンダーを用い
て行う。図1の実施例と同様な過程によりNOx吸着と窒
素ガス置換・密封を行った後、NOxの脱離過程において
は、ピストンを図面右方向へ移動させることによりシリ
ンダー内にガスを吸引し、吸着容器と放電反応器を減圧
し、吸着NOxの脱離を行う。減圧された放電反応器内で
放電し、NOxの還元処理を行った後、ピストンを図面左
方向へ移動することにより、ガスを吸着容器内へ戻し、
吸着容器内を復圧する。このピストン移動及びそれに同
期した放電処理を、NOx処理の完了もしくは酸素濃度の
上昇限度に至るまで繰返す。減圧時にピストン駆動に必
要なエネルギーの一部は、復圧時にピストンが吸引され
ることにより回収することができる。本実施例において
も、放電は減圧時に行うため、ラジカル生成効率の向上
や印加電圧の低減が可能である。
FIG. 3 shows another embodiment. In this embodiment, decompression of the adsorption container is performed using a piston / cylinder. After performing NOx adsorption and nitrogen gas replacement / sealing by the same process as in the embodiment of FIG. 1, in the NOx desorption process, the piston is moved to the right in the drawing to suck the gas into the cylinder and adsorb it. The vessel and discharge reactor are decompressed to desorb adsorbed NOx. After discharging in the pressure-reduced discharge reactor and performing NOx reduction treatment, by moving the piston to the left in the drawing, the gas is returned to the adsorption container,
Repressurize the inside of the adsorption container. This piston movement and the discharge treatment synchronized with it are repeated until the NOx treatment is completed or the oxygen concentration rises. Part of the energy required to drive the piston during depressurization can be recovered by suction of the piston during pressure recovery. Also in this embodiment, since the discharge is performed at the time of depressurization, the radical generation efficiency can be improved and the applied voltage can be reduced.

【0025】以上の実施例では、NOx処理について説明
を行った。VOCやダイオキシン処理に関しては、バル
ブ3から注入する置換用のガスを酸素に変更することに
より、VOC等の酸化処理が可能である。この場合、副
生成物であるCOやHO濃度が上昇した場合には、
逆反応が進行するため、適宜、酸素への置換を行う。な
お、本方式では、放電処理過程における窒素ガス濃度が
低いため、NOxは生成しない。
In the above embodiment, the NOx treatment has been described. Regarding VOC and dioxin treatment, VOC and the like can be oxidized by changing the replacement gas injected from the valve 3 to oxygen. In this case, when the concentrations of CO 2 and H 2 O, which are by-products, increase,
Since the reverse reaction proceeds, oxygen is appropriately substituted. In this method, NOx is not generated because the nitrogen gas concentration in the discharge treatment process is low.

【0026】[0026]

【発明の効果】本発明におけるNOx処理においては、窒
素ガス中で還元処理を行うため、副生成物の回収を必要
としない。また、この処理方法を沿道設置式のNOx処理
装置に適用した場合は、昼間はNOxを吸着し、深夜電力
を利用して、吸着したNOxを放電処理する方式が適用で
きる。この点に関して、排ガス処理装置を車載化する
と、燃費の低下を招き、COの排出量が増加するが、
上記のような沿道設置の場合は、CO削減の観点から
考えると有利な方式である。また、着脱式の吸着物質の
みを車載化し、放電処理をガソリンスタンド等で行う方
式も考えられ、CO削減とNOx処理を両立させる有効
な方式となる。
In the NOx treatment of the present invention, since the reduction treatment is carried out in nitrogen gas, it is not necessary to recover the by-products. When this treatment method is applied to a roadside installation type NOx treatment device, a method of adsorbing NOx in the daytime and discharging the adsorbed NOx by using midnight power can be applied. In this regard, if the exhaust gas treatment device is mounted on a vehicle, fuel consumption is lowered and CO 2 emission increases, but
In the case of roadside installation as described above, it is an advantageous method from the viewpoint of CO 2 reduction. In addition, a method in which only removable adsorbents are mounted on a vehicle and discharge processing is performed at a gas station or the like is also considered, which is an effective method that achieves both CO 2 reduction and NOx processing.

【0027】また、VOCやダイオキシンの放電処理に
おいては、酸素中で行うため、NOxが発生せず、かつ、
ダイオキシン処理に際して吸着させた後の処理を必要と
しない。
In addition, since the discharge treatment of VOC and dioxin is performed in oxygen, NOx is not generated, and
No treatment after adsorption is required for dioxin treatment.

【0028】更に、これらの処理に必要な窒素ガスや酸
素ガスは、被処理ガス量に比べ非常に少なくて済み、例
えば、排ガス中の濃度100ppmのNOを処理する場合に
おいては、放電中の酸素濃度の上限を3%とすると、被
処理ガス量の1/600の窒素ガスで処理できる。空気中の
NO2濃度1ppmを処理する場合には、所要窒素ガス量
は、処理ガス量の3万分の1程度と見積もられる。
Further, the amount of nitrogen gas and oxygen gas required for these treatments is very small compared to the amount of gas to be treated. For example, when treating NO of concentration 100ppm in exhaust gas, oxygen in discharge is discharged. When the upper limit of the concentration is set to 3%, the nitrogen gas can be treated with 1/600 of the amount of gas to be treated. When treating a NO 2 concentration of 1 ppm in air, the required amount of nitrogen gas is estimated to be about 1 / 30,000 of the amount of treated gas.

【0029】また、本発明では、吸着剤は吸着と脱離を
繰返すため、吸着剤の回収・後処理は、材料劣化に伴う
交換時以外は必要がない。
Further, in the present invention, since the adsorbent is repeatedly adsorbed and desorbed, recovery and post-treatment of the adsorbent are not required except for replacement due to deterioration of the material.

【0030】更に、吸着物質の脱離を減圧により行う場
合には、減圧に要するエネルギーの一部を回収すること
が可能であり、エネルギー効率の高いガス処理方法とす
ることができる。
Furthermore, when desorbing the adsorbed substance by decompression, a part of the energy required for decompression can be recovered, and a gas treatment method with high energy efficiency can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であり、排ガス中のNOxを処
理するに際して、NOx脱離を吸着剤の加熱により行う
方法の概略構成図である。
1 is an embodiment of the present invention, and is a schematic configuration diagram of a method of performing NOx desorption by heating an adsorbent when treating NOx in exhaust gas.

【図2】本発明の一実施例であり、排ガス中のNOxを処
理するに際して、圧縮機を用いて吸着容器の減圧を行
い、NOx脱離を行う方法の概略構成図である。
2 is an embodiment of the present invention, and is a schematic configuration diagram of a method of decompressing an NOx in an adsorption vessel by using a compressor when treating NOx in exhaust gas. FIG.

【図3】本発明の一実施例であり、排ガス中のNOxを処
理するに際して、ピストン・シリンダーを用いて吸着容
器の減圧を行い、NOx脱離を行う方法の概略構成図で
ある。
FIG. 3 is one embodiment of the present invention, and is a schematic configuration diagram of a method for decompressing NOx by depressurizing the adsorption container using a piston and a cylinder when treating NOx in exhaust gas.

【図4】従来のアンモニア添加式放電NOx処理装置の概
略構成図である。
FIG. 4 is a schematic configuration diagram of a conventional ammonia addition type discharge NOx treatment device.

【図5】従来の水中バブリング式放電NOx処理装置の概
略構成図である。
FIG. 5 is a schematic configuration diagram of a conventional underwater bubbling type discharge NOx treatment device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B01D 53/74 (56)参考文献 特開 平11−179140(JP,A) 特開 平9−136016(JP,A) 特開 平6−246133(JP,A) 特開 平8−229345(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/32 B01D 53/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI B01D 53/74 (56) References JP-A-11-179140 (JP, A) JP-A-9-136016 (JP, A) Special Kaihei 6-246133 (JP, A) JP-A-8-229345 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53/32 B01D 53/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器中に吸着剤を充填し、NOx含有ガス
を流通させることによりNOxを吸着し、 吸着剤充填容器内のガスを窒素ガスに置換し、 容器を密封し、 吸着剤の温度を上昇させることにより吸着したNOxを放
出させ、 放出したNOxを放電反応器と吸着剤充填容器の間で循環
させると同時に、放電を行うことによりNOxの還元処理
を行い、この一連の処理をNOxの還元に伴い生成する酸
素の濃度が上昇するまで継続することを特徴とする吸着
剤併用式放電ガス処理方法。
1. A container is filled with an adsorbent, NOx is adsorbed by circulating a NOx-containing gas, the gas in the adsorbent-filled container is replaced with nitrogen gas, the container is sealed, and the adsorbent temperature is set. The NOx adsorbed is released by raising the NOx, and the released NOx is circulated between the discharge reactor and the adsorbent-filled container, and at the same time discharge is performed to reduce the NOx. The method for discharging gas treatment with adsorbent, characterized in that the treatment is continued until the concentration of oxygen generated by the reduction of hydrogen is increased.
【請求項2】 容器中に吸着剤を充填し、NOx含有ガス
を流通させることによりNOxを吸着し、 吸着剤充填容器内のガスを窒素ガスに置換し、 容器を密封し、 吸着剤充填容器を減圧することにより吸着したNOxを放
出させ、 放出したNOxを減圧下の放電反応器と吸着剤充填容器の
間で循環或いは往復させると同時に、放電を行うことに
よりNOxの還元処理を行い、前記循環或いは往復におい
て、放電処理したガスを吸着剤充填容器に戻す際、前記
減圧に要したエネルギーの一部を回収し、この一連の処
理をNOxの還元に伴い生成する酸素の濃度が上昇するま
で継続することを特徴とする吸着剤併用式放電ガス処理
方法。
2. A container is filled with an adsorbent and NOx-containing gas is circulated to adsorb NOx, the gas in the adsorbent-filled container is replaced with nitrogen gas, and the container is hermetically sealed. The adsorbed NOx is released by depressurizing the NOx, and the released NOx is circulated or reciprocated between the discharge reactor and the adsorbent-filled container under reduced pressure, and at the same time, the discharge is performed to reduce the NOx. In the circulation or reciprocation, when returning the discharged gas to the adsorbent-filled container, a part of the energy required for the decompression is recovered, and this series of processes is performed until the concentration of oxygen generated by the reduction of NOx rises. An adsorbent-combined discharge gas treatment method characterized by continuing.
【請求項3】 容器中に吸着剤を充填し、VOCまたは
ダイオキシン含有ガスを流通させることによりVOCま
たはダイオキシンを吸着し、 吸着剤充填容器内のガスを酸素ガスに置換し、 容器を密封し、 吸着剤充填容器を減圧することにより吸着したVOCま
たはダイオキシンを放出させ、 放出したVOCまたはダイオキシンを放電反応器と吸着
剤充填容器の間で循環或いは往復させると同時に、放電
を行うことによりVOCまたはダイオキシンの酸化処理
を行い、前記循環或いは往復において、放電処理したガ
スを吸着剤充填容器に戻す際、前記減圧に要したエネル
ギーの一部を回収することを特徴とする吸着剤併用式放
電ガス処理方法。
3. A container is filled with an adsorbent, VOC or dioxin is adsorbed by circulating a gas containing VOC or dioxin, the gas in the adsorbent-filled container is replaced with oxygen gas, and the container is sealed, By decompressing the adsorbent-filled container, the adsorbed VOC or dioxin is released, and the released VOC or dioxin is circulated or reciprocated between the discharge reactor and the adsorbent-filled container, and at the same time discharge is performed to discharge the VOC or dioxin. Is carried out, and in the circulation or reciprocation, when returning the discharge-treated gas to the adsorbent-filled container, a part of the energy required for the decompression is recovered, and the adsorbent-combined discharge gas treatment method is characterized. .
JP2000124380A 2000-04-25 2000-04-25 Discharge gas treatment method with adsorbent Expired - Lifetime JP3455815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124380A JP3455815B2 (en) 2000-04-25 2000-04-25 Discharge gas treatment method with adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124380A JP3455815B2 (en) 2000-04-25 2000-04-25 Discharge gas treatment method with adsorbent

Publications (2)

Publication Number Publication Date
JP2001300249A JP2001300249A (en) 2001-10-30
JP3455815B2 true JP3455815B2 (en) 2003-10-14

Family

ID=18634518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124380A Expired - Lifetime JP3455815B2 (en) 2000-04-25 2000-04-25 Discharge gas treatment method with adsorbent

Country Status (1)

Country Link
JP (1) JP3455815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569833B (en) * 2008-04-30 2011-11-30 杰智环境科技股份有限公司 Purifying device for washing organic gas in low-concentration and wet-type ways

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900676B2 (en) * 2006-07-14 2012-03-21 独立行政法人産業技術総合研究所 Replacement and recovery method for reducing atmospheric gas
JP4751264B2 (en) * 2006-07-31 2011-08-17 株式会社東芝 Ventilation gas purification device and purification method thereof
JP5058107B2 (en) * 2008-09-12 2012-10-24 株式会社東芝 NOx purification device
CN111729489A (en) * 2020-07-07 2020-10-02 江苏港大环保有限公司 Exhaust gas cooler and exhaust gas treatment device comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569833B (en) * 2008-04-30 2011-11-30 杰智环境科技股份有限公司 Purifying device for washing organic gas in low-concentration and wet-type ways

Also Published As

Publication number Publication date
JP2001300249A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
US10711354B2 (en) Electrolysis apparatus for collecting nitrogen compound using ferric-ethylenediamine tetraacetic acid
JP4411432B2 (en) Method and apparatus for purifying exhaust gas using low temperature plasma
KR102054855B1 (en) Method for Simultaneous Treating Nitrogen Oxides and Sulfur Oxides using Iron Ethylene diamine tetraacetic acid
JP3455815B2 (en) Discharge gas treatment method with adsorbent
JP5540337B2 (en) Exhaust gas treatment method and treatment apparatus
JP3395432B2 (en) Gas treatment equipment
CN113019083A (en) VOCs low-temperature plasma synergistic adsorption and catalysis integrated device and VOCs treatment method thereof
CN111330423A (en) Method for simultaneously removing nitrogen oxide and gaseous mercury
JPH09308811A (en) Method for concentration of krypton in mixed gas of oxygen-nitrogen
KR102315001B1 (en) Electrochemical Conversion System of NOx and NOx Conversion Method
JP4217785B2 (en) Gas regeneration type discharge NOx treatment method and apparatus
WO2020213281A1 (en) Acidic exhaust gas treatment agent, acidic exhaust gas treatment method, and acidic exhaust gas treatment equipment
JP5499489B2 (en) NOx-containing exhaust gas treatment apparatus and NOx-containing exhaust gas treatment method
JPH11147038A (en) Regenerating process for nitrogen dioxide adsorbent
JP2000294266A (en) Method and device for recovering energy
JP4280828B2 (en) Gas replacement type occlusion discharge NOx treatment method and apparatus
JP2000093740A (en) Method for denitrating exhaust gas showing fluctuation of concentration of nitrogen oxide
Tom et al. PFC concentration and recycle
JP3421804B2 (en) Discharge gas treatment method and treatment apparatus utilizing heat cycle
CN210559437U (en) Device for treating nitrogen dioxide waste gas
JP3830872B2 (en) Mixed gas separator
JP2000061253A (en) Dry type exhaust gas treatment and treating device
JP3393825B2 (en) Exhaust gas treatment device and method
JPH0422415A (en) Method for adsorbing and removing carbon dioxide
JPH04164803A (en) Recovery of valuable substance from nox-containing gas

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3455815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term