JPH113720A - Inter-connector material - Google Patents

Inter-connector material

Info

Publication number
JPH113720A
JPH113720A JP9235770A JP23577097A JPH113720A JP H113720 A JPH113720 A JP H113720A JP 9235770 A JP9235770 A JP 9235770A JP 23577097 A JP23577097 A JP 23577097A JP H113720 A JPH113720 A JP H113720A
Authority
JP
Japan
Prior art keywords
value
conductivity
coefficient
shows
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9235770A
Other languages
Japanese (ja)
Other versions
JP3241306B2 (en
Inventor
Kazutaka Mori
一剛 森
Hitoshi Miyamoto
均 宮本
Tsuneaki Matsudaira
恒昭 松平
Koichi Takenobu
弘一 武信
Fusayuki Nanjo
房幸 南條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP23577097A priority Critical patent/JP3241306B2/en
Publication of JPH113720A publication Critical patent/JPH113720A/en
Application granted granted Critical
Publication of JP3241306B2 publication Critical patent/JP3241306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inter-connector material for solid electrolyte type electrochemical cell. SOLUTION: Y2 O3 -stabilized ZrO2 , made of lanthanum chromite material and expressed by formulas (La1-x Srx ) (Cr1-y-z Tiy Coz )O3 (where 0.1<=x<=0.2, 0.01<=y<=0.1, 0.01<=z<=0.05), (La1-x 'Srx ') (Cr1-y '-z 'Tiy 'Niz ')O3 (where 0.1<=x'<=0.2, 0.01<=y'<=0.05, 0.01<=z'<=0.08) or (La1-x" Srx" ) (Cr1-y"-z" Tiy" Fez" )O3 (where 0.1<=x"<=0.2, 0.01<=y"<=0.05, 0.01<=z"<=0.05) is used as solid electrolyte. That is, Sr is substituted for one part of La of lanthanum chromite (LaCrO3 ), and furthermore Ti and Co, Ti and Ni, or Ti and Fe are substituted for one part of Cr so that expansion in a high-temperature reducing atmosphere can be prevented, and conductivity and a coefficient of thermal expansion can be maintained at high values.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質型燃料電
池や固体電解質型水蒸気電解装置などの電気化学セルの
インターコネクタ材料として有利に適用しうるランタン
クロマイト質材料に関する。
The present invention relates to a lanthanum chromite material which can be advantageously used as an interconnect material for an electrochemical cell such as a solid oxide fuel cell or a solid oxide steam electrolyzer.

【0002】[0002]

【従来の技術】例えば、固体電解質型燃料電池(以下、
SOFCと略称する)においては、単セルを複層化し電
圧を上げて電力を得るため、接続用材料としてのインタ
ーコネクタが使用される。インターコネクタは電気的な
接続をすると同時に高温において、酸化性ガス(空気)
と還元性ガス(燃料)を分離する役目を併せもってい
る。従って、インターコネクタ材料として、金属として
は高融点金属、酸化物としてはペロブスカイト型酸化物
であるMg,Ca,Srなどをドーピングしたランタン
クロマイトが使用されている。
2. Description of the Related Art For example, a solid oxide fuel cell (hereinafter, referred to as a solid oxide fuel cell)
In the case of an SOFC, an interconnector is used as a connection material in order to obtain electric power by increasing the voltage by forming a single cell into multiple layers. The interconnector makes electrical connection and at the same time high temperature, oxidizing gas (air)
It also has the role of separating the reducing gas (fuel). Accordingly, lanthanum chromite doped with a perovskite-type oxide such as Mg, Ca, or Sr is used as an interconnector material as a metal and a metal having a high melting point as an oxide.

【0003】[0003]

【発明が解決しようとする課題】高融点金属でも、SO
FCの使用温度は1000℃程度と高いため、長時間の
使用においても酸化雰囲気では酸化物を形成し、表面が
絶縁体となるため、電気の導通が悪くなるため好ましく
ない。一方、酸化物であるランタンクロマイトは酸化雰
囲気中では安定であるものの導電性が低く、還元雰囲気
中では還元されて導電性などの特性が変化しやすいとい
う問題がある。そこで、導電性向上のため、Mg,C
a,Srなどのアルカリ土類金属をドーピングして使用
している。導電性はSr>Ca>Mgの順にドーピング
されたランタンクロマイトの導電率は高くなる。
SUMMARY OF THE INVENTION Even with high melting point metals, SO
Since the use temperature of FC is as high as about 1000 ° C., even when used for a long time, an oxide is formed in an oxidizing atmosphere, and the surface becomes an insulator, which is not preferable because electric conduction is deteriorated. On the other hand, lanthanum chromite, which is an oxide, is stable in an oxidizing atmosphere, but has low conductivity, and has a problem that it is reduced in a reducing atmosphere and its properties such as conductivity are easily changed. Therefore, to improve conductivity, Mg, C
It is used by doping an alkaline earth metal such as a or Sr. The conductivity of lanthanum chromite doped with Sr>Ca> Mg increases in the order of Sr>Ca> Mg.

【0004】次に、SOFCは固体電解質(YSZ:Y
2 3 安定化ZrO2 )及び酸素極、燃料極などの電極
及びインターコネクタの複合体であるため、インターコ
ネクタとベースとなるYSZの熱膨張係数は一致してい
る必要がある。この点からはSrをドーピングしたラン
タンクロマイトが熱膨張係数:10×10-6-1程度で
あり、固体電解質であるYSZとほぼ一致している。従
って、SOFC用のインターコネクタとしては導電率が
高く、また固体電解質であるYSZと熱膨張係数がほぼ
一致するSrをドーピングしたランタンクロマイトが使
用されている。
[0004] Next, SOFC is a solid electrolyte (YSZ: Y
Since it is a composite of 2 O 3 -stabilized ZrO 2 ), an electrode such as an oxygen electrode and a fuel electrode, and an interconnector, the thermal expansion coefficient of the interconnector and the base YSZ must be the same. From this point, the lanthanum chromite doped with Sr has a thermal expansion coefficient of about 10 × 10 −6 ° C. −1, which is almost the same as YSZ which is a solid electrolyte. Therefore, lanthanum chromite doped with Sr, which has a high conductivity and a thermal expansion coefficient substantially equal to that of YSZ which is a solid electrolyte, is used as an interconnector for SOFC.

【0005】しかしながら、還元雰囲気での挙動をみる
と、Srをドーピングしたランタンクロマイトは還元に
よる膨張が比較的大きくインターコネクタの変形及び割
れ、電極の剥離などの原因になることが推察される。
However, looking at the behavior in a reducing atmosphere, it is presumed that Sr-doped lanthanum chromite has a relatively large expansion due to reduction, which causes deformation and cracking of the interconnector and peeling of electrodes.

【0006】本発明は上記技術水準に鑑み、還元膨張係
数が小さく、導電率が高く、熱膨張係数がYSZの熱膨
張係数である10.2×10-6-1に近いランタンクロ
マイト質材料よりなるインターコネクタ材料を提供しよ
うとするものである。
The present invention has been made in view of the state of the art, and has a low reduction expansion coefficient, a high conductivity, and a lanthanum chromite material whose thermal expansion coefficient is close to the thermal expansion coefficient of YSZ of 10.2 × 10 -6 ° C -1. It is intended to provide an interconnector material comprising the same.

【0007】[0007]

【課題を解決するための手段】本発明は(1)(La
1-x Srx )(Cr1-y-z Tiy Coz )O3 (但し、
0.1≦x≦0.2,0.01≦y≦0.1,0.01
≦z≦0.05)なる一般式で表わされるランタンクロ
マイト質材料よりなることを特徴とするY2 3安定化
ZrO2 を固体電解質とする電気化学セルのインターコ
ネクタ材料、(2)(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 (但し,0.1≦x′≦0.2,
0.01≦y′≦0.05,0.01≦z′≦0.0
8)なる一般式で表わされるランタンクロマイト質材料
よりなることを特徴とするY2 3 安定化ZrO2 を固
体電解質とする電気化学セルのインターコネクタ材料及
び(3)(La1-x"Srx") (Cr1-y"-z" Tiy"Fe
z")O3 (但し,0.1≦x″≦0.2,0.01≦
y″≦0.05,0.01≦z″≦0.05)なる一般
式で表わされるランタンクロマイト質材料よりなること
を特徴とするY2 3 安定化ZrO2 を固体電解質とす
る電気化学セルのインターコネクタ材料である。
The present invention provides (1) (La)
1-x Sr x ) (Cr 1-yz Ti y Co z ) O 3 (However,
0.1 ≦ x ≦ 0.2,0.01 ≦ y ≦ 0.1,0.01
≦ z ≦ 0.05) An interconnector material for an electrochemical cell using Y 2 O 3 -stabilized ZrO 2 as a solid electrolyte, characterized by comprising a lanthanum chromite material represented by the general formula: 1-x ' Sr x' ) (Cr 1-y'-z '
Ti y ′ Ni z ′ ) O 3 (provided that 0.1 ≦ x ′ ≦ 0.2,
0.01 ≦ y ′ ≦ 0.05, 0.01 ≦ z ′ ≦ 0.0
Characterized by comprising from lanthanum chromite material represented by 8) becomes formula Y 2 O 3 interconnector material of the electrochemical cell to stabilize ZrO 2 solid electrolyte and (3) (La 1-x "Sr x " ) (Cr 1-y" -z " Ti y" Fe
z " ) O 3 (However, 0.1≤x" ≤0.2, 0.01≤
wherein Y 2 O 3 -stabilized ZrO 2 is a solid electrolyte comprising a lanthanum chromite material represented by a general formula: y ″ ≦ 0.05, 0.01 ≦ z ″ ≦ 0.05) Cell interconnector material.

【0008】すなわち、本発明はランタンクロマイトへ
のドーピング元素としてストロンチウム(Sr)を使用
し、さらにチタン(Ti)とコバルト(Co)、チタン
(Ti)とニッケル(Ni)またはチタン(Ti)と鉄
(Fe)を添加することにより導電性が高く、しかも熱
膨張係数も10×10-6-1程度とセラミックスとして
は比較的大きく、高温還元性雰囲気下においても酸素の
放出に伴う膨張が0.1%程度以下と非常に小さい材料
を開発したものである。
That is, the present invention uses strontium (Sr) as a doping element for lanthanum chromite, and further uses titanium (Ti) and cobalt (Co), titanium (Ti) and nickel (Ni), or titanium (Ti) and iron By adding (Fe), the conductivity is high and the thermal expansion coefficient is about 10 × 10 −6 ° C. −1, which is relatively large as ceramics, and the expansion accompanying the release of oxygen is zero even under a high-temperature reducing atmosphere. A very small material of about 1% or less has been developed.

【0009】(作用)本発明はランタンクロマイト質材
料の熱膨張係数をYSZと同程度に維持したまゝ、導電
率をほとんど低下させることなく、還元時の膨張を防止
するために、ランタンクロマイトのLaの固溶元素とし
てSrを置換させたものに、Crの3価の安定化のため
に、TiとCo,TiとNiまたはTiとFeを添加す
ることにより還元時の膨張を低く抑えることを可能にし
たものである。
(Function) In the present invention, while maintaining the thermal expansion coefficient of lanthanum chromite material at about the same level as that of YSZ, the lanthanum chromite material is used to prevent expansion during reduction without substantially reducing conductivity. The addition of Ti and Co, Ti and Ni, or Ti and Fe to stabilize the trivalent Cr to the element obtained by substituting Sr as a solid solution element of La suppresses expansion during reduction. It is made possible.

【0010】例えば、LaCrO3 で表されるランタン
クロマイトのLaの15%をSrに置換した場合、10
00℃における導電率は30S・cm-1と高く、また、
熱膨張係数も10×10-6-1程度とSOFCの主要構
成部材であるYSZとほぼ一致しているが、還元時にお
ける膨張が大きく、使用に問題があったが、本発明によ
り、さらにCrの一部をTiとCo,TiとNiまたは
TiとFeで置換することにより、SOFCのインター
コネクタとして要求される性質、つまり熱膨張係数をY
SZにほぼ一致させ、導電率は高く、かつ、還元時にお
ける膨張をほぼ防止しうるようにしたものである。
For example, when 15% of La in lanthanum chromite represented by LaCrO 3 is replaced by Sr, 10%
The conductivity at 00 ° C. is as high as 30 S · cm −1, and
The coefficient of thermal expansion is also approximately 10 × 10 −6 ° C. −1 , which is almost the same as YSZ, which is a main component of the SOFC. By substituting a part of Cr with Ti and Co, Ti and Ni or Ti and Fe, the property required as an interconnector of the SOFC, that is, the thermal expansion coefficient is Y.
SZ is made to substantially match SZ, the conductivity is high, and expansion during reduction can be almost prevented.

【0011】本発明のインターコネクタ材料は(La
1-x Srx )(Cr1-y-z Tiy Co z )O3 (但し、
0.1≦x≦0.2,0.01≦y≦0.1,0.01
≦z≦0.05)または(La1-x'Srx')(Cr
1-y'-z' Tiy'Niz')O3 (但し,0.1≦x′≦
0.2,0.01≦y′≦0.05,0.01≦z′≦
0.08)または(La1-x"Srx") (Cr1-y"-z"
y"Fez")O3 (但し,0.1≦x″≦0.2,0.
01≦y″≦0.05,0.01≦z″≦0.05)な
る組成を有するものであるが、このx,y,z値、
x′,y′,z′値またはx″,y″,z″値は還元膨
張係数が0.13%以下としてインターコネクタの曲り
や割れの許容限度におさまること、導電率を10S・c
-1以上としてインターコネクタの実用上問題ない範囲
とすること及び熱膨張係数を9.9〜10.5×10-6
-1としてYSZの熱膨張係数に近いものとするために
設定されたものである。
The interconnect material of the present invention is (La
1-xSrx) (Cr1-yzTiyCo z) OThree(However,
0.1 ≦ x ≦ 0.2,0.01 ≦ y ≦ 0.1,0.01
≦ z ≦ 0.05) or (La1-x 'Srx ') (Cr
1-y'-z 'Tiy 'Niz ') OThree(However, 0.1 ≦ x ′ ≦
0.2, 0.01 ≦ y ′ ≦ 0.05, 0.01 ≦ z ′ ≦
0.08) or (La1-x "Srx ") (Cr1-y "-z"T
iy "Fez ") OThree(However, 0.1 ≦ x ″ ≦ 0.2, 0.
01 ≦ y ″ ≦ 0.05, 0.01 ≦ z ″ ≦ 0.05)
X, y, z values,
The x ', y', z 'values or x ", y", z "values are
Bending of interconnector when tension coefficient is 0.13% or less
Within the allowable limit of cracking and cracking, conductivity of 10 S · c
m-1As described above, there is no practical problem with the interconnector
And a coefficient of thermal expansion of 9.9 to 10.5 × 10-6
° C-1To be close to the thermal expansion coefficient of YSZ
It is set.

【0012】[0012]

【実施例】以下、本発明の具体的な例をあげ、本発明の
効果を明らかにする。
EXAMPLES The effects of the present invention will be clarified by giving specific examples of the present invention.

【0013】(例1)下記組成の酸化物、(La1-x
x )(Cr1-y-z Tiy Coz )O3 (但し、0≦x
≦0.5,0≦y≦0.2,0≦z≦0.2)を試作し
た。
(Example 1) An oxide having the following composition, (La 1-x S
r x ) (Cr 1-yz Ti y Co z ) O 3 (where 0 ≦ x
≦ 0.5, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 0.2).

【0014】原料粉末として、酸化ランタン、炭酸スト
ロンチウム、酸化クロム、酸化チタン及び酸化コバルト
を所定割合に配合した後、ボールミルを用いて混合し、
次に1300℃において10時間熱処理して、複合酸化
物粉末を得た。次に、100kg/cm2 で一軸プレス
して60mmφ×5mmt程度の円板を得た後、200
0kg/cm2 でCIP処理して成形体を得た。次に、
1500〜1700℃の各条件において焼結して焼結体
を得た。次に、円板焼結体から3×4×40mmのテス
トピースを加工し物性測定用サンプルとした。各物性測
定は次のように実施した。
As raw material powders, lanthanum oxide, strontium carbonate, chromium oxide, titanium oxide and cobalt oxide are blended in a predetermined ratio, and then mixed using a ball mill.
Next, heat treatment was performed at 1300 ° C. for 10 hours to obtain a composite oxide powder. Next, a uniaxial press at 100 kg / cm 2 was performed to obtain a disc of about 60 mmφ × 5 mmt.
A molded article was obtained by CIP treatment at 0 kg / cm 2 . next,
Sintering was performed under each condition of 1500 to 1700 ° C. to obtain a sintered body. Next, a test piece of 3 × 4 × 40 mm was processed from the disc sintered body to obtain a sample for measuring physical properties. Each physical property measurement was performed as follows.

【0015】〔還元膨張係数〕テストピースを水素雰囲
気中、1000℃で5時間保持した後、冷却し、長さ変
化を測定した。
[Reduction expansion coefficient] The test piece was kept in a hydrogen atmosphere at 1000 ° C for 5 hours, cooled, and the change in length was measured.

【0016】〔導電率〕テストピースに4本の白金リー
ド線(間隔:約10mm)を巻きつけ、各温度において
直流4端子法により測定した。
[Electrical Conductivity] Four platinum lead wires (interval: about 10 mm) were wound around a test piece, and measured at each temperature by a DC four-terminal method.

【0017】〔熱膨張係数〕テストピースを10℃/m
inで昇温し、熱膨張を連続的に測定した。
[Coefficient of thermal expansion] A test piece was heated at 10 ° C / m
The temperature was raised in, and the thermal expansion was continuously measured.

【0018】図1は還元膨張係数のデータを示す。横軸
は前記一般式のy値を、縦軸は還元膨張係数(%)を示
す。但し、この場合、前記一般式のx値は0.2に、z
値は0に固定した。y=0の場合、還元膨張係数は0.
3%と大きいのに対し、x=0.2でもy値を0より大
きくすると還元膨張係数は小さくなる。
FIG. 1 shows the data of the reduction expansion coefficient. The horizontal axis shows the y value of the above general formula, and the vertical axis shows the reduction expansion coefficient (%). However, in this case, the value of x in the above general formula is 0.2, and the value of z is
The value was fixed at 0. When y = 0, the reduction expansion coefficient is 0.
While the value is as large as 3%, even if x = 0.2, if the y value is larger than 0, the reduction expansion coefficient decreases.

【0019】図2は1000℃における導電率を示す。
横軸は前記一般式のy値を、縦軸は導電率(S・c
-1)を示す。この場合も前記一般式のx値は0.2
に、z値は0に固定した。y=0の場合、導電率は37
S・cm-1と高いが、y値を0より大きくすると導電率
は小さくなっている。
FIG. 2 shows the conductivity at 1000 ° C.
The horizontal axis represents the y value of the general formula, and the vertical axis represents the conductivity (S · c).
m -1 ). Also in this case, the value x in the above general formula is 0.2.
And the z value was fixed at 0. If y = 0, the conductivity is 37
Although it is as high as S · cm −1 , the conductivity decreases when the y value is larger than 0.

【0020】図3は熱膨張係数を示す。横軸は前記一般
式のy値を、縦軸は熱膨張係数(×10-6-1)を示
す。この場合も前記一般式のx値は0.2に、z値は0
に固定した。y=0の場合、熱膨張係数は10.3×1
-6-1とYSZ(10.3×10 -6-1)とほぼ一致
しているが、y値の増加に伴い熱膨張係数は小さくな
る。
FIG. 3 shows the coefficient of thermal expansion. The horizontal axis is the above general
The vertical axis represents the y value of the equation, and the vertical axis represents the coefficient of thermal expansion (× 10-6° C-1)
You. Also in this case, the x value of the above general formula is 0.2, and the z value is 0.
Fixed to. When y = 0, the coefficient of thermal expansion is 10.3 × 1
0-6° C-1And YSZ (10.3 × 10 -6° C-1) And almost match
However, the coefficient of thermal expansion decreases as the y value increases.
You.

【0021】以上の結果、y値の増加、すなわちCrを
Tiで置換する量を多くすることにより還元膨張係数は
小さくなると共に、導電率は低下し、また、熱膨張係数
も小さくなることが判明した。
As a result, it has been found that, by increasing the y value, that is, by increasing the amount of replacing Cr with Ti, the reduction expansion coefficient decreases, the conductivity decreases, and the thermal expansion coefficient decreases. did.

【0022】図4は還元膨張係数のデータを示す。横軸
は前記一般式のx値、縦軸は還元膨張係数(%)を示
す。但し、この場合、前記一般式のy値は0.1に、z
値は0に固定した。y=0.1の場合、x値の増加に伴
い還元膨張係数は大きくなる。
FIG. 4 shows the data of the reduction expansion coefficient. The horizontal axis represents the x value of the above general formula, and the vertical axis represents the reduction expansion coefficient (%). However, in this case, the y value of the general formula is set to 0.1, and z
The value was fixed at 0. When y = 0.1, the reduction expansion coefficient increases as the x value increases.

【0023】図5は1000℃における導電率を示す。
横軸は前記一般式のx値、縦軸は導電率(S・cm-1
である。この場合も前記一般式のy値を0.1に、z値
は0に固定した。x=0の場合、導電率は1S・cm-1
と低いが、x値を増大させると導電率は大きくなる。
FIG. 5 shows the conductivity at 1000 ° C.
The horizontal axis is the x value of the above general formula, and the vertical axis is the conductivity (S · cm −1 ).
It is. Also in this case, the y value of the general formula was fixed at 0.1, and the z value was fixed at 0. When x = 0, the conductivity is 1 S · cm −1
But the conductivity increases as the x value increases.

【0024】図6は熱膨張係数を示す。横軸は前記一般
式のx値、縦軸は熱膨張係数(×10-6-1)を示す。
この場合も前記一般式のy値を0.1に、z値は0に固
定した。x=0の場合、熱膨張係数は7.5×10-6
-1とYSZ(10.3×10-6-1)に比べるとかなり
低い値となっているが、x値の増加に伴い熱膨張係数は
大きくなっている。
FIG. 6 shows the coefficient of thermal expansion. The horizontal axis indicates the x value of the above general formula, and the vertical axis indicates the coefficient of thermal expansion (× 10 −6 ° C. −1 ).
Also in this case, the y value of the general formula was fixed at 0.1, and the z value was fixed at 0. When x = 0, the coefficient of thermal expansion is 7.5 × 10 −6 ° C.
It has a much lower value than the -1 and YSZ (10.3 × 10 -6 ℃ -1 ) , but the thermal expansion coefficient with increasing x values is larger.

【0025】以上の結果、x値の増加、すなわち、La
をSrで置換する量を多くすることにより還元膨張係数
は大きくなるが導電率及び熱膨張係数も大きくなること
が判明した。
As a result, the x value increases, that is, La
It has been found that increasing the amount of Sr substituted with Sr increases the reduction expansion coefficient, but also increases the conductivity and the thermal expansion coefficient.

【0026】図7はx値を0.15に、y値を0.03
に固定(このようにx,y値を固定したのは、これまで
の解析から、比較的よい特性が得られることが分かった
からである)したときの還元膨張係数のデータを示す。
横軸は前記一般式のz値、縦軸は還元膨張係数(%)を
示す。zの値を大きくすると還元膨張係数は大きくなる
ことが判明した。
FIG. 7 shows an x value of 0.15 and a y value of 0.03.
(The reason why the x and y values are fixed in this way is that it has been found from the analysis so far that relatively good characteristics can be obtained).
The horizontal axis indicates the z value of the above general formula, and the vertical axis indicates the reduction expansion coefficient (%). It has been found that when the value of z is increased, the reduction expansion coefficient is increased.

【0027】図8はx値を0.15に、y値を0.03
に固定したときの導電率のデータを示す。横軸は前記一
般式z値、縦軸は導電率(S・cm-1)を示す。z値を
大きくすると、導電率は小さくなることが判明した。
FIG. 8 shows an x value of 0.15 and a y value of 0.03.
Shows the data of the electrical conductivity when fixed. The horizontal axis represents the z value of the general formula, and the vertical axis represents the conductivity (S · cm −1 ). It has been found that increasing the z value decreases the conductivity.

【0028】図9はx値を0.15に、y値を0.03
に固定したときの熱膨張係数のデータを示す。横軸はz
値、縦軸は熱膨張係数を示す。z値を大きくすると、熱
膨張係数は大きくなることがわかる。
FIG. 9 shows an x value of 0.15 and a y value of 0.03.
Shows the data of the coefficient of thermal expansion when fixed to. The horizontal axis is z
The vertical axis indicates the coefficient of thermal expansion. It can be seen that the thermal expansion coefficient increases as the z value increases.

【0029】SOFCなどのインターコネクタ材料とし
ての適用する場合、インターコネクタ材料は固体電解質
であるYSZと熱膨張係数がほぼ一致していると同時に
導電率が高く、また還元膨張係数が小さいことが必要で
あるが、以上の解析の結果、一般式(La1-x Srx
(Cr1-y-z Tiy Coz )O3 のx,y,z値は、
0.1≦x≦0.2,0.01≦y≦0.1,0.01
≦z≦0.05が好ましく、このうち、特に好ましい範
囲は0.13≦x≦0.17,0.02y≦0.04,
0.02≦z≦0.04であり、このうちx=0.1
5,y=0.03,z=0.03が最も好ましい。
When applied as an interconnector material such as SOFC, it is necessary that the interconnector material has a high thermal conductivity at the same time as the thermal expansion coefficient of YSZ, which is a solid electrolyte, and has a low reduction expansion coefficient. However, as a result of the above analysis, the general formula (La 1-x Sr x )
The (x, y, z) values of (Cr 1 -yz Ti y Co z ) O 3 are
0.1 ≦ x ≦ 0.2,0.01 ≦ y ≦ 0.1,0.01
.Ltoreq.z.ltoreq.0.05, and particularly preferred ranges are 0.13.ltoreq.x.ltoreq.0.17, 0.02y.ltoreq.0.04.
0.02 ≦ z ≦ 0.04, where x = 0.1
5, y = 0.03, z = 0.03 is most preferred.

【0030】(例2)下記組成の酸化物、(La1-x'
x')(Cr1-y'-z' Tiy'Niz')O3 (但し,0≦
x′≦0.5,0≦y′≦0.2,0≦z′≦0.2)
を試作した。
(Example 2) An oxide having the following composition, (La 1-x ′ S)
r x ′ ) (Cr 1−y′−z ′ Ti y ′ Ni z ′ ) O 3 (where 0 ≦
x'≤0.5, 0≤y'≤0.2, 0≤z'≤0.2)
Was prototyped.

【0031】原料粉末として、酸化ランタン、炭酸スト
ロンチウム、酸化クロム、酸化チタン及び酸化ニッケル
を所定割合に配合した後、ボールミルを用いて混合し、
次に1300℃において10時間熱処理して、複合酸化
物粉末を得た。次に、100kg/cm2 で一軸プレス
して60mmφ×5mmt程度の円板を得た後、200
0kg/cm2 でCIP処理して成形体を得た。次に、
1500〜1700℃の各条件において焼結して焼結体
を得た。次に、円板焼結体から3×4×40mmのテス
トピースを加工し物性測定用サンプルとした。各物性す
なわち、還元膨張係数、導電率、熱膨張係数の測定は例
1に示した方法で行った。
As raw material powders, lanthanum oxide, strontium carbonate, chromium oxide, titanium oxide, and nickel oxide are blended in a predetermined ratio, and then mixed using a ball mill.
Next, heat treatment was performed at 1300 ° C. for 10 hours to obtain a composite oxide powder. Next, a uniaxial press at 100 kg / cm 2 was performed to obtain a disc of about 60 mmφ × 5 mmt.
A molded article was obtained by CIP treatment at 0 kg / cm 2 . next,
Sintering was performed under each condition of 1500 to 1700 ° C. to obtain a sintered body. Next, a test piece of 3 × 4 × 40 mm was processed from the disc sintered body to obtain a sample for measuring physical properties. The measurement of each physical property, that is, the reduction expansion coefficient, the conductivity, and the thermal expansion coefficient was performed by the method shown in Example 1.

【0032】図10は還元膨張係数のデータを示す。横
軸は前記一般式のy′値を、縦軸は還元膨張係数(%)
を示す。但し、この場合、前記一般式のx′値は0.2
に、z′値は0に固定した。y′=0の場合、還元膨張
係数は0.3%と大きいのに対し、x′=0.2でも
y′値を0より大きくすると還元膨張係数は小さくな
る。
FIG. 10 shows the data of the reduction expansion coefficient. The horizontal axis represents the y 'value of the above general formula, and the vertical axis represents the reduction expansion coefficient (%).
Is shown. However, in this case, the value x 'of the general formula is 0.2
And the z 'value was fixed at 0. When y '= 0, the reduction expansion coefficient is as large as 0.3%, but when x' = 0.2, if the y 'value is larger than 0, the reduction expansion coefficient becomes smaller.

【0033】図11は1000℃における導電率を示
す。横軸は前記一般式のy′値を、縦軸は導電率(S・
cm-1)を示す。この場合も前記一般式のx′値は0.
2に、z′値は0に固定した。y′=0の場合、導電率
は37S・cm-1と高いが、y′値を0より大きくする
と導電率は小さくなっている。
FIG. 11 shows the conductivity at 1000 ° C. The horizontal axis represents the y 'value of the general formula, and the vertical axis represents the conductivity (S ·
cm -1 ). Also in this case, the value of x 'in the general formula is 0.
At 2, the z 'value was fixed at 0. When y ′ = 0, the conductivity is as high as 37 S · cm −1 , but when the y ′ value is larger than 0, the conductivity decreases.

【0034】図12は熱膨張係数を示す。横軸は前記一
般式のy′値を、縦軸は熱膨張係数(×10-6-1)を
示す。この場合も前記一般式のx′値は0.2に、z′
値は0に固定した。y′=0の場合、熱膨張係数は1
0.3×10-6-1とYSZ(10.3×10-6-1
とほぼ一致しているが、y′値の増加に伴い熱膨張係数
は小さくなる。
FIG. 12 shows the coefficient of thermal expansion. The horizontal axis represents the y 'value of the above general formula, and the vertical axis represents the coefficient of thermal expansion (× 10 −6 ° C. −1 ). Also in this case, the value of x 'in the above general formula is 0.2, and the value of z' is
The value was fixed at 0. When y '= 0, the coefficient of thermal expansion is 1
0.3 × 10 -6-1 and YSZ (10.3 × 10 -6-1 )
However, the coefficient of thermal expansion decreases as the y 'value increases.

【0035】以上の結果、y′値の増加、すなわちCr
をTiで置換する量を多くすることにより還元膨張係数
は小さくなると共に、導電率は低下し、また、熱膨張係
数も小さくなることが判明した。
As a result, the increase of the y 'value, that is,
It has been found that, by increasing the amount of substitution of Ti with Ti, the reduction expansion coefficient decreases, the conductivity decreases, and the thermal expansion coefficient also decreases.

【0036】図13は還元膨張係数のデータを示す。横
軸は前記一般式のx′値、縦軸は還元膨張係数(%)を
示す。但し、この場合、前記一般式のy′値は0.1
に、z′値は0に固定した。y′=0.1の場合、x′
値の増加に伴い還元膨張係数は大きくなる。
FIG. 13 shows the data of the reduction expansion coefficient. The horizontal axis indicates the x 'value of the above general formula, and the vertical axis indicates the reduction expansion coefficient (%). However, in this case, the y 'value of the general formula is 0.1
And the z 'value was fixed at 0. If y '= 0.1, x'
As the value increases, the reduction expansion coefficient increases.

【0037】図14は1000℃における導電率を示
す。横軸は前記一般式のx′値、縦軸は導電率(S・c
-1)である。この場合も前記一般式のy′値を0.1
に、z′値は0に固定した。x′=0の場合、導電率は
1S・cm-1と低いが、x′値を増大させると導電率は
大きくなる。
FIG. 14 shows the conductivity at 1000 ° C. The horizontal axis is the x ′ value of the above general formula, and the vertical axis is the conductivity (S · c).
m -1 ). Also in this case, the value of y 'in the above general formula is set to 0.1.
And the z 'value was fixed at 0. When x ′ = 0, the conductivity is as low as 1 S · cm −1 , but the conductivity increases as the x ′ value increases.

【0038】図15は熱膨張係数を示す。横軸は前記一
般式のx′値、縦軸は熱膨張係数(×10-6-1)を示
す。この場合も前記一般式のy′値を0.1に、z′値
は0に固定した。x′=0の場合、熱膨張係数は7.5
×10-6-1とYSZ(10.3×10 -6-1)に比べ
るとかなり低い値となっているが、x′値の増加に伴い
熱膨張係数は大きくなっている。
FIG. 15 shows the coefficient of thermal expansion. The horizontal axis is
The x 'value of the general formula, and the vertical axis represents the coefficient of thermal expansion (× 10-6° C-1)
You. Also in this case, the value of y 'in the above general formula is set to 0.1, and the value of z' is
Was fixed to 0. When x '= 0, the coefficient of thermal expansion is 7.5
× 10-6° C-1And YSZ (10.3 × 10 -6° C-1)compared to
Is very low, but as x 'increases,
The coefficient of thermal expansion is large.

【0039】以上の結果、x′値の増加、すなわち、L
aをSrで置換する量を多くすることにより還元膨張係
数は大きくなるが導電率及び熱膨張係数も大きくなるこ
とが判明した。
As a result, the increase in the value x ', that is, L
It has been found that by increasing the amount of replacing a with Sr, the reduction expansion coefficient increases, but the conductivity and the thermal expansion coefficient also increase.

【0040】図16はx′値を0.15に、y′値を
0.03に固定(このようにx′,y′値を固定したの
は、これまでの解析から、比較的よい特性が得られるこ
とが分かったからである)したときの還元膨張係数のデ
ータを示す。横軸はz′値、縦軸は還元膨張係数(%)
を示す。この結果、z′の値を大きくすると還元膨張係
数は大きくなることが判明した。
FIG. 16 shows that the x 'value is fixed at 0.15 and the y' value is fixed at 0.03. Is obtained.) Is shown. The horizontal axis is the z 'value, and the vertical axis is the reduction expansion coefficient (%).
Is shown. As a result, it was found that when the value of z 'was increased, the reduction expansion coefficient was increased.

【0041】図17はx′値を0.15に、y′値を
0.03に固定したときの導電率のデータを示す。横軸
はz′値、縦軸は導電率を示す。z′値を大きくする
と、導電率は小さくなることが判明した。
FIG. 17 shows conductivity data when the x 'value is fixed at 0.15 and the y' value is fixed at 0.03. The horizontal axis indicates the z 'value, and the vertical axis indicates the conductivity. It has been found that the conductivity decreases as the z 'value increases.

【0042】図18はx′値を0.15に、y′値を
0.03に固定したときの熱膨張係数のデータを示す。
横軸はz′値、縦軸は熱膨張係数を示す。z′値を大き
くすると、熱膨張係数は大きくなることがわかった。
FIG. 18 shows the data of the coefficient of thermal expansion when the x 'value is fixed at 0.15 and the y' value is fixed at 0.03.
The horizontal axis indicates the z ′ value, and the vertical axis indicates the coefficient of thermal expansion. It was found that as the z 'value was increased, the coefficient of thermal expansion was increased.

【0043】SOFCなどのインターコネクタ材料とし
て適用する場合、固体電解質であるYSZと熱膨張係数
がほぼ一致していることと同時に導電率が高く、また還
元膨張係数が小さい必要があるが、一般式(La1-x'
x')(Cr1-y'-z' Tiy'Niz')O3 のx′,
y′,z′値は、0.1≦x′≦0.2,0.01≦
y′≦0.05,0.01≦z′≦0.08が好まし
く、このうち、x′=0.15,y′=0.03,z′
=0.05が最も好ましい。
When applied as an interconnector material for SOFCs and the like, it is necessary that the thermal expansion coefficient be substantially the same as that of YSZ, which is a solid electrolyte, and at the same time, the conductivity be high and the reduction expansion coefficient be small. (La 1-x ' S
r x ') (Cr 1- y'-z' Ti y 'Ni z') O 3 of x ',
The values of y ′ and z ′ are 0.1 ≦ x ′ ≦ 0.2, 0.01 ≦
It is preferable that y ′ ≦ 0.05 and 0.01 ≦ z ′ ≦ 0.08, among which x ′ = 0.15, y ′ = 0.03, z ′
= 0.05 is most preferred.

【0044】(例3)下記組成の酸化物、(La1-x"
x")(Cr1-y"-z" Tiy"Fez")O3 (但し,0≦
x″≦0.5,0≦y″≦0.4,0≦z″≦0.2)
を試作した。
(Example 3) An oxide having the following composition, (La 1-x " S
r x ") (Cr 1- y" -z "Ti y" Fe z ") O 3 ( where, 0 ≦
x "≤0.5, 0≤y" ≤0.4, 0≤z "≤0.2)
Was prototyped.

【0045】原料粉末として、酸化ランタン、炭酸スト
ロンチウム、酸化クロム、酸化チタン及び酸化鉄を所定
割合に配合した後、ボールミルを用いて混合し、次に1
300℃において10時間熱処理して、複合酸化物粉末
を得た。次に、100kg/cm2 で一軸プレスして6
0mmφ×5mmt程度の円板を得た後、2000kg
/cm2 でCIP処理して成形体を得た。次に、150
0〜1700℃の各条件において焼結して焼結体を得
た。次に、円板焼結体から3×4×40mmのテストピ
ースを加工し物性測定用サンプルとした。各物性すなわ
ち、還元膨張係数、導電率、熱膨張係数の測定は例1に
示した方法で行った。
As raw material powders, lanthanum oxide, strontium carbonate, chromium oxide, titanium oxide and iron oxide are blended in a predetermined ratio, and then mixed using a ball mill.
Heat treatment was performed at 300 ° C. for 10 hours to obtain a composite oxide powder. Next, press uniaxially at 100 kg / cm 2 to
After obtaining a disc of about 0mmφ × 5mmt, 2000kg
/ Cm 2 to obtain a molded article. Next, 150
Sintering was performed under each condition of 0 to 1700 ° C. to obtain a sintered body. Next, a test piece of 3 × 4 × 40 mm was processed from the disc sintered body to obtain a sample for measuring physical properties. The measurement of each physical property, that is, the reduction expansion coefficient, the conductivity, and the thermal expansion coefficient was performed by the method shown in Example 1.

【0046】図19は還元膨張係数のデータを示す。横
軸は前記一般式のy″値を、縦軸は還元膨張係数(%)
を示す。但し、この場合、前記一般式のx″値は0.2
に、z″値は0に固定した。y″=0の場合、還元膨張
係数は0.3%と大きいのに対し、x″=0.2でも
y″値を0より大きくすると還元膨張係数は小さくな
る。
FIG. 19 shows reduction expansion coefficient data. The horizontal axis represents the y ″ value of the above general formula, and the vertical axis represents the reduction expansion coefficient (%).
Is shown. However, in this case, the x ″ value of the general formula is 0.2
In addition, the z ″ value is fixed to 0. When y ″ = 0, the reduction expansion coefficient is as large as 0.3%, but when the y ″ value is larger than 0 even at x ″ = 0.2, the reduction expansion coefficient is Becomes smaller.

【0047】図20は1000℃における導電率を示
す。横軸は前記一般式のy″値を、縦軸は導電率(S・
cm-1)を示す。この場合も前記一般式のx″値は0.
2に、z″値は0に固定した。y″=0の場合、導電率
は37S・cm-1と高いが、y″値を0より大きくする
と導電率は小さくなっている。
FIG. 20 shows the conductivity at 1000 ° C. The horizontal axis represents the y ″ value of the general formula, and the vertical axis represents the conductivity (S ·
cm -1 ). Also in this case, the value of x ″ in the general formula is 0.
2, the z ″ value is fixed at 0. When y ″ = 0, the conductivity is as high as 37 S · cm −1 , but when the y ″ value is larger than 0, the conductivity decreases.

【0048】図21は熱膨張係数を示す。横軸は前記一
般式のy″値を、縦軸は熱膨張係数(×10-6-1)を
示す。この場合も前記一般式のx″値は0.2に、z″
値は0に固定した。y″=0の場合、熱膨張係数は1
0.3×10-6-1とYSZ(10.3×10-6-1
とほぼ一致しているが、y″値の増加に伴い熱膨張係数
は小さくなる。
FIG. 21 shows the coefficient of thermal expansion. The horizontal axis represents the y ″ value of the above general formula, and the vertical axis represents the coefficient of thermal expansion (× 10 −6 ° C. −1 ).
The value was fixed at 0. When y ″ = 0, the coefficient of thermal expansion is 1
0.3 × 10 -6-1 and YSZ (10.3 × 10 -6-1 )
However, the coefficient of thermal expansion decreases as the y ″ value increases.

【0049】以上の結果、y″値の増加、すなわちCr
をTiで置換する量を多くすることにより還元膨張係数
は小さくなると共に、導電率は低下し、また、熱膨張係
数も小さくなることが判明した。
As a result, the increase of the y ″ value, that is, Cr
It has been found that, by increasing the amount of substitution of Ti with Ti, the reduction expansion coefficient decreases, the conductivity decreases, and the thermal expansion coefficient also decreases.

【0050】図22は還元膨張係数のデータを示す。横
軸は前記一般式のx″値、縦軸は還元膨張係数(%)を
示す。但し、この場合、前記一般式のy″値は0.1
に、z″値は0に固定した。y″=0.1の場合、x″
値の増加に伴い還元膨張係数は大きくなる。
FIG. 22 shows the data of the reduction expansion coefficient. The horizontal axis represents the x ″ value of the general formula, and the vertical axis represents the reduction expansion coefficient (%). In this case, the y ″ value of the general formula is 0.1.
In addition, the value of z ″ is fixed to 0. When y ″ = 0.1, x ″
As the value increases, the reduction expansion coefficient increases.

【0051】図23は1000℃における導電率を示
す。横軸は前記一般式のx″値、縦軸は導電率(S・c
-1)である。この場合も前記一般式のy″値を0.1
に、z″値は0に固定した。x″=0の場合、導電率は
1S・cm-1と低いが、x″値を増大させると導電率は
大きくなる。
FIG. 23 shows the conductivity at 1000 ° C. The horizontal axis is the x ″ value of the general formula, and the vertical axis is the conductivity (S · c).
m -1 ). Also in this case, the value of y ″ in the above general formula is 0.1.
In addition, the z ″ value is fixed to 0. When x ″ = 0, the conductivity is as low as 1 S · cm −1 , but the conductivity increases as the x ″ value increases.

【0052】図24は熱膨張係数を示す。横軸は前記一
般式のx″値、縦軸は熱膨張係数(×10-6-1)を示
す。この場合も前記一般式のy″値を0.1に、z″値
は0に固定した。x″=0の場合、熱膨張係数は7.5
×10-6-1とYSZ(10.3×10 -6-1)に比べ
るとかなり低い値となっているが、x″値の増加に伴い
熱膨張係数は大きくなっている。
FIG. 24 shows the coefficient of thermal expansion. The horizontal axis is
The x ″ value of the general formula, and the vertical axis represents the coefficient of thermal expansion (× 10-6° C-1)
You. Also in this case, the y ″ value of the above general formula is set to 0.1, and the z ″ value is
Was fixed to 0. When x ″ = 0, the coefficient of thermal expansion is 7.5
× 10-6° C-1And YSZ (10.3 × 10 -6° C-1)compared to
Is very low, but as the x ″ value increases,
The coefficient of thermal expansion is large.

【0053】以上の結果、x″値の増加、すなわち、L
aをSrで置換する量を多くすることにより還元膨張係
数は大きくなるが導電率及び熱膨張係数も大きくなるこ
とが判明した。
As a result, an increase in the value of x ″, ie, L
It has been found that by increasing the amount of replacing a with Sr, the reduction expansion coefficient increases, but the conductivity and the thermal expansion coefficient also increase.

【0054】図25はx″値を0.15に、y″値を
0.03に固定(このように、x″,y″値を固定した
のは、これまでの解析から、比較的よい結果が得られる
ことが分かったからである)したときの還元膨張係数の
データを示す。横軸はz″値、縦軸は還元膨張係数
(%)を示す。この結果、z″の値を大きくすると還元
膨張係数は大きくなることが判明した。
FIG. 25 shows that the x ″ value is fixed at 0.15 and the y ″ value is fixed at 0.03 (the fixed x ″ and y ″ values are relatively good from the analysis so far). This is because it was found that a result was obtained). The horizontal axis indicates the z ″ value, and the vertical axis indicates the reduction expansion coefficient (%). As a result, it was found that the reduction expansion coefficient increases as the z ″ value increases.

【0055】図26はx″値を0.15に、y″値を
0.03に固定したときの導電率のデータを示す。横軸
はz″値、縦軸は導電率を示す。z″値を大きくする
と、導電率は小さくなることが判明した。
FIG. 26 shows conductivity data when the x ″ value is fixed at 0.15 and the y ″ value is fixed at 0.03. The horizontal axis represents the z ″ value and the vertical axis represents the conductivity. It has been found that increasing the z ″ value decreases the conductivity.

【0056】図27はx″値を0.15に、y″値を
0.03に固定したときの熱膨張係数のデータを示す。
横軸はz″値、縦軸は熱膨張係数を示す。z″値を大き
くすると、熱膨張係数は大きくなることがわかった。
FIG. 27 shows the data of the coefficient of thermal expansion when the x ″ value is fixed at 0.15 and the y ″ value is fixed at 0.03.
The horizontal axis represents the z ″ value, and the vertical axis represents the coefficient of thermal expansion. It was found that increasing the value of z ″ increases the coefficient of thermal expansion.

【0057】SOFCなどのインターコネクタ材料とし
て適用する場合、固体電解質であるYSZと熱膨張係数
がほぼ一致していることと同時に導電率が高く、また還
元膨張係数が小さい必要があるが、一般式(La1-x"
x")(Cr1-y"-z" Tiy"Fez")O3 のx″,
y″,z″値は、0.1≦x″≦0.2,0.01≦
y″≦0.05,0.01≦z″≦0.05が好まし
く、このうち、x″=0.15,y″=0.03,z″
=0.05のものが最も好ましい。
When applied as an interconnector material for SOFCs and the like, it is necessary that the thermal expansion coefficient be substantially the same as that of the solid electrolyte YSZ, and at the same time, the conductivity be high and the reduction expansion coefficient be small. (La 1-x " S
r x ") (Cr 1- y" -z "Ti y" Fe z ") O 3 for x",
The values of y ″ and z ″ are 0.1 ≦ x ″ ≦ 0.2 and 0.01 ≦
Preferably, y ″ ≦ 0.05, 0.01 ≦ z ″ ≦ 0.05, of which x ″ = 0.15, y ″ = 0.03, z ″
= 0.05 is most preferred.

【0058】[0058]

【発明の効果】本発明により、ランタンクロマイト(L
aCrO3 )のLaの一部をSrに置換し、さらにCr
の一部をTiとCo,TiとNiまたはTiとFeに置
換することにより、高温還元雰囲気下における膨張が防
止でき、しかも導電率及び熱膨張係数も高く保持できる
ランタンクロマイト質よりなるインターコネクタ材料が
提供できる。
According to the present invention, lanthanum chromite (L
a part of La of aCrO 3 ) is replaced with Sr,
Is a lanthanum chromite interconnect material that can prevent expansion under a high-temperature reducing atmosphere and maintain a high conductivity and a high thermal expansion coefficient by replacing a part of Ti with Co, Ti and Ni or Ti and Fe. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のx=0.2,z=0とし、yを変動さ
せた時の還元膨張係数の変動を示す図表。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing (La 1-x Sr x ) (Cr 1-yz Ti
6 is a chart showing the variation of the reduction expansion coefficient when y is varied, where x = 0.2 and z = 0 of y Co z ) O 3 .

【図2】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のx=0.2,z=0とし、yを変動さ
せた時の導電率の変動を示す図表。
FIG. 2 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
6 is a chart showing a change in conductivity when y is changed, where x = 0.2 and z = 0 of y Co z ) O 3 .

【図3】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のx=0.2,z=0とし、yを変動さ
せた時の熱膨張係数の変動を示す図表。
FIG. 3 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
7 is a chart showing the variation of the coefficient of thermal expansion when y is varied, where x = 0.2 and z = 0 of y Co z ) O 3 .

【図4】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のy=0.1,z=0とし、xを変動さ
せた時の還元膨張係数の変動を示す図表。
FIG. 4 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
6 is a chart showing a change in the reduction expansion coefficient when y is set to y = 0.1 and z = 0 in y Co z ) O 3 and x is changed.

【図5】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のy=0.1,z=0とし、xを変動さ
せた時の導電率の変動を示す図表。
FIG. 5 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
6 is a table showing a change in conductivity when y is set to y = 0.1 and z = 0 of y Co z ) O 3 and x is changed.

【図6】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のy=0.1,z=0とし、xを変動さ
せた時の熱膨張係数の変動を示す図表。
FIG. 6 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
6 is a chart showing a change in a coefficient of thermal expansion when y is set to y = 0.1 and z = 0 of y Co z ) O 3 and x is changed.

【図7】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のx=0.15,y=0.03とし、z
を変動させた時の還元膨張係数の変動を示す図表。
FIG. 7 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
y Co z ) O 3 is set to x = 0.15, y = 0.03, and z
4 is a chart showing a change in the reduction expansion coefficient when the value is varied.

【図8】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のx=0.15,y=0.03とし、z
を変動させた時の導電率の変動を示す図表。
FIG. 8 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
y Co z ) O 3 is set to x = 0.15, y = 0.03, and z
4 is a chart showing a change in conductivity when the value is changed.

【図9】本発明の(La1-x Srx )(Cr1-y-z Ti
y Coz )O3 のx=0.15,y=0.03とし、z
を変動させた時の熱膨張係数の変動を示す図表。
FIG. 9 shows (La 1-x Sr x ) (Cr 1-yz Ti) of the present invention.
y Co z ) O 3 is set to x = 0.15, y = 0.03, and z
6 is a chart showing a change in a coefficient of thermal expansion when the value is changed.

【図10】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のx′=0.2,z′=0とし、
y′を変動させた時の還元膨張係数の変動を示す図表。
FIG. 10 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 where x ′ = 0.2 and z ′ = 0,
The chart which shows the fluctuation | variation of the reduction expansion coefficient at the time of changing y '.

【図11】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のx′=0.2,z′=0とし、
y′を変動させた時の導電率の変動を示す図表。
FIG. 11 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 where x ′ = 0.2 and z ′ = 0,
The chart which shows the change of the electric conductivity when y 'was changed.

【図12】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のx′=0.2,z′=0とし、
y′を変動させた時の熱膨張係数の変動を示す図表。
FIG. 12 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 where x ′ = 0.2 and z ′ = 0,
The chart which shows the fluctuation | variation of a thermal expansion coefficient when y 'is fluctuated.

【図13】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のy′=0.1,z′=0とし、
x′を変動させた時の還元膨張係数の変動を示す図表。
FIG. 13 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 y ′ = 0.1, z ′ = 0,
The chart which shows the fluctuation | variation of the reduction expansion coefficient at the time of changing x '.

【図14】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のy′=0.1,z′=0とし、
x′を変動させた時の導電率の変動を示す図表。
FIG. 14 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 y ′ = 0.1, z ′ = 0,
9 is a table showing a change in conductivity when x ′ is changed.

【図15】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のy′=0.1,z′=0とし、
x′を変動させた時の熱膨張係数の変動を示す図表。
FIG. 15 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 y ′ = 0.1, z ′ = 0,
The chart which shows the fluctuation | variation of a thermal expansion coefficient when x 'is fluctuated.

【図16】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のx′=0.15,y′=0.03
とし、z′を変動させた時の還元膨張係数の変動を示す
図表。
FIG. 16 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 x ′ = 0.15, y ′ = 0.03
FIG. 4 is a table showing a change in the reduction expansion coefficient when z ′ is changed.

【図17】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のx′=0.15,y′=0.03
とし、z′を変動させた時の導電率の変動を示す図表。
FIG. 17 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 x ′ = 0.15, y ′ = 0.03
FIG. 4 is a table showing a change in conductivity when z ′ is changed.

【図18】本発明の(La1-x'Srx')(Cr1-y'-z'
Tiy'Niz')O3 のx′=0.15,y′=0.03
とし、z′を変動させた時の熱膨張係数の変動を示す図
表。
FIG. 18 shows (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ ) of the present invention.
Ti y ′ Ni z ′ ) O 3 x ′ = 0.15, y ′ = 0.03
And a chart showing the variation of the coefficient of thermal expansion when z 'is varied.

【図19】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のx″=0.2,z″=0とし、
y″を変動させた時の還元膨張係数の変動を示す図表。
FIG. 19 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
And Ti y "Fe z") O 3 for x "= 0.2, z" = 0,
The chart which shows the fluctuation | variation of the reduction expansion coefficient at the time of changing y ".

【図20】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のx″=0.2,z″=0とし、
y″を変動させた時の導電率の変動を示す図表。
FIG. 20 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
And Ti y "Fe z") O 3 for x "= 0.2, z" = 0,
The chart which shows the fluctuation | variation of the electric conductivity when y "is changed.

【図21】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のx″=0.2,z″=0とし、
y″を変動させた時の熱膨張係数の変動を示す図表。
FIG. 21 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
And Ti y "Fe z") O 3 for x "= 0.2, z" = 0,
The chart which shows the change of a coefficient of thermal expansion when y "is changed.

【図22】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のy″=0.1,z″=0とし、
x″を変動させた時の還元膨張係数の変動を示す図表。
FIG. 22 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
And Ti y "Fe z") O 3 for y "= 0.1, z" = 0,
The chart which shows the fluctuation | variation of the reduction expansion coefficient at the time of changing x ".

【図23】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のy″=0.1,z″=0とし、
x″を変動させた時の導電率の変動を示す図表。
FIG. 23 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
And Ti y "Fe z") O 3 for y "= 0.1, z" = 0,
The chart which shows the change of the electric conductivity when x "is changed.

【図24】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のy″=0.1,z″=0とし、
x″を変動させた時の熱膨張係数の変動を示す図表。
FIG. 24 shows (La 1-x " Sr x" ) (Cr 1-y "-z" ) of the present invention.
And Ti y "Fe z") O 3 for y "= 0.1, z" = 0,
The chart which shows the fluctuation | variation of a thermal expansion coefficient when x "is fluctuated.

【図25】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のx″=0.15,y″=0.03
とし、z″を変動させた時の還元膨張係数の変動を示す
図表。
FIG. 25 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
Ti y "Fe z") O 3 for x "= 0.15, y" = 0.03
And a chart showing the variation of the reduction expansion coefficient when z ″ is varied.

【図26】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のx″=0.15,y″=0.03
とし、z″を変動させた時の導電率の変動を示す図表。
FIG. 26 shows (La 1 -x " Sr x" ) (Cr 1 -y "-z" ) of the present invention.
Ti y "Fe z") O 3 for x "= 0.15, y" = 0.03
FIG. 4 is a table showing a change in conductivity when z ″ is changed.

【図27】本発明の(La1-x"Srx")(Cr1-y"-z"
Tiy"Fez")O3 のx″=0.15,y″=0.03
とし、z″を変動させた時の熱膨張係数の変動を示す図
表。
FIG. 27 shows (La 1-x " Sr x" ) (Cr 1-y "-z" ) of the present invention.
Ti y "Fe z") O 3 for x "= 0.15, y" = 0.03
And a chart showing the variation of the coefficient of thermal expansion when z ″ is varied.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武信 弘一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 南條 房幸 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koichi Takenobu 1-1-1 Wadazakicho, Hyogo-ku, Kobe-shi, Hyogo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Fusayuki Nanjo, Hyogo-ku, Kobe-shi, Hyogo 1-1-1 Wadazakicho Mitsubishi Heavy Industries, Ltd., Kobe Shipyard

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (La1-x Srx )(Cr1-y-z Tiy
Coz )O3 (但し,0.1≦x≦0.2,0.01≦
y≦0.1,0.01≦z≦0.05)なる一般式で表
わされるランタンクロマイト質材料よりなることを特徴
とするY2 3 安定化ZrO2 を固体電解質とする電気
化学セルのインターコネクタ材料。
(1) (La1-xSrx) (Cr1-yzTiy
Coz) OThree(However, 0.1 ≦ x ≦ 0.2, 0.01 ≦
y ≦ 0.1, 0.01 ≦ z ≦ 0.05)
Characterized by lanthanum chromite material
And YTwoO ThreeStabilized ZrOTwoWith electricity as solid electrolyte
Interconnector material for chemical cells.
【請求項2】 (La1-x'Srx')(Cr1-y'-z' Ti
y'Niz')O3 (但し,0.1≦x′≦0.2,0.0
1≦y′≦0.05,0.01≦z′≦0.08)なる
一般式で表わされるランタンクロマイト質材料よりなる
ことを特徴とするY2 3 安定化ZrO2 を固体電解質
とする電気化学セルのインターコネクタ材料。
2. (La 1-x ′ Sr x ′ ) (Cr 1-y′-z ′ Ti
y ′ Ni z ′ ) O 3 (0.1 ≦ x ′ ≦ 0.2, 0.0
(1 ≦ y ′ ≦ 0.05, 0.01 ≦ z ′ ≦ 0.08) Y 2 O 3 -stabilized ZrO 2 characterized by being composed of a lanthanum chromite material represented by the general formula: Interconnector material for electrochemical cells.
【請求項3】 (La1-x"Srx") (Cr1-y"-z" Ti
y"Fez")O3 (但し,0.1≦x″≦0.2,0.0
1≦y″≦0.05,0.01≦z″≦0.05)なる
一般式で表わされるランタンクロマイト質材料よりなる
ことを特徴とするY2 3 安定化ZrO2 を固体電解質
とする電気化学セルのインターコネクタ材料。
(La1 -x " Srx " ) (Cr1 -y "-z" Ti
y "Fe z") O 3 ( where, 0.1 ≦ x "≦ 0.2,0.0
(1 ≦ y ″ ≦ 0.05, 0.01 ≦ z ″ ≦ 0.05) The solid electrolyte is made of a lanthanum chromite material represented by the general formula: Y 2 O 3 -stabilized ZrO 2. Interconnector material for electrochemical cells.
JP23577097A 1997-02-06 1997-09-01 Interconnector material Expired - Fee Related JP3241306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23577097A JP3241306B2 (en) 1997-02-06 1997-09-01 Interconnector material

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2360397 1997-02-06
JP9542697 1997-04-14
JP9-23603 1997-04-14
JP9-95426 1997-04-14
JP23577097A JP3241306B2 (en) 1997-02-06 1997-09-01 Interconnector material

Publications (2)

Publication Number Publication Date
JPH113720A true JPH113720A (en) 1999-01-06
JP3241306B2 JP3241306B2 (en) 2001-12-25

Family

ID=27284335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23577097A Expired - Fee Related JP3241306B2 (en) 1997-02-06 1997-09-01 Interconnector material

Country Status (1)

Country Link
JP (1) JP3241306B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216619A (en) * 2004-01-28 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2006185697A (en) * 2004-12-27 2006-07-13 Toto Ltd Interconnector material and solid oxide fuel cell equipped with it
JP2006310090A (en) * 2005-04-28 2006-11-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell and manufacturing method of the same
JP2009263225A (en) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique Titanate of perovskite or derived structure thereof, and use thereof
JP2021061174A (en) * 2019-10-07 2021-04-15 太陽誘電株式会社 Solid oxide fuel cell and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216619A (en) * 2004-01-28 2005-08-11 Kyocera Corp Fuel battery cell and fuel battery
JP2006185697A (en) * 2004-12-27 2006-07-13 Toto Ltd Interconnector material and solid oxide fuel cell equipped with it
JP2006310090A (en) * 2005-04-28 2006-11-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell and manufacturing method of the same
JP2009263225A (en) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique Titanate of perovskite or derived structure thereof, and use thereof
JP2021061174A (en) * 2019-10-07 2021-04-15 太陽誘電株式会社 Solid oxide fuel cell and manufacturing method of the same

Also Published As

Publication number Publication date
JP3241306B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
US7838141B2 (en) Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices
US4631238A (en) Cobalt doped lanthanum chromite material suitable for high temperature use
Yamaura et al. Cathodic polarization of strontium-doped lanthanum ferrite in proton-conducting solid oxide fuel cell
EP1050085B1 (en) Improved lanthanum manganite-based air electrode for solid oxide fuel cells
US5958304A (en) Doped lanthanum chromite material for bipolar interconnects for solid oxide fuel cells
JP3358884B2 (en) Interconnector material
JP2001527277A (en) Air electrode composition for solid oxide fuel cell
JP3241306B2 (en) Interconnector material
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
JP3389040B2 (en) Electrode materials for solid electrolyte fuel cells
JP2001052725A (en) Material for peripheral member of cylindrical solid electrolyte fuel cell and cell making use of the same
JPH05294629A (en) Oxygen ionic conductor and solid fuel cell
JP3403055B2 (en) Oxygen side electrode
JP2011198758A (en) Fuel electrode material for solid oxide fuel cell, fuel electrode, solid oxide fuel cell, and manufacturing method of fuel electrode material
JP3351865B2 (en) Fuel electrode for solid oxide fuel cell and self-standing membrane flat solid electrolyte fuel cell using this fuel electrode
JPH09147876A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JP2870126B2 (en) Solid oxide fuel cell
JP2016085921A (en) Cell support and solid oxide fuel cell
JPH10247498A (en) Fuel electrode material
JPH076774A (en) Scandium stabilized zirconia group solid electrolyte fuel cell
JPH10172578A (en) Fuel electrode material of solid electrolyte type electrochemical cell
JPH07157364A (en) Lanthanum chromite-based material
JPH0883620A (en) Interconnector material
JP2007008778A (en) Ceramic material, oxygen electrode material, oxygen electrode, and fuel cell and manufacturing method thereof
JP2007039279A (en) Lanthanum chromite-based material, interconnector, solid oxide fuel cell and electric heating element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees