JPH1142479A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPH1142479A
JPH1142479A JP21711897A JP21711897A JPH1142479A JP H1142479 A JPH1142479 A JP H1142479A JP 21711897 A JP21711897 A JP 21711897A JP 21711897 A JP21711897 A JP 21711897A JP H1142479 A JPH1142479 A JP H1142479A
Authority
JP
Japan
Prior art keywords
water
osmosis membrane
reverse osmosis
mea
dmso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21711897A
Other languages
Japanese (ja)
Other versions
JP3480797B2 (en
Inventor
Masanari Hidaka
真生 日高
Jun Tanaka
順 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP21711897A priority Critical patent/JP3480797B2/en
Publication of JPH1142479A publication Critical patent/JPH1142479A/en
Application granted granted Critical
Publication of JP3480797B2 publication Critical patent/JP3480797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently decrease the TOC in treated water substantially by single equipment by adding an acid to the waste water contg. monoethanolamine and dimethyl sulfoxide to regulate the pH of the waste water below a specified value. SOLUTION: The raw waste water 3 contains monoethanolamine(MEA) and dimethyl solfoxide(DMSO). The water 3 is regulated to <=pH 8.5, preferably pH 4.0 to 7.0, by injecting an acid soln. 6 from an acid injector 2. The regulated liq. 4 is then introduced under heating into the reverse-osmosis membrane device 1 using a reverse-osmosis membrane and separated into the permeated water 5 on the permeated side and the water 7 concentrated in MEA and DMSO on the concentrated side. The permeated water 5 low in TOC is returned on the raw-water side of a pure water producing device, etc. Meanwhile, the water 7 concentrated in MEA and DMSO is subjected to Fenton oxidation reaction, for example, and the org. material is decomposed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、半導体製
造工程から排出されるモノエタノールアミン及びジメチ
ルスルホキシドを含有する排水から、TOCが低減され
た良質の水を効率的に得る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently obtaining high-quality water with reduced TOC from wastewater containing monoethanolamine and dimethyl sulfoxide discharged from a semiconductor manufacturing process, for example. .

【0002】[0002]

【従来の技術】従来、モノエタノールアミン(MEA)
及びジメチルスルホキシド(DMSO)を含有する排水
(原水)を処理する方法としては、例えば、(1) 逆浸透
膜装置とイオン交換装置を組み合わせて処理する方法、
(2) 紫外線酸化と逆浸透膜装置、イオン交換装置等の脱
塩処理とを組み合わせて処理する方法、(3) フェントン
酸化処理等の湿式酸化を用いる方法等が挙げられる。
2. Description of the Related Art Conventionally, monoethanolamine (MEA)
As a method for treating wastewater (raw water) containing dimethylsulfoxide and dimethyl sulfoxide (DMSO), for example, (1) a method using a combination of a reverse osmosis membrane device and an ion exchange device,
(2) A method using a combination of ultraviolet oxidation and a desalination treatment such as a reverse osmosis membrane device and an ion exchange device, and (3) a method using wet oxidation such as a Fenton oxidation treatment.

【0003】上記(1) の逆浸透膜装置とイオン交換装置
を組み合わせて処理する方法は、まず、逆浸透膜装置に
より排水中のDMSOを除去し、次いで透過水中のME
Aをイオン交換樹脂により除去し、TOCが低減された
水を得るものである。このようにするのは、DMSOは
逆浸透膜で除去できるがMEAは除去が不充分であるの
に対し、MEAはイオン性を帯びているため陽イオン交
換樹脂によって容易に除去できるからである。また、上
記逆浸透膜より出るDMSO濃縮廃液及び上記イオン交
換樹脂より出る再生廃液はフェントン酸化処理等の湿式
酸化処理を行っていた。しかしながら、該(1) の方法で
は、逆浸透膜装置とイオン交換装置の2種類の設備が必
要となり、運転コストの上昇及び運転管理上煩雑となる
等好ましくない。
[0003] In the method (1) for treating a combination of a reverse osmosis membrane device and an ion exchange device, first, DMSO in the wastewater is removed by a reverse osmosis membrane device, and then ME in the permeated water is removed.
A is removed with an ion exchange resin to obtain water with reduced TOC. This is because DMSO can be removed by a reverse osmosis membrane, but MEA is insufficiently removed, whereas MEA is ionic and can be easily removed by a cation exchange resin. Further, the DMSO concentrated waste liquid discharged from the reverse osmosis membrane and the regenerated waste liquid discharged from the ion exchange resin have been subjected to wet oxidation treatment such as Fenton oxidation treatment. However, the method (1) requires two types of equipment, that is, a reverse osmosis membrane device and an ion exchange device, which is not preferable because it raises operating costs and complicates operation management.

【0004】上記(2) の紫外線酸化と逆浸透膜装置、イ
オン交換装置等の脱塩処理とを組み合わせて処理する方
法において、後処理の逆浸透膜装置、イオン交換装置等
の脱塩処理により出るDMSO濃縮廃液等は上記(1) と
同様湿式酸化処理される。しかし、該(2) の方法では、
紫外線酸化の際、悪臭が出るため環境対策が必要であ
る。また、紫外線照射コストが高く、処理コストが上昇
するといった問題がある。
[0004] In the method of (2), wherein the ultraviolet oxidation is combined with the desalination treatment of a reverse osmosis membrane device, an ion exchange device, etc., the post-treatment is performed by desalination treatment of a reverse osmosis membrane device, an ion exchange device, etc. The discharged DMSO concentrated waste liquid and the like are subjected to wet oxidation treatment as in the above (1). However, in the method (2),
At the time of UV oxidation, an odor is generated, so environmental measures are required. Further, there is a problem that the cost of irradiating ultraviolet rays is high and the processing cost is increased.

【0005】上記(3) の方法は、原水を逆浸透膜装置、
イオン交換装置及び紫外線酸化等の処理をすることな
く、直接フェントン酸化処理等の湿式酸化処理する方法
で、処理工程の簡略化が図れる。しかしながら、処理水
の回収ができず、また、原水中のDMSO及びMEA濃
度が薄く、流量が多いため処理設備は大きくなるといっ
た問題がある。
In the method (3), raw water is subjected to a reverse osmosis membrane device,
The process can be simplified by a wet oxidation process such as a direct Fenton oxidation process without performing an ion exchange device and a process such as ultraviolet oxidation. However, there is a problem that the treated water cannot be recovered, and the concentration of DMSO and MEA in the raw water is low and the flow rate is large, so that the processing equipment becomes large.

【0006】[0006]

【発明が解決しようとする課題】従って、本発明の目的
は、DMSO及びMEAを含有する排水処理において、
最終のDMSO及びMEA濃縮水の処理はフェントン酸
化処理等の湿式酸化処理に委ねるものの、実質的に単一
の設備で、効率よく処理水中のTOCを低減できる排水
方法を提供することにある。
Accordingly, an object of the present invention is to provide a wastewater treatment containing DMSO and MEA.
Although the final treatment of DMSO and MEA concentrated water is left to wet oxidation treatment such as Fenton oxidation treatment, it is an object of the present invention to provide a drainage method capable of efficiently reducing TOC in treated water with a substantially single facility.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、DMSO及びMEAを
含有する排水はpH10以上のアルカリ領域にあり、こ
れを酸でpH8.5以下に調整して、逆浸透膜装置に通
水するだけで効率よく処理水中のTOCを低減できるこ
とを見出し、本発明を完成するに至った。すなわち、本
発明は、モノエタノールアミン及びジメチルスルホキシ
ドを含有する排水に酸を添加して、該排水のpHを8.
5以下に調整し、これを逆浸透膜装置で処理する排水処
理方法又は前記逆浸透膜装置で処理された透過水を、再
度、逆浸透膜装置で処理することを特徴とする排水処理
方法を提供するものである。
Under such circumstances, the present inventors have conducted intensive studies. As a result, the wastewater containing DMSO and MEA is in an alkaline region having a pH of 10 or more, and adjusted to pH 8.5 or less with an acid. Then, they found that TOC in treated water can be efficiently reduced only by passing water through a reverse osmosis membrane device, and completed the present invention. That is, in the present invention, an acid is added to a wastewater containing monoethanolamine and dimethyl sulfoxide, and the pH of the wastewater is adjusted to 8.8.
5 or less, and a wastewater treatment method characterized by treating this with a reverse osmosis membrane device or treating the permeated water treated with the reverse osmosis membrane device again with a reverse osmosis membrane device. To provide.

【0008】また、本発明は、前記再度、逆浸透膜装置
で処理された濃縮水を原水側に戻すことを特徴とする排
水処理方法を提供するものである。
The present invention also provides a wastewater treatment method characterized by returning the concentrated water treated by the reverse osmosis membrane device to the raw water side again.

【0009】[0009]

【発明の実施の形態】本発明の第1の実施の形態におけ
る排水処理方法を図1を参照して説明する。図1中、1
は逆浸透膜装置、2は酸注入装置、3は原水、4はpH
調整された原水、5は透過水、7は濃縮水、6は酸液で
ある。原水3はモノエタノールアミン(以下、MEAと
略す。)及びジメチルスルホキシド(以下、DMSOと
略す。)を含有する排水である。当該排水としては、M
EA及びDMSOを含有するものであれば、特に制限さ
れず、例えば、半導体製造装置から排出されるMEA及
びDMSOの希釈排水であって、pH10前後ものが挙
げられる。この原水3は酸注入装置2から注入される酸
液6により、pH値を8.5以下、好ましくは4.0〜
7.0の範囲に調整される。pH値が8.5を越えると
MEAの除去効率が悪くなり、また、pH値を4以下と
してもMEAの除去率はそれ程増加しないので、酸の無
駄使いとなる。次いでこの調整液4を逆浸透膜を用いた
逆浸透膜装置1に加圧下で流入させると、透過側に透過
水5を、濃縮側にMEA及びDMSOの濃縮水7をそれ
ぞれ分離することができる。透過水5は原水中のMEA
及びDMSOをそれぞれ90%以上除去されたものとな
り、TOCが低く、純水製造装置等の原水側に戻され
る。一方、MEA及びDMSOの濃縮水7は、例えばフ
ェントン酸化処理され有機物分解される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A waste water treatment method according to a first embodiment of the present invention will be described with reference to FIG. In FIG. 1, 1
Is a reverse osmosis membrane device, 2 is an acid injection device, 3 is raw water, 4 is pH
The adjusted raw water, 5 is permeated water, 7 is concentrated water, and 6 is an acid solution. The raw water 3 is waste water containing monoethanolamine (hereinafter abbreviated as MEA) and dimethyl sulfoxide (hereinafter abbreviated as DMSO). As the wastewater, M
There is no particular limitation as long as it contains EA and DMSO. For example, a dilution wastewater of MEA and DMSO discharged from a semiconductor manufacturing apparatus, which has a pH of around 10 can be mentioned. The raw water 3 has a pH value of 8.5 or less, preferably 4.0 to 4.0, by an acid solution 6 injected from the acid injection device 2.
It is adjusted to the range of 7.0. If the pH value exceeds 8.5, the removal efficiency of MEA becomes poor, and even if the pH value is set to 4 or less, the removal rate of MEA does not increase so much, so that the acid is wasted. Next, when this adjustment liquid 4 is flowed under pressure into the reverse osmosis membrane device 1 using a reverse osmosis membrane, the permeated water 5 can be separated on the permeation side, and the concentrated water 7 of MEA and DMSO can be separated on the concentration side. . Permeated water 5 is MEA in raw water
And 90% or more of DMSO respectively, and the TOC is low and returned to the raw water side of a pure water production device or the like. On the other hand, the concentrated water 7 of MEA and DMSO is subjected to, for example, Fenton oxidation treatment to decompose organic substances.

【0010】本発明で用いられる逆浸透膜としては、特
に制限されず、ポリアミド系のもの等が挙げられ、ま
た、その形状もスパイラル状、管状等いずれの形状のも
のも用いることができる。また、処理条件としても、慣
用条件に従えばよく、圧力数kg/cm2〜70kg/cm2、常温
下で行えばよい。また、上記酸としては、特に制限され
ず、塩酸、硫酸等の無機酸が挙げられる。
[0010] The reverse osmosis membrane used in the present invention is not particularly limited, and examples thereof include polyamide-based membranes, and any shape such as a spiral shape and a tubular shape can be used. Further, even if the processing conditions, can be carried out in accordance with conventional conditions, the pressure number kg / cm 2 ~70kg / cm 2 , may be performed at room temperature. The acid is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid and sulfuric acid.

【0011】本発明の第1の実施の形態における排水処
理方法によれば、最終のDMSO及びMEA濃縮水の処
理はフェントン酸化処理等の湿式酸化処理に委ねるもの
の、実質的に単一の設備で、極めて効率よく処理水中の
TOCを低減できる。また、排水処理フローが簡略化で
き、従来の紫外線酸化による悪臭等の心配もない。
According to the wastewater treatment method of the first embodiment of the present invention, although the final treatment of DMSO and MEA concentrated water is left to wet oxidation treatment such as Fenton oxidation treatment, the treatment is substantially performed by a single facility. The TOC in the treated water can be extremely efficiently reduced. In addition, the flow of wastewater treatment can be simplified, and there is no fear of bad smell or the like due to conventional ultraviolet oxidation.

【0012】次に、本発明の第2の実施の形態における
排水処理方法を図2を参照して説明する。図2中、図1
と同一構成要素には同一記号を付してその説明を省略
し、異なる点についてのみ説明する。すなわち、第1の
実施の形態と異なるところは、更に、もう一つの逆浸透
膜装置1(第2段)を第1段目の下流側に直列に配置し
処理させる点及び第2段の逆浸透膜装置1から出る濃縮
水9を原水3に戻す点にある。
Next, a wastewater treatment method according to a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, FIG.
The same components as those described above are denoted by the same reference numerals, description thereof will be omitted, and only different points will be described. That is, what is different from the first embodiment is that another reverse osmosis membrane device 1 (second stage) is disposed in series downstream of the first stage and processed, and the reverse osmosis of the second stage is performed. The point lies in returning the concentrated water 9 from the membrane device 1 to the raw water 3.

【0013】本発明の第2の実施の形態における排水処
理方法によれば、上記第1の実施の形態と同様の効果を
奏する他、更に、第2段の逆浸透膜装置を設けたことか
ら、原水のMEA及びDMSO濃度が高い場合であって
も安定した良質の透過水を得ることができる。また、第
2段の逆浸透膜装置からでる濃縮水はMEA及びDMS
O濃度が薄くなっていることから、これを原水側へ戻す
ことによって全体の水の回収率を向上させることができ
る。
According to the wastewater treatment method of the second embodiment of the present invention, the same effects as those of the first embodiment can be obtained, and further, a second-stage reverse osmosis membrane device is provided. Even when the MEA and DMSO concentrations of the raw water are high, stable and high quality permeated water can be obtained. Concentrated water from the second stage reverse osmosis membrane device is MEA and DMS.
Since the O concentration is low, returning the O concentration to the raw water side can improve the overall water recovery rate.

【0014】本発明の方法によれば、MEA及びDMS
Oを含有する排水に酸を添加して、該排水のpHを8.
5以下に調整し、これを逆浸透膜装置で処理するため、
MEAがイオンとして存在でき、逆浸透膜装置で効果的
に除去できる。このため、排水中のMEA及びDMSO
を実質的に単一の逆浸透膜装置で同時に除去することが
可能である。このため、透過水中に含まれるTOCは充
分に排除され、良好な水質のものを得ることができる。
According to the method of the present invention, the MEA and the DMS
7. Acid is added to the wastewater containing O to adjust the pH of the wastewater to 8.
5 or less, and to process this with a reverse osmosis membrane device,
The MEA can be present as ions and can be effectively removed with a reverse osmosis membrane device. For this reason, MEA and DMSO
Can be removed simultaneously with substantially a single reverse osmosis membrane device. For this reason, TOC contained in the permeated water is sufficiently eliminated, and a water having a good quality can be obtained.

【0015】[0015]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明するが、これは単に例示であって本発明を制限す
るものではない。 実施例1〜3及び比較例1 表1に示す濃度のMEA及びDMSOを含む原水を酸で
pH8.0(実施例1)、pH7.1(実施例2)、pH4.
0(実施例3)に調整し、該調整液を1段の逆浸透膜装
置に流入させて、透過水と濃縮水を得た。逆浸透膜装置
に用いた逆浸透膜はES-20 (日東電工社製)であり、圧
力7kg/cm2、水の回収率85%の条件で行った。ただ
し、比較例1はpH 未調整のものである。結果を表1に
示した。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but these are merely examples and do not limit the present invention. Examples 1 to 3 and Comparative Example 1 Raw water containing MEA and DMSO at the concentrations shown in Table 1 was acidified.
pH 8.0 (Example 1), pH 7.1 (Example 2), pH 4.
It was adjusted to 0 (Example 3), and the adjusted liquid was allowed to flow into a one-stage reverse osmosis membrane device to obtain permeated water and concentrated water. The reverse osmosis membrane used in the reverse osmosis membrane device was ES-20 (manufactured by Nitto Denko Corporation) under the conditions of a pressure of 7 kg / cm 2 and a water recovery of 85%. However, in Comparative Example 1, the pH was not adjusted. The results are shown in Table 1.

【0016】実施例4〜5、比較例2 表1に示す濃度のMEA及びDMSOを含む原水を酸で
pH6.9(実施例4)、pH4.0(実施例5)に調整
し、該調整液を1段目の逆浸透膜装置に流入させ、次い
で1段目の透過水を2段目の逆浸透膜装置に流入させ
て、透過水と濃縮水を得た。逆浸透膜装置に用いた逆浸
透膜はES-20 (日東電工社製)であり、圧力7kg/cm2
水の回収率85%の条件で行った。ただし、比較例2は
pH 未調整のものである。結果を表1に示した。
Examples 4-5, Comparative Example 2 Raw water containing MEA and DMSO at the concentrations shown in Table 1 was acidified.
The pH was adjusted to 6.9 (Example 4) and pH 4.0 (Example 5), and the adjusted solution was allowed to flow into the first-stage reverse osmosis membrane device. It was made to flow into the osmosis membrane device to obtain permeated water and concentrated water. The reverse osmosis membrane used for the reverse osmosis membrane device is ES-20 (manufactured by Nitto Denko Corporation), and the pressure is 7 kg / cm 2 ,
The test was performed under the condition of a water recovery rate of 85%. However, Comparative Example 2
pH unadjusted. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から、実施例1〜3はMEAの除去率
がそれぞれ96%〜97%と高く、TOCの低い良質の
透過水が得られた。pH 未調整の比較例1の該除去率は
16%と低かった。また、原水中、MEA及びDMSO
濃度が高くても、2段階の逆浸透膜処理により、TOC
の低い良質の透過水が得られた(実施例4及び5)。
From Table 1, it can be seen that in Examples 1 to 3, the removal rate of MEA was as high as 96% to 97%, respectively, and high quality permeated water with low TOC was obtained. The removal rate of Comparative Example 1 without pH adjustment was as low as 16%. Also, raw water, MEA and DMSO
Even when the concentration is high, TOC is achieved by two-stage reverse osmosis membrane treatment.
And high quality permeated water having low water content was obtained (Examples 4 and 5).

【0019】[0019]

【発明の効果】本発明の方法によれば、最終のDMSO
及びMEA濃縮水の処理はフェントン酸化処理等の湿式
酸化処理に委ねるものの、実質的に単一の設備で、極め
て効率よく処理水中のTOCを低減できる。また、排水
処理フローが簡略化でき、従来の紫外線酸化による悪臭
等の心配もない。また、更に、第2段目の逆浸透膜装置
を設けて処理すれば、原水のMEA及びDMSO濃度が
高い場合であっても安定した良質の透過水を得ることが
できる。また、第2段目の逆浸透膜装置からでる濃縮水
は、これを原水側へ戻すことによって全体の水の回収率
を向上させることができる。
According to the method of the present invention, the final DMSO
Although the treatment of the MEA concentrated water is entrusted to wet oxidation treatment such as Fenton oxidation treatment, the TOC in the treated water can be reduced extremely efficiently with substantially a single facility. In addition, the flow of wastewater treatment can be simplified, and there is no fear of bad smell or the like due to conventional ultraviolet oxidation. Further, if a second-stage reverse osmosis membrane device is provided for treatment, stable high-quality permeated water can be obtained even when the MEA and DMSO concentrations of raw water are high. In addition, by returning the concentrated water from the second-stage reverse osmosis membrane device to the raw water side, the overall water recovery rate can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における排水処理手
順を示すブロック図である。
FIG. 1 is a block diagram showing a wastewater treatment procedure according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態における排水処理手
順を示すブロック図である。
FIG. 2 is a block diagram showing a wastewater treatment procedure according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 逆浸透膜装置 2 酸注入装置 3 原水 4 pH調整された原水 5 第1段逆浸透膜透過水 6 酸液 7 第1段逆浸透膜から出る濃縮水 8 第2段逆浸透膜透過水 9 第2段逆浸透膜から出る濃縮水 Reference Signs List 1 reverse osmosis membrane device 2 acid injection device 3 raw water 4 pH-adjusted raw water 5 first-stage reverse osmosis membrane permeated water 6 acid solution 7 concentrated water exiting from first-stage reverse osmosis membrane 8 second-stage reverse osmosis membrane permeated water 9 Concentrated water from the second-stage reverse osmosis membrane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 モノエタノールアミン及びジメチルスル
ホキシドを含有する排水に酸を添加して、該排水のpH
を8.5以下に調整し、これを逆浸透膜装置で処理する
ことを特徴とする排水処理方法。
An acid is added to a wastewater containing monoethanolamine and dimethyl sulfoxide, and the pH of the wastewater is adjusted.
A wastewater treatment method, wherein the wastewater treatment method is adjusted to 8.5 or less and treated with a reverse osmosis membrane device.
【請求項2】 前記逆浸透膜装置で処理された透過水
を、再度、逆浸透膜装置で処理することを特徴とする請
求項1記載の排水処理方法。
2. The wastewater treatment method according to claim 1, wherein the permeated water treated by the reverse osmosis membrane device is treated again by a reverse osmosis membrane device.
【請求項3】 前記再度、逆浸透膜装置で処理された濃
縮水を原水側に戻すことを特徴とする請求項2記載の排
水処理方法。
3. The wastewater treatment method according to claim 2, wherein the concentrated water treated by the reverse osmosis membrane device is returned to the raw water side.
JP21711897A 1997-07-28 1997-07-28 Wastewater treatment method Expired - Lifetime JP3480797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21711897A JP3480797B2 (en) 1997-07-28 1997-07-28 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21711897A JP3480797B2 (en) 1997-07-28 1997-07-28 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH1142479A true JPH1142479A (en) 1999-02-16
JP3480797B2 JP3480797B2 (en) 2003-12-22

Family

ID=16699146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21711897A Expired - Lifetime JP3480797B2 (en) 1997-07-28 1997-07-28 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3480797B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070950A (en) * 1999-09-02 2001-03-21 Kurita Water Ind Ltd Method and apparatus for treating waste water containing dimethyl sulfoxide
EP1549420A1 (en) * 2002-05-06 2005-07-06 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
KR100538954B1 (en) * 1999-03-31 2005-12-26 가부시키가이샤 신꼬오 간쿄우 솔루션 Method and apparatus for treating water containing organic sulfur compounds
JP2010036094A (en) * 2008-08-04 2010-02-18 Kurita Water Ind Ltd Method and device for recovering water-soluble organic solvent having amino group
WO2010061811A1 (en) * 2008-11-27 2010-06-03 栗田工業株式会社 Apparatus and method for separating and recovering aqueous organic solvent having amino group
CN102531247A (en) * 2011-12-26 2012-07-04 浙江天蓝环保技术股份有限公司 Treatment method for wastewater produced during flue gas desulphurization through alcohol-amine process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101599862B1 (en) * 2012-03-05 2016-03-04 도레이케미칼 주식회사 Method for separating nmp in industrial waste water
KR101599864B1 (en) * 2012-03-05 2016-03-04 도레이케미칼 주식회사 Method for separating and recovering dimethylformaide in industrial waste water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100538954B1 (en) * 1999-03-31 2005-12-26 가부시키가이샤 신꼬오 간쿄우 솔루션 Method and apparatus for treating water containing organic sulfur compounds
JP2001070950A (en) * 1999-09-02 2001-03-21 Kurita Water Ind Ltd Method and apparatus for treating waste water containing dimethyl sulfoxide
JP4508317B2 (en) * 1999-09-02 2010-07-21 栗田工業株式会社 Method and apparatus for treating wastewater containing dimethyl sulfoxide
US7320756B2 (en) 2001-05-05 2008-01-22 Debasish Mukhopadhyay Method and apparatus for treatment of feedwaters by membrane separation under acidic conditions
EP1549420A1 (en) * 2002-05-06 2005-07-06 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
EP1549420A4 (en) * 2002-05-06 2006-03-29 Debasish Mukhopadhyay Method and apparatus for fluid treatment by reverse osmosis under acidic conditions
JP2010036094A (en) * 2008-08-04 2010-02-18 Kurita Water Ind Ltd Method and device for recovering water-soluble organic solvent having amino group
WO2010061811A1 (en) * 2008-11-27 2010-06-03 栗田工業株式会社 Apparatus and method for separating and recovering aqueous organic solvent having amino group
CN102531247A (en) * 2011-12-26 2012-07-04 浙江天蓝环保技术股份有限公司 Treatment method for wastewater produced during flue gas desulphurization through alcohol-amine process

Also Published As

Publication number Publication date
JP3480797B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
JP3919259B2 (en) Ultrapure water production equipment
MY120171A (en) Process and equipment for rejuvenation treatment of photoresist development waste
JPH0790219B2 (en) Pure water production apparatus and production method
JPH11244853A (en) Production of pure water
JPH1142479A (en) Treatment of waste water
JP4215381B2 (en) Water treatment method and apparatus
JP2000015257A (en) Apparatus and method for making high purity water
JP3506171B2 (en) Method and apparatus for removing TOC component
JP3417052B2 (en) Ultrapure water production method
JP2004167423A (en) Apparatus and method for pure water production
JPH11267645A (en) Production of pure water
JP3552580B2 (en) Method and apparatus for treating human wastewater
JP3444202B2 (en) Water treatment equipment
JPH10202296A (en) Ultrapure water producer
JPH10244280A (en) Removal device for organic substance in water
JPH09294977A (en) Water purifying apparatus
JP2000271569A (en) Production of pure water
JP2500968B2 (en) Pure water production equipment
JPH1119663A (en) Removing method for organic matter
JPH1128482A (en) Production of pure water
JPH0839058A (en) Treatment of semiconductor washing waste water
JP3565083B2 (en) Method and apparatus for treating human wastewater
JPH0815596B2 (en) Ultrapure water production method
KR20060009128A (en) Process for treatment of industrial water using reverse osmosis filtration and nanofiltration
KR20190032919A (en) Water treatment apparatus and method using ozone pretreatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term