JP2006185697A - Interconnector material and solid oxide fuel cell equipped with it - Google Patents

Interconnector material and solid oxide fuel cell equipped with it Download PDF

Info

Publication number
JP2006185697A
JP2006185697A JP2004376830A JP2004376830A JP2006185697A JP 2006185697 A JP2006185697 A JP 2006185697A JP 2004376830 A JP2004376830 A JP 2004376830A JP 2004376830 A JP2004376830 A JP 2004376830A JP 2006185697 A JP2006185697 A JP 2006185697A
Authority
JP
Japan
Prior art keywords
evaluation
fuel cell
group
interconnector
bulk body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004376830A
Other languages
Japanese (ja)
Other versions
JP4719940B2 (en
Inventor
Tomoyuki Nakamura
朋之 中村
Kenichi Hiwatari
研一 樋渡
Hironobu Murakami
弘展 村上
Mitsunobu Shiono
光伸 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2004376830A priority Critical patent/JP4719940B2/en
Publication of JP2006185697A publication Critical patent/JP2006185697A/en
Application granted granted Critical
Publication of JP4719940B2 publication Critical patent/JP4719940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid oxide fuel cell having output performance without being impaired even if the co-baking of at least one-side electrode and an interconnector is executed, by developing the interconnector having a high degree of sintering. <P>SOLUTION: This solid oxide fuel cell is provided with an air electrode formed of a group A, an electrolyte formed of a group B, a fuel electrode formed of a group C, and the interconnector formed of a perovskite type oxide containing La and Fe as main constituents and formed by replacing 50 mol% or less of Fe with Cr or Ti. The group A is represented by ABO<SB>3</SB>, where A is at least one kind selected from alkaline earth metals excluding Mg, lanthanoid excluding Ce, Sc and Y, and B is at least one kind selected from Cr, Mn, Fe, Co, Ni, Cu, Al and Mg. The group B is at least one kind selected from stabilized zirconia, a celia-based solid solution and lanthanum gallate. The group C is a complex of at least one kind selected from Ni, Co, Cu and Fe, and at least one kind selected from the group B. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体酸化物形燃料電池に係り、焼結性の高いインターコネクタを開発し、少なくとも一方の電極とインターコネクタの共焼成を行っても、出力性能を損なわない固体酸化物形燃料電池に関する発明である。   The present invention relates to a solid oxide fuel cell, and has developed a highly sinterable interconnector and does not impair output performance even when at least one electrode and the interconnector are co-fired. It is invention regarding.

固体酸化物形燃料電池は、空気極、電解質、燃料極、インターコネクタの4つの部材から構成される。各部材を成形・成膜するにあたり、少なくとも2種以上、望ましくは全ての部材を一度に焼結させること(共焼成または一体焼結と呼ばれる)が可能となれば、生産工程を短縮することが出来るが、各部材はそれぞれ役割が異なり、用いられる材料及びその特性も異なる為、達成は非常に困難とされている。中でもインターコネクタと他部材の共焼成は非常に難しい技術とされており、その理由として、従来のインターコネクタ材料に他部材と比較すると非常に焼結性が低いLaCrOが用いられていることにある。LaCrOの焼結温度(1700℃)で焼成すると、電極の多孔性が失われる為、高い出力を得ることが出来ない。また、元来LaCrOは電子導電性が小さい。そこでLaの一部をSrやCa等、Crの一部を遷移金属で置換することで、焼結性及び導電性を向上させる報告がなされている。 A solid oxide fuel cell is composed of four members: an air electrode, an electrolyte, a fuel electrode, and an interconnector. When forming and forming each member, it is possible to shorten the production process if it is possible to sinter at least two kinds, preferably all members at once (called co-firing or integral sintering). However, each member has a different role, and the material used and its characteristics are also different, so that it is very difficult to achieve. Among them, the co-firing of the interconnector and other members is considered to be a very difficult technology, and the reason for this is that LaCrO 3 having a very low sinterability compared to other members is used for the conventional interconnector material. is there. When firing at the sintering temperature (1700 ° C.) of LaCrO 3 , the porosity of the electrode is lost, so a high output cannot be obtained. In addition, LaCrO 3 originally has a low electronic conductivity. Therefore, reports have been made to improve the sinterability and conductivity by replacing part of La with Sr, Ca, etc. and part of Cr with transition metal.

Laの一部をSrで置換した(La,Sr)CrOを焼結させるには1700℃以上の高温を要する為、(La,Sr)CrOのBサイトに種々の金属をドープし、焼成温度の低温化が図られている。(例えば、特許文献1参照。)。
特許文献1によると、イオン導電性や還元安定性の観点から好ましいとされる金属のドープ量は30mol%までに限られてしまい、焼結に必要な焼成温度は1600℃以下にすることが出来ず、固体酸化物形燃料電池における他部材との共焼成に要求される共焼成温度の1400℃前後まで焼成温度を下げることが出来ないという問題があった。平板型の燃料電池セルでは、インターコネクタと他部材を別々に焼結させ、後に機械的に積層すれば良いが、他部材と共焼成可能であると工数が低減するので好ましい。一方、円筒型、フラットチューブ型、モノリス型の燃料電池セルでは別々に焼結することは出来ない為、気相析出法や溶射法といった生産性の低い製法を取らざるを得ない。
In order to sinter (La, Sr) CrO 3 in which part of La is replaced with Sr, a high temperature of 1700 ° C. or higher is required. Therefore, the B site of (La, Sr) CrO 3 is doped with various metals and fired. The temperature has been lowered. (For example, refer to Patent Document 1).
According to Patent Document 1, the metal doping amount that is preferable from the viewpoint of ionic conductivity and reduction stability is limited to 30 mol%, and the firing temperature necessary for sintering can be 1600 ° C. or lower. However, there was a problem that the firing temperature could not be lowered to around 1400 ° C., which is the co-firing temperature required for co-firing with other members in the solid oxide fuel cell. In the flat type fuel cell, the interconnector and the other member may be separately sintered and then mechanically laminated. However, it is preferable to be able to co-fire with the other member because the man-hour is reduced. On the other hand, since cylindrical, flat tube, and monolith fuel cells cannot be sintered separately, a low-productivity manufacturing method such as vapor deposition or thermal spraying must be employed.

Laの一部をCaで置換した(La,Ca)CrOは、(La,Sr)CrOと比較すると比較的低温で焼成することが可能である(例えば、特許文献2参照。)。
しかし(La,Ca)CrOにおいて焼成時に発生するカルシウムクロメイトと呼ばれる液相成分が焼結性を向上させているが、共焼成時にはこの液相成分が他部材に移動してしまい、(La,Ca)CrO自身が焼結しない。そこでプリコート層と呼ばれる緻密層を設けることで液相成分の移動を抑制し焼結性が確保されている(例えば、特許文献3参照。)。
このような場合、緻密層を焼成等で別途成膜する必要があり、工数の増加につながるという問題があった。
(La, Ca) CrO 3 in which a part of La is substituted with Ca can be fired at a relatively low temperature as compared with (La, Sr) CrO 3 (see, for example, Patent Document 2).
However, in (La, Ca) CrO 3 , a liquid phase component called calcium chromate generated during firing improves the sinterability, but during co-firing, this liquid phase component moves to another member, and (La , Ca) CrO 3 itself does not sinter. Therefore, by providing a dense layer called a precoat layer, the movement of the liquid phase component is suppressed and sinterability is ensured (for example, see Patent Document 3).
In such a case, it is necessary to form a dense layer separately by baking or the like, which causes a problem that man-hours increase.

特開平4−219364号公報(第4頁、表1)JP-A-4-219364 (page 4, Table 1) 特開平9−249419号公報(第5頁、表1)JP-A-9-249419 (5th page, Table 1) 特開平5−121085号公報(第5頁、表1)Japanese Patent Laid-Open No. 5-121085 (5th page, Table 1)

本発明は、上記問題を解決するためになされたもので、本発明の課題は、焼結性の高いインターコネクタを開発し、少なくとも一方の電極と、インターコネクタの共焼成を行っても、出力性能を損なわない固体酸化物形燃料電池を提供することである。   The present invention has been made to solve the above problems, and the object of the present invention is to develop an interconnector having high sinterability, and at least one of the electrodes and the interconnector can be co-fired. It is an object of the present invention to provide a solid oxide fuel cell that does not impair performance.

上記目的を達成するために請求項1記載の発明によれば、A群からなる空気極、B群からなる電解質、C群からなる燃料極、及び、La及びFeを主成分としFeの50mol%未満をCrまたはTiで置換したペロブスカイト型酸化物からなるインターコネクタを備えた固体酸化物形燃料電池
A群:ABO(A:Mgを除くアルカリ土類金属、Ceを除くランタノイド、Sc、Yから選ばれる少なくとも一種、B:Cr、Mn、Fe、Co、Ni、Cu、Al、Mgから選ばれる少なくとも一種)
B群:安定化ジルコニア、セリア系固溶体、ランタンガレートから選ばれる少なくとも一種
C群:Ni、Co、Cu、Feから選ばれる少なくとも一種と、B群から選ばれる少なくとも1種との複合体
を提供する。
In order to achieve the above object, according to the first aspect of the present invention, an air electrode composed of a group A, an electrolyte composed of a group B, a fuel electrode composed of a group C, and 50 mol% of Fe containing La and Fe as main components. Solid oxide fuel cell group A having an interconnector made of perovskite oxide with less than Cr or Ti substituted: ABO 3 (A: alkaline earth metal excluding Mg, lanthanoid excluding Ce, Sc, Y At least one selected, B: at least one selected from Cr, Mn, Fe, Co, Ni, Cu, Al, Mg)
Group B: Provided is a complex of at least one selected from stabilized zirconia, ceria-based solid solution, and lanthanum gallate, C group: at least one selected from Ni, Co, Cu, and Fe, and at least one selected from Group B .

上記目的を達成するために請求項2記載の発明によれば、請求項1に記載の固体酸化物形燃料電池が、円筒縦縞型、円筒横縞型、フラットチューブ型、モノリス型のいずれかであることを特徴とする固体酸化物形燃料電池を提供する。   In order to achieve the above object, according to the invention described in claim 2, the solid oxide fuel cell according to claim 1 is any one of a cylindrical vertical stripe type, a cylindrical horizontal stripe type, a flat tube type, and a monolith type. A solid oxide fuel cell is provided.

上記目的を達成するために請求項3記載の発明によれば、一般式が(La1−xSr)(Fe1−yCr)O(0≦x≦0.1、0<y<0.5)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池を提供する。 According to the invention of claim 3, wherein in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y Cr y) O 3 (0 ≦ x ≦ 0.1,0 <y The solid oxide fuel cell according to claim 1 or 2, comprising an interconnector material represented by <0.5).

上記目的を達成するために請求項4記載の発明によれば、一般式が(La1−xSr)(Fe1−y−zCr)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池を提供する。 According to the fourth aspect of the invention in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y-z Cr y M z) O 3 (M: Mn, Co, Ni , Cu, 0 ≦ x ≦ 0.05, 0 <y <0.5, 0 <z ≦ 0.1) The solid oxide fuel according to claim 1, Provide batteries.

上記目的を達成するために請求項5記載の発明によれば、一般式が(La1−xSr)(Fe1−yTi)O(0≦x≦0.1、0<y<0.5)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池を提供する。 According to the invention of claim 5, wherein in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y Ti y) O 3 (0 ≦ x ≦ 0.1,0 <y The solid oxide fuel cell according to claim 1 or 2, comprising an interconnector material represented by <0.5).

上記目的を達成するために請求項6記載の発明によれば、一般式が(La1−xSr)(Fe1−y−zTi)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池する。 According to the invention of claim 6, wherein in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y-z Ti y M z) O 3 (M: Mn, Co, Ni , Cu, 0 ≦ x ≦ 0.05, 0 <y <0.5, 0 <z ≦ 0.1) The solid oxide fuel according to claim 1, Battery.

上記目的を達成するために請求項7記載の発明によれば、A群からなる空気極、B群からなる電解質、C群からなる燃料極、及びインターコネクタからなる固体酸化物形燃料電池を形成する為のインターコネクタ材料であって、La及びFeを主成分としFeの50mol%未満をCrまたはTiで置換したペロブスカイト型酸化物からなるインターコネクタ材料
A群:ABO(A:Mgを除くアルカリ土類金属、Ceを除くランタノイド、Sc、Yから選ばれる少なくとも一種、B:Cr、Mn、Fe、Co、Ni、Cu、Al、Mgから選ばれる少なくとも一種)
B群:安定化ジルコニア、セリア系固溶体、ランタンガレートから選ばれる少なくとも一種
C群:Ni、Co、Cu、Feから選ばれる少なくとも一種と、B群から選ばれる少なくとも1種との複合体
を提供する。
In order to achieve the above object, according to the seventh aspect of the present invention, there is formed a solid oxide fuel cell comprising an air electrode comprising a group A, an electrolyte comprising a group B, a fuel electrode comprising a group C, and an interconnector. An interconnector material comprising a perovskite oxide in which La and Fe are the main components and less than 50 mol% of Fe is replaced by Cr or Ti. Group A: ABO 3 (A: Alkali excluding Mg An earth metal, a lanthanoid excluding Ce, at least one selected from Sc and Y, and B: at least one selected from Cr, Mn, Fe, Co, Ni, Cu, Al, and Mg)
Group B: Provided is a complex of at least one selected from stabilized zirconia, ceria-based solid solution, and lanthanum gallate, C group: at least one selected from Ni, Co, Cu, and Fe, and at least one selected from Group B .

上記目的を達成するために請求項8記載の発明によれば、一般式が(La1−xSr)(Fe1−yCr)O(0≦x≦0.1、0<y<0.5)で表される請求項7に記載のインターコネクタ材料を提供する。 According to the invention of claim 8, wherein in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y Cr y) O 3 (0 ≦ x ≦ 0.1,0 <y The interconnector material of Claim 7 represented by <0.5) is provided.

上記目的を達成するために請求項9記載の発明によれば、一般式が(La1−xSr)(Fe1−y−zCr)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表される請求項7に記載のインターコネクタ材料を提供する。 According to the invention of claim 9, wherein in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y-z Cr y M z) O 3 (M: Mn, Co, Ni , Cu, 0 ≦ x ≦ 0.05, 0 <y <0.5, 0 <z ≦ 0.1).

上記目的を達成するために請求項10記載の発明によれば、一般式が(La1−xSr)(Fe1−yTi)O(0≦x≦0.1、0<y<0.5)で表されるで表される請求項7に記載のインターコネクタ材料を提供する。 According to the invention of claim 10, wherein in order to achieve the above object, the general formula (La 1-x Sr x) (Fe 1-y Ti y) O 3 (0 ≦ x ≦ 0.1,0 <y The interconnector material according to claim 7, represented by <0.5).

上記目的を達成するために請求項11記載の発明によれば、一般式が(La1−xSr)(Fe1−y−zTi)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表される請求項7に記載のインターコネクタ材料を提供する。
In order to achieve the above object, according to the invention of claim 11, the general formula is (La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 (M: Mn, Co, Ni , Cu, 0 ≦ x ≦ 0.05, 0 <y <0.5, 0 <z ≦ 0.1).

本発明によれば、焼結性の高いインターコネクタにより、固体酸化物燃料電池の作製において、少なくとも一方の電極とインターコネクタとを共焼成することが可能となる。
According to the present invention, it is possible to co-fire at least one electrode and the interconnector in the production of the solid oxide fuel cell by the interconnector having high sinterability.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

固体酸化物形燃料電池は、空気極、電解質、燃料極、インターコネクタの4つの部材から構成される。   A solid oxide fuel cell is composed of four members: an air electrode, an electrolyte, a fuel electrode, and an interconnector.

固体酸化物形燃料電池の空気極には、高温、酸化雰囲気での安定性と高い電子導電性を持つことが要求されるので、一般式ABO(A:Mgを除くアルカリ土類金属、Ceを除くランタノイド、Sc、Yから選ばれる少なくとも一種、B:Cr、Mn、Fe、Co、Ni、Cu、Al、Mgから選ばれる少なくとも一種)で表されるペロブスカイト型酸化物が用いられる。中でもLaMnO、LaCoO、LaFeOをベースとし、それぞれのAサイトをMgを除くアルカリ土類金属、La、Ceを除くランタノイド、Sc、Yから選ばれる少なくとも一種で置換したものや、各BサイトをCr、Mn、Fe、Co、Ni、Cu、Al、Mgから選ばれる少なくとも一種で置換したものが用いられる。空気極には、ガス拡散性と高い触媒活性が要求されるので、20〜40%の気孔率が必要となる。前記空気極材料を焼成法にて成形または成膜する場合には焼成温度は1000℃以上1500℃以下が望ましく、1500℃を超えると、いずれの材料も気孔率を保持することは困難である。 Since the air electrode of a solid oxide fuel cell is required to have high temperature, stability in an oxidizing atmosphere and high electronic conductivity, the general formula ABO 3 (A: alkaline earth metal excluding Mg, Ce A perovskite oxide represented by at least one selected from lanthanoids, Sc, and Y, and B: at least one selected from Cr, Mn, Fe, Co, Ni, Cu, Al, and Mg). Above all, based on LaMnO 3 , LaCoO 3 , LaFeO 3 , each A site is substituted with at least one selected from alkaline earth metals excluding Mg, lanthanoids excluding La and Ce, Sc and Y, and each B site Are substituted with at least one selected from Cr, Mn, Fe, Co, Ni, Cu, Al, and Mg. The air electrode is required to have a porosity of 20 to 40% because gas diffusibility and high catalytic activity are required. When the air electrode material is molded or formed into a film by a firing method, the firing temperature is preferably 1000 ° C. or more and 1500 ° C. or less, and if it exceeds 1500 ° C., it is difficult for any material to maintain the porosity.

固体酸化物形燃料電池の電解質には、高温、酸化還元両雰囲気での安定性と高いイオン導電性を有することが要求されるので、安定化ジルコニア、セリア系固溶体、ランタンガレートが用いられる。本明細書における安定化ジルコニアとは、ジルコニウムと価数が異なる金属で置換したジルコニアの総称である。安定化ジルコニアの安定化材料には、Ca、Mg、希土類元素の少なくとも一種以上が用いられ、置換量は安定化ジルコニア1molに対して、酸化物として2〜20mol%とするのが一般的である。中でも、Y、Scで置換した安定化ジルコニアは高いイオン導電性を有するので好ましい。本明細書におけるセリア系固溶体とは、安定化ジルコニアと同様、価数の異なる希土類元素を置換したセリアの総称である。セリア系固溶体のドーパントとしては、Ca、Mg、Zr、Ceを除くランタノイドの少なくとも一種が用いられ、置換量は10〜40mol%とするのが一般的である。中でも、Gd、Sm、Yで10〜20mol%置換したセリアは高いイオン導電性を有するので好ましい。本明細書におけるランタンガレートとは、特開平10−114520で公開されているように、LaGaOをベースとし、Laの一部をSrで置換し、且つGaの一部をMgで置換したペロブスカイト型酸化物の総称である。一般式は(La1−xSr)(Ga1−yMg)O(0<x≦0.4、0<y≦0.4)で表される。更に特開平11−335164で公開されているように、ランタンガレートのBサイトの一部をCo、Fe、Ni、Cuのいずれかで置換しても良い。一般式は(La1−xSr)(Ga1−y−zMg)O(0.05≦x≦0.3、0.025≦y≦0.29、0.01≦z≦0.15、0.025≦y+z≦0.3、M:Co、Fe、Ni、Cu)で表される。電解質にはガスタイト性が要求され、相対密度は95%以上が好ましい。前記電解質材料を焼成法にて成形または成膜する場合には焼成温度は1300℃以上が必要であり、1500℃を超えると、製造工程・使用材料によっては電極との反応により出力性能を低下させる原因となる。 The electrolyte of the solid oxide fuel cell is required to have stability in both high temperature and redox atmospheres and high ionic conductivity, and therefore, stabilized zirconia, ceria-based solid solution, and lanthanum gallate are used. The stabilized zirconia in this specification is a general term for zirconia substituted with a metal having a valence different from that of zirconium. As the stabilizing material for stabilized zirconia, at least one of Ca, Mg and rare earth elements is used, and the amount of substitution is generally 2 to 20 mol% as an oxide with respect to 1 mol of stabilized zirconia. . Among these, stabilized zirconia substituted with Y and Sc is preferable because it has high ionic conductivity. The ceria-based solid solution in the present specification is a general term for ceria substituted with rare earth elements having different valences, like the stabilized zirconia. As the ceria-based solid solution dopant, at least one of lanthanoids excluding Ca, Mg, Zr, and Ce is used, and the substitution amount is generally 10 to 40 mol%. Among these, ceria substituted by 10 to 20 mol% with Gd, Sm, and Y is preferable because it has high ionic conductivity. As disclosed in JP-A-10-114520, lanthanum gallate in the present specification is a perovskite type based on LaGaO 3, in which a part of La is substituted with Sr and a part of Ga is substituted with Mg. A generic term for oxides. Formula is represented by (La 1-x Sr x) (Ga 1-y Mg y) O 3 (0 <x ≦ 0.4,0 <y ≦ 0.4). Further, as disclosed in JP-A-11-335164, a part of the B site of lanthanum gallate may be substituted with any of Co, Fe, Ni, and Cu. General formula (La 1-x Sr x) (Ga 1-y-z Mg y M z) O 3 (0.05 ≦ x ≦ 0.3,0.025 ≦ y ≦ 0.29,0.01 ≦ z ≦ 0.15, 0.025 ≦ y + z ≦ 0.3, M: Co, Fe, Ni, Cu). The electrolyte is required to have gas tightness, and the relative density is preferably 95% or more. When the electrolyte material is molded or formed into a film by a firing method, the firing temperature is required to be 1300 ° C. or higher, and if it exceeds 1500 ° C., the output performance is degraded due to the reaction with the electrode depending on the manufacturing process and the material used Cause.

固体酸化物形燃料電池の燃料極には、高温、還元雰囲気での安定性と高い電子導電性を持つことが要求されるので、金属であるNi、Co、Cu、Feから選ばれる少なくとも一種と、前記電解質材料との複合体が用いられる。中でもNiは酸化されにくく、燃料利用率を上げることが出来るので好ましい。Niの一部または全てをCoとすることで硫黄被毒の抑制に効果があり、Niの一部または全てをCu、Feとすることで、炭素析出の抑制に効果があるとされている。燃料極には、ガス拡散性と高い触媒活性が要求されるので、20〜40%の気孔率が必要となる。前記燃料極材料を焼成法にて成形または成膜する場合には金属源としてNi、Co、Cu、Feの酸化物を使用し、焼成温度は1000℃以上1500℃以下が望ましく、1500℃を超えると、いずれの材料も気孔率を保持することは困難である。   Since the fuel electrode of the solid oxide fuel cell is required to have stability in a high temperature, reducing atmosphere and high electronic conductivity, at least one selected from metals Ni, Co, Cu, and Fe A composite with the electrolyte material is used. Among these, Ni is preferable because it is difficult to be oxidized and the fuel utilization rate can be increased. It is said that making some or all of Ni Co effective in suppressing sulfur poisoning, and making some or all Ni Ni Cu or Fe is effective in suppressing carbon deposition. Since the fuel electrode is required to have gas diffusibility and high catalytic activity, a porosity of 20 to 40% is required. When the fuel electrode material is formed or formed by a firing method, an oxide of Ni, Co, Cu, or Fe is used as a metal source, and the firing temperature is preferably 1000 ° C. or more and 1500 ° C. or less, and preferably exceeds 1500 ° C. And it is difficult for any material to maintain the porosity.

このように、インターコネクタを除く各部材を焼成法で成形・成膜するには、焼成温度が1300℃〜1500℃であることが望まれる。一方で、従来のインターコネクタであるLaCrO系材料は1600℃以上で焼成するか、または別途緻密層を設けないと焼結させることは出来ない。つまり、LaCrO系材料からなるインターコネクタと、該インターコネクタと隣接する多孔質電極との共焼成が不可能であることは勿論のことだが、多孔質電極上にLaCrO系材料からなるインターコネクタを焼結させることさえ不可能である。そこで、LaCrO系材料以外に高い還元安定性を有する材料について調査したところ、LaFeO系材料が該当した。 Thus, in order to form and form each member excluding the interconnector by the firing method, it is desirable that the firing temperature is 1300 ° C to 1500 ° C. On the other hand, a LaCrO 3 -based material, which is a conventional interconnector, cannot be sintered unless it is fired at 1600 ° C. or higher or a separate dense layer is not provided. In other words, it is not possible to co-fire the interconnector made of LaCrO 3 system material and the porous electrode adjacent to the interconnector, but the interconnector made of LaCrO 3 system material on the porous electrode. It is even impossible to sinter. So, I've looked for a material having a high reduction stability in addition to LaCrO 3-based material, LaFeO 3 based material was appropriate.

LaFeOは焼結性が高く、1400℃以下で容易に焼結させることが出来る。またLaCrO系材料には及ばないものの還元安定性は高く、1000℃で酸素分圧が1×10−17(6%加湿Hガスに相当)まで安定であることを我々は確認出来た。実働条件の下限値である1000℃での酸素分圧1×10−18(2%加湿Hガスに相当)まで安定領域を広げることが出来れば、インターコネクタとして使用可能である。そこで、LaFeOのFeの50%未満をCrまたはTiで置換することで、1000℃における酸素分圧1×10−18以下でも安定な材料を見出した。その結果、少なくとも一方の電極と電解質と共焼成を行っても、ガスタイト性、還元安定性の高いインターコネクタを成膜でき、出力性能を損なわない固体酸化物形燃料電池を作製するに至った。Crの置換量が50%以上となると、Crの場合は焼結性が低下し、電極との共焼成を行うとガスタイトなインターコネクタを作製出来ないので、高い出力性能を得ることが出来ない。Tiの置換量が50%以上となると、電子導電性が大きく低下し、高い出力性能を得ることが出来ない。 LaFeO 3 has high sinterability and can be easily sintered at 1400 ° C. or lower. Although not as good as LaCrO 3 -based materials, the reduction stability is high, and we have confirmed that the oxygen partial pressure at 1000 ° C. is stable up to 1 × 10 −17 (corresponding to 6% humidified H 2 gas). If it is possible to widen the oxygen partial pressure 1 × (equivalent to 2% humidified H 2 gas) 10 -18 until a stable region at 1000 ° C. which is the lower limit of the production conditions, it can be used as the interconnector. Therefore, by substituting less than 50% of Fe of LaFeO 3 with Cr or Ti, a stable material was found even at an oxygen partial pressure of 1 × 10 −18 or less at 1000 ° C. As a result, even when co-firing with at least one of the electrodes and the electrolyte, an interconnector with high gas tightness and reduction stability can be formed, and a solid oxide fuel cell that does not impair output performance has been produced. When the substitution amount of Cr is 50% or more, in the case of Cr, the sinterability is lowered, and when co-firing with the electrode, a gastight interconnector cannot be produced, so that high output performance cannot be obtained. When the substitution amount of Ti is 50% or more, the electronic conductivity is greatly lowered, and high output performance cannot be obtained.

本発明における固体酸化物形燃料電池の形状は、円筒縦縞型、円筒横縞型、フラットチューブ型、モノリス型が好ましい。いずれの形状おいても、インターコネクタのみを焼成し、機械的に接合するのは困難である為である。ここで固体酸化物形燃料電池の形状について図を用いて詳細を説明する。   The shape of the solid oxide fuel cell in the present invention is preferably a cylindrical vertical stripe type, a cylindrical horizontal stripe type, a flat tube type, or a monolith type. This is because, in any shape, it is difficult to fire only the interconnector and mechanically join it. Here, the shape of the solid oxide fuel cell will be described in detail with reference to the drawings.

図1に円筒縦縞型燃料電池10の一例を示す。空気極1を支持管とし、その外周を電解質2、燃料極3が形成されている。集電の為のインターコネクタ4は空気極1と隣接し、燃料極3と接することなく筒の長手方向に伸びている。インターコネクタの厚みは、ガスタイト性が確保できれば、電気抵抗の観点から薄ければ薄い方が好ましく、一般的に200μm以下、より好ましくは100μm以下である。インターコネクタの厚みが薄いことから、インターコネクタのみを焼成し、機械的に接合するのは困難である。図1に示す円筒縦縞型燃料電池の支持管が燃料極であっても同様のことが言える。   FIG. 1 shows an example of a cylindrical vertical stripe fuel cell 10. An air electrode 1 is used as a support tube, and an electrolyte 2 and a fuel electrode 3 are formed on the outer periphery thereof. The interconnector 4 for current collection is adjacent to the air electrode 1 and extends in the longitudinal direction of the cylinder without contacting the fuel electrode 3. As long as the gas tightness can be secured, the thickness of the interconnector is preferably as thin as possible from the viewpoint of electrical resistance, and is generally 200 μm or less, more preferably 100 μm or less. Since the thickness of the interconnector is thin, it is difficult to fire and interconnect mechanically only the interconnector. The same can be said even if the support tube of the cylindrical vertical stripe fuel cell shown in FIG. 1 is a fuel electrode.

図2に円筒横縞型燃料電池11の一例の断面図を示す。カルシア安定化ジルコニアからなる多孔質支持管5の外周を、燃料極3、電解質2、空気極1が形成され、これが単セルとなる。単セル同士は、空気極と隣接するセルの燃料極はインターコネクタ4で電気的に接続される。円筒縦縞型と同様、インターコネクタは薄い方が良く、加えて成膜面が円周方向の全周であることから、機械的に接合するのは極めて困難である。   FIG. 2 shows a cross-sectional view of an example of the cylindrical horizontal stripe fuel cell 11. A fuel electrode 3, an electrolyte 2, and an air electrode 1 are formed on the outer periphery of a porous support tube 5 made of calcia-stabilized zirconia, which becomes a single cell. In single cells, the fuel electrode of the cell adjacent to the air electrode is electrically connected by the interconnector 4. Like the cylindrical vertical stripe type, the interconnector should be thin, and in addition, since the film formation surface is the entire circumference in the circumferential direction, mechanical joining is extremely difficult.

図3にフラットチューブ型燃料電池12の一例の断面図を示す。形状は円筒縦縞型燃料電池を扁平にしたものであって構造は類似している。空気極1を支持管とし、その外周を電解質2、燃料極3が形成されている。集電の為のインターコネクタ4は空気極1と隣接し、燃料極3と接することなく、紙面奥に向かって伸びている。インターコネクタは薄い方が好ましく、機械的に接合するのは困難である。   FIG. 3 shows a cross-sectional view of an example of the flat tube fuel cell 12. The shape is flattened cylindrical vertical stripe fuel cell, and the structure is similar. An air electrode 1 is used as a support tube, and an electrolyte 2 and a fuel electrode 3 are formed on the outer periphery thereof. The interconnector 4 for current collection is adjacent to the air electrode 1 and extends toward the back of the paper without contacting the fuel electrode 3. The interconnector is preferably thin and difficult to mechanically join.

図4にモノリス型燃料電池13の一例の断面図を示す。モノリスとは一体焼結型スタックを総称する。空気極1、インターコネクタ4、燃料極3を積層したグリーンシートと、空気極1、電解質2、燃料極3を積層したグリーンシートを折り曲げ、各々の積層体を交互に重ね合わせた後、一体焼成して作製される。同様にインターコネクタは薄い方が好ましく、機械的に接合するのは困難であるし、元来の目的である共焼成に反する。   FIG. 4 shows a cross-sectional view of an example of the monolith type fuel cell 13. Monolith is a generic term for an integral sintered stack. The green sheet in which the air electrode 1, the interconnector 4, and the fuel electrode 3 are laminated, and the green sheet in which the air electrode 1, the electrolyte 2 and the fuel electrode 3 are laminated are folded, and the laminated bodies are alternately stacked, and then integrally fired. Is produced. Similarly, it is preferable that the interconnector is thin, it is difficult to mechanically join, and it is contrary to the co-firing which is the original purpose.

なお、平板型燃料電池で本明細書に記載の燃料電池を平板型としても何ら問題はなく、共焼成により工数の低減を見込むことが出来る。   It should be noted that there is no problem even if the fuel cell described in this specification is a flat plate type fuel cell, and a reduction in man-hours can be expected by co-firing.

本発明におけるLaFeOのFeの一部をCrで置換したLa(Fe,Cr)OのLaの一部をSr等のアルカリ土類金属、Sc、Y、Ceを除くランタノイドで置換しても良い。中でもLaとイオン半径の近いSrが最も好ましい。一般式(La1−xSr)(Fe1−yCr)Oで表されるペロブスカイト型酸化物において、0≦x≦0.1、0<y<0.5が好ましい。Laの一部をSrで置換することにより電子導電性を向上させることが出来る。 In the present invention, a part of La (Fe, Cr) O 3 in which part of LaFeO 3 Fe is replaced with Cr may be replaced with an alkaline earth metal such as Sr, or a lanthanoid excluding Sc, Y, and Ce. good. Of these, Sr having an ion radius close to La is most preferable. In the perovskite oxide represented by the general formula (La 1-x Sr x ) (Fe 1-y Cr y ) O 3 , 0 ≦ x ≦ 0.1 and 0 <y <0.5 are preferable. By substituting part of La with Sr, the electronic conductivity can be improved.

更に電子導電性を向上させる為、Bサイトの一部をMn等の遷移金属で置換しても良い。一般式(La1−xSr)(Fe1−y−zCr)O(M:Mn,Co,Ni,Cu)で表されるペロブスカイト型酸化物において、0≦x≦0.05、0<y<0.5、0<z≦0.1が好ましい。 Further, in order to improve the electronic conductivity, a part of the B site may be substituted with a transition metal such as Mn. Formula (La 1-x Sr x) (Fe 1-y-z Cr y M z) O 3 (M: Mn, Co, Ni, Cu) in the perovskite type oxide represented by, 0 ≦ x ≦ 0 .05, 0 <y <0.5 and 0 <z ≦ 0.1 are preferred.

本発明におけるLaFeOのFeの一部をTiで置換したLa(Fe,Ti)OのAサイトの一部をSr等のアルカリ土類金属、Sc、Y、Ceを除くランタノイドで置換しても良い。中でもLaとイオン半径の近いSrが最も好ましい。一般式(La1−xSr)(Fe1−yTi)Oで表されるペロブスカイト型酸化物において、0≦x≦0.1、0<y<0.5が好ましい。Srで置換することにより電子導電性は向上する。 In the present invention, a part of La (Fe, Ti) O 3 A site obtained by substituting a part of Fe of LaFeO 3 with Ti is replaced with an alkaline earth metal such as Sr, and a lanthanoid excluding Sc, Y, and Ce. Also good. Of these, Sr having an ion radius close to La is most preferable. In the perovskite type oxide represented by the general formula (La 1-x Sr x ) (Fe 1-y Ti y ) O 3 , 0 ≦ x ≦ 0.1 and 0 <y <0.5 are preferable. Substitution with Sr improves the electronic conductivity.

更に電子導電性を向上させる為、Bサイトの一部をMn等の遷移金属で置換しても良い。一般式(La1−xSr)(Fe1−y−zTi)O(M:Mn,Co,Ni,Cu)で表されるペロブスカイト型酸化物において、0≦x≦0.05、0<y<0.5、0<z≦0.1が好ましい。 Further, in order to improve the electronic conductivity, a part of the B site may be substituted with a transition metal such as Mn. Formula (La 1-x Sr x) (Fe 1-y-z Ti y M z) O 3 (M: Mn, Co, Ni, Cu) in the perovskite type oxide represented by, 0 ≦ x ≦ 0 .05, 0 <y <0.5 and 0 <z ≦ 0.1 are preferred.

ベース組成であるLaFeOのLaをSc、Y、Ceを除くランタノイドに置換しても、LaFeOと同程度の耐還元性は見込めるが、材料コストを考慮するとLaが最も好ましい。更に、還元安定性を向上させるCr及びTiの2種を同時に置換しても同様の効果が得られることが考えられる。
Even if La of the base composition LaFeO 3 is replaced with a lanthanoid excluding Sc, Y, and Ce, reduction resistance comparable to that of LaFeO 3 can be expected, but La is most preferable in view of material costs. Furthermore, it is conceivable that the same effect can be obtained even when two kinds of Cr and Ti that improve the reduction stability are substituted at the same time.

次に、本発明におけるインターコネクタ材料の作製方法及び評価方法と、該インターコネクタを備えた固体酸化物形燃料電池の作製方法及び評価方法を示す。   Next, a production method and an evaluation method of an interconnector material according to the present invention, and a production method and an evaluation method of a solid oxide fuel cell including the interconnector will be described.

[バルク体による焼結性・導電性評価]
LaFeO系材料バルク体の出発物質として、水酸化ランタン、炭酸ストロンチウム以外は各種金属酸化物を用いた。各種出発物質を化学量論比に従い秤量し、水を添加して湿式混合したスラリーを乾燥した後、粉末を1100℃で10時間保持の仮焼を行った。仮焼粉末を平均粒子径が1μm前後になるまで湿式粉砕し、乾燥させた粉末を200kgf/cmの圧力で一軸加圧成形を行いグリーン体を得て、1400℃で2時間保持の焼成を行った。得られたバルク体はアルキメデス法により相対密度を算出した。またバルク体を1000℃、酸素分圧10−18の雰囲気に一晩曝した後表面の状態を観察し、還元安定性を評価した。バルク体について1000℃、酸素分圧0.2および10−18の雰囲気にて、直流4端子法による導電率測定を行い、各導電率の逆数の和の1/2を抵抗値として算出した。比較であるLa0.8Sr0.2CrO、La0.8Ca0.2CrOの粉末は噴霧熱分解法で作製し、各々のバルク体データを記載した。
[Sinterability and conductivity evaluation by bulk material]
Various metal oxides other than lanthanum hydroxide and strontium carbonate were used as starting materials for the LaFeO 3 -based material bulk material. Various starting materials were weighed according to the stoichiometric ratio, water was added and the wet-mixed slurry was dried, and then the powder was calcined at 1100 ° C. for 10 hours. The calcined powder is wet-pulverized until the average particle size is around 1 μm, and the dried powder is uniaxially pressed at a pressure of 200 kgf / cm 2 to obtain a green body, which is fired at 1400 ° C. for 2 hours. went. The relative density of the obtained bulk body was calculated by the Archimedes method. The bulk body was exposed to an atmosphere of 1000 ° C. and an oxygen partial pressure of 10 −18 overnight, and then the surface state was observed to evaluate the reduction stability. The bulk body was measured for conductivity by the direct current four-terminal method in an atmosphere of 1000 ° C., oxygen partial pressure 0.2 and 10 −18 , and ½ of the sum of the reciprocals of the respective conductivity was calculated as the resistance value. For comparison, powders of La 0.8 Sr 0.2 CrO 3 and La 0.8 Ca 0.2 CrO 3 were prepared by spray pyrolysis, and the bulk data of each was described.

[燃料電池セルの作製と発電評価]
バルク体による調査で、焼結性及び還元安定性に問題がないと判断されたLaFeO系材料について、該材料をインターコネクタに備えた円筒縦縞型の固体酸化物形燃料電池セルを作製し、発電試験を行った。セルの作製方法は以下の通りである。
[Production of fuel cell and evaluation of power generation]
For the LaFeO 3 -based material that was determined to have no problem in sinterability and reduction stability in the bulk investigation, a cylindrical vertical stripe type solid oxide fuel cell having the material in an interconnector was produced, A power generation test was conducted. The manufacturing method of the cell is as follows.

(1)空気極集電層(支持管)の成形
組成がLa0.8Sr0.2MnOで表されるSrをドープしたランタンマンガナイトを固相法で作製後、熱処理して空気極原料粉末を得た。平均粒子径は3μmとした。該粉末100重量部、バインダー(メチルセルロース)10重量部、溶媒(水)20重量部、と混合し、杯土を得て、押出成形法を用いて焼成後の厚みが2mmとなるよう、円筒状成形体を作製した。
(1) Molding of air electrode current collecting layer (support tube) After producing Sr-doped lanthanum manganite represented by La 0.8 Sr 0.2 MnO 3 by a solid phase method, heat treatment is performed to produce an air electrode. Raw material powder was obtained. The average particle size was 3 μm. The powder is mixed with 100 parts by weight, binder (methylcellulose) 10 parts by weight, solvent (water) 20 parts by weight to obtain a clay, and cylindrical shape so that the thickness after firing is 2 mm using an extrusion method. A molded body was produced.

(2)インターコネクタの成膜
平均粒子径は1μmである各種インターコネクタ材料を、前記の通り固相法で作製した。該粉末100重量部、溶媒(α−テルピネオール)40重量部、バインダー(ポリビニルブチラール)10重量部、分散剤(ポリカルボン酸アミン)1重量部とを混合した後、十分混練してペーストを調整した。前記ペーストをスクリーン印刷法を用いて焼成後の厚みを20μmとなるよう、空気極上にインターコネクタを成膜した。
(2) Film formation of interconnector Various interconnector materials having an average particle diameter of 1 μm were prepared by the solid phase method as described above. After mixing 100 parts by weight of the powder, 40 parts by weight of a solvent (α-terpineol), 10 parts by weight of a binder (polyvinyl butyral) and 1 part by weight of a dispersant (polycarboxylic acid amine), the mixture was sufficiently kneaded to prepare a paste. . An interconnector was formed on the air electrode so that the paste had a thickness of 20 μm after being baked by screen printing.

(3)電解質の成膜
組成が(ZrO0.9(Y0.1で表されるイットリア安定化ジルコニア(以下YSZと表記)を共沈法で作製後、熱処理して電解質原料粉末を得た。平均粒子径は0.5μmとした。該粉末40重量部、溶媒(エタノール)100重量部、バインダー(エチルセルロース)2重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル)1重量部、消泡剤(ソルビタンセスキオレート)1重量部とを混合した後、十分攪拌してスラリーを調整した。前記スラリーを用いて、空気極上にスラリーコート法を用いて焼成後の膜厚が30μmとなるよう成膜した。
(3) Film formation of electrolyte Yttria-stabilized zirconia whose composition is represented by (ZrO 2 ) 0.9 (Y 2 O 3 ) 0.1 (hereinafter referred to as YSZ) is prepared by a coprecipitation method and then heat-treated. An electrolyte raw material powder was obtained. The average particle size was 0.5 μm. 40 parts by weight of the powder, 100 parts by weight of a solvent (ethanol), 2 parts by weight of a binder (ethyl cellulose), 1 part by weight of a dispersant (polyoxyethylene alkyl phosphate ester), 1 part by weight of an antifoaming agent (sorbitan sesquiolate) After mixing, the slurry was prepared by sufficiently stirring. Using the slurry, a film was formed on the air electrode using a slurry coating method so that the film thickness after firing was 30 μm.

(4)空気極/インターコネクタ/電解質の共焼成
インターコネクタ及び電解質が成膜された空気極支持管の焼成を行った。焼成条件は1400℃、2時間保持とした。
(4) Co-firing of air electrode / interconnector / electrolyte The air electrode supporting tube on which the interconnector and the electrolyte were formed was fired. The firing conditions were 1400 ° C. and 2 hours.

(5)燃料極の成膜と焼成
NiO粉末とYSZ粉末の混合物を湿式混合法で作製後、熱処理して燃料極原料粉末を得た。NiOとYSZの混合比は、重量比で70:30とした。平均粒子径を3μmとした。該粉末100重量部、溶媒(エタノール)500重量部、バインダー(エチルセルロース)20重量部、分散剤(ポリオキシエチレンアルキルリン酸エステル)5重量部、消泡剤(ソルビタンセスキオレート)1重量部、可塑剤(フタル酸ジブチル)5重量部とを混合した後、十分攪拌してスラリーを調整した。前記スラリーを、燃料側電極反応層上に燃料側集電層をスラリーコート法を用いて成膜した。その後、1350℃で2時間保持の焼成を行った。焼成後の膜厚は100μmとした。
(5) Film Formation and Firing of Fuel Electrode A mixture of NiO powder and YSZ powder was prepared by a wet mixing method and then heat-treated to obtain a fuel electrode raw material powder. The mixing ratio of NiO and YSZ was 70:30 by weight. The average particle size was 3 μm. 100 parts by weight of the powder, 500 parts by weight of a solvent (ethanol), 20 parts by weight of a binder (ethyl cellulose), 5 parts by weight of a dispersant (polyoxyethylene alkyl phosphate ester), 1 part by weight of an antifoaming agent (sorbitan sesquiolate), plastic After mixing 5 parts by weight of the agent (dibutyl phthalate), the slurry was prepared by sufficiently stirring. The slurry was formed into a film on the fuel side electrode reaction layer by using a slurry coating method on the fuel side current collecting layer. Thereafter, baking was performed at 1350 ° C. for 2 hours. The film thickness after firing was 100 μm.

作製した燃料電池セルの発電条件は、1000℃、0.3A/cm、FU80%、燃料ガス:3%加湿水素、酸化ガス:空気、とした。比較として、La0.8Sr0.2CrO、La0.8Ca0.2CrOをインターコネクタとした燃料電池セルを作製し、データを記載した。いずれも膜厚は20μmとした。 The power generation conditions of the produced fuel cell were 1000 ° C., 0.3 A / cm 2 , FU 80%, fuel gas: 3% humidified hydrogen, and oxidizing gas: air. As a comparison, a fuel cell using La 0.8 Sr 0.2 CrO 3 and La 0.8 Ca 0.2 CrO 3 as an interconnector was prepared, and data was described. In either case, the film thickness was 20 μm.

実施例1から12、及び比較例1から8をもって、(La1−xSr)(Fe1−yCr)Oにおけるx値及びy値の適正範囲を調査した。 With Example 1 from 12 and Comparative Examples 1 to 8, was investigated proper range of the x and y values in the (La 1-x Sr x) (Fe 1-y Cr y) O 3.

[実施例1]
(La1−xSr)(Fe1−yCr)Oにおけるx=0、y=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 1]
Prepared in (La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0, y = 0.1 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例2]
(La1−xSr)(Fe1−yCr)Oにおけるx=0、y=0.2とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 2]
Prepared in (La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0, y = 0.2 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例3]
(La1−xSr)(Fe1−yCr)Oにおけるx=0、y=0.3とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 3]
Prepared in (La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0, y = 0.3 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例4]
(La1−xSr)(Fe1−yCr)Oにおけるx=0、y=0.4とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 4]
Prepared in (La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0, y = 0.4 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例5]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.05、y=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 5]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.05, the powder was y = 0.1 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例6]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.05、y=0.2とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 6]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.05, the powder was y = 0.2 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例7]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.05、y=0.3とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 7]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.05, the powder was y = 0.3 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例8]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.05、y=0.4とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 8]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.05, the powder was y = 0.4 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例9]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.1、y=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 9]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.1, the powder was y = 0.1 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例10]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.1、y=0.2とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 10]
(La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0.1, the powder was y = 0.2 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例11]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.1、y=0.3とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 11]
(La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0.1, the powder was y = 0.3 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例12]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.1、y=0.4とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 12]
(La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0.1, the powder was y = 0.4 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例1]
(La0.8Sr0.2)CrO粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 1]
(La 0.8 Sr 0.2 ) CrO 3 powder was prepared by the above method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例2]
(La0.8Ca0.2)CrO粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 2]
(La 0.8 Ca 0.2 ) CrO 3 powder was prepared by the above method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例3]
(La1−xSr)(Fe1−yCr)Oにおけるx=0、y=0とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 3]
Prepared in (La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0, y = 0 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例4]
(La1−xSr)(Fe1−yCr)Oにおけるx=0、y=0.5とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 4]
Prepared in (La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0, y = 0.5 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例5]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.05、y=0とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 5]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.05, the powder with y = 0 was made by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例6]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.05、y=0.5とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 6]
(La 1-x Sr x) (Fe 1-y Cr y) O 3 in x = 0.05, the powder was y = 0.5 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例7]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.1、y=0とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 7]
(La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0.1, the powder was y = 0 was made by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例8]
(La1−xSr)(Fe1−yCr)Oにおけるx=0.1、y=0.5とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 8]
(La 1-x Sr x) (Fe 1-y Cr y) x in O 3 = 0.1, the powder was y = 0.5 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

実施例1から12、及び比較例1から8の調査結果を表1にまとめた。   The survey results of Examples 1 to 12 and Comparative Examples 1 to 8 are summarized in Table 1.

Figure 2006185697
Figure 2006185697

表1に、(La1−xSr)(Fe1−yCr)Oバルク体の相対密度及び還元安定性を示す。Cr量0.4までは相対密度95%以上を確保できた。またCrで置換することでいずれも還元安定性を確保できた。Crで置換していない(La1−xSr)FeOは、還元雰囲気に一晩曝した後に表面が粉末化してしまい、還元安定性を確保できなかった。一方、既存材料であるLa0.8Ca0.2CrOは、相対密度95%を確保できるものの、La0.8Sr0.2CrOはほとんど焼結が進行していない。本発明の(La1−xSr)(Fe1−yCr)Oはバルク体においてLa0.8Sr0.2CrOよりも焼結性において優れることが示された。 Table 1 shows the relative density and reducing the stability of the (La 1-x Sr x) (Fe 1-y Cr y) O 3 bulk. A relative density of 95% or more was secured up to a Cr content of 0.4. In addition, reduction stability could be ensured by replacing with Cr. (La 1-x Sr x ) FeO 3 not substituted with Cr was powdered after exposure to a reducing atmosphere overnight, and reduction stability could not be ensured. On the other hand, La 0.8 Ca 0.2 CrO 3 which is an existing material can secure a relative density of 95%, but La 0.8 Sr 0.2 CrO 3 hardly undergoes sintering. Of the present invention (La 1-x Sr x) (Fe 1-y Cr y) O 3 was shown to be excellent in sinterability than La 0.8 Sr 0.2 CrO 3 in bulk.

表1に、導電率から算出した抵抗率を示す。Cr量が多くなると抵抗率が若干増加する傾向が見られるが、これは気孔率の違いによるものと考えられる。また、Sr量が多くなると抵抗率は減少する傾向が見える。本発明の(La1−xSr)(Fe1−yCr)Oの抵抗率は、1〜2Ωcm程度であった。既存材料であるLa0.8Ca0.2CrOの抵抗率は0.2Ωcmであり、本発明の(La1−xSr)(Fe1−yCr)Oよりも小さい値であった。算出した抵抗率の差からセルの電位低下の影響を算出すると、インターコネクタの膜厚が20μmの場合、0.3A/cmの電流を流した時の円筒セルの電位低下の差は4〜8mVである。このことから、出力性能には大きな影響がないと推測される。 Table 1 shows the resistivity calculated from the conductivity. When the amount of Cr increases, the resistivity tends to increase slightly, which is considered to be due to the difference in porosity. In addition, the resistivity tends to decrease as the amount of Sr increases. (La 1-x Sr x) (Fe 1-y Cr y) resistivity of O 3 of the present invention was about 1~2Omucm. The resistivity of La 0.8 Ca 0.2 CrO 3 which is an existing material is 0.2 Ωcm, which is smaller than (La 1-x Sr x ) (Fe 1-y Cr y ) O 3 of the present invention. there were. When the influence of the cell potential drop is calculated from the calculated difference in resistivity, when the interconnector film thickness is 20 μm, the difference in potential drop of the cylindrical cell when a current of 0.3 A / cm 2 is passed is 4 to 8 mV. From this, it is presumed that the output performance is not greatly affected.

表1に、(La1−xSr)(Fe1−yCr)Oをインターコネクタとした燃料電池セルの前記発電条件での電位を示す。Cr量が0.4までは0.6V以上の良好な結果を得ることが出来たが、Cr量が0.5となると電位が大きく低下した。これは焼結性の低下によるガスタイト性の低下が原因である。一方、既存材料であるLa0.8Sr0.2CrO、La0.8Sr0.2CrOをインターコネクタとした燃料電池セルでは、前記発電条件では発電することが出来なかった。これはガスタイトなインターコネクタを作製できなかったことが原因である。以上より、本発明の(La1−xSr)(Fe1−yCr)Oはいずれの組成においても、既存材料より電極と共焼成する為のインターコネクタとして良好な材料であることが明らかである。また(La1−xSr)(Fe1−yCr)Oにおける、より好ましいx及びyの値は0≦x≦0.1、0.1≦y≦0.4である。 Table 1 shows the potential at the power generation condition of (La 1-x Sr x) (Fe 1-y Cr y) fuel cell of O 3 was interconnector. Good results of 0.6 V or more could be obtained until the Cr amount was 0.4, but the potential was greatly reduced when the Cr amount was 0.5. This is due to a decrease in gas tightness due to a decrease in sinterability. On the other hand, in the fuel cell using the existing materials La 0.8 Sr 0.2 CrO 3 and La 0.8 Sr 0.2 CrO 3 as an interconnector, it was not possible to generate power under the power generation conditions. This is because a gastight interconnector could not be produced. It than, the present invention (La 1-x Sr x) (Fe 1-y Cr y) O 3 even in any composition, is a good material for the interconnector for co-firing and than the existing material electrode or Is clear. Also in (La 1-x Sr x) (Fe 1-y Cr y) O 3, the value of the more preferred x and y is 0 ≦ x ≦ 0.1,0.1 ≦ y ≦ 0.4.

実施例16から30、及び比較例1、2、3、5、7及び9〜11をもって、(La1−xSr)(Fe1−yTi)Oにおけるx値及びy値の適正範囲を調査した。 With Example 16 from 30, and Comparative Examples 1,2,3,5,7 and 9 to 11, appropriateness of x and y values in the (La 1-x Sr x) (Fe 1-y Ti y) O 3 The range was investigated.

[実施例13]
(La1−xSr)(Fe1−yTi)Oにおけるx=0、y=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 13]
Prepared in (La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0, y = 0.1 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例14]
(La1−xSr)(Fe1−yTi)Oにおけるx=0、y=0.2とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 14]
Prepared in (La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0, y = 0.2 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例15]
(La1−xSr)(Fe1−yTi)Oにおけるx=0、y=0.3とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 15]
Prepared in (La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0, y = 0.3 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例16]
(La1−xSr)(Fe1−yTi)Oにおけるx=0、y=0.4とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 16]
Prepared in (La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0, y = 0.4 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例17]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.05、y=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 17]
(La 1-x Sr x) (Fe 1-y Ti y) O 3 in x = 0.05, the powder was y = 0.1 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例18]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.05、y=0.2とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 18]
(La 1-x Sr x) (Fe 1-y Ti y) O 3 in x = 0.05, the powder was y = 0.2 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例19]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.05、y=0.3とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 19]
(La 1-x Sr x) (Fe 1-y Ti y) O 3 in x = 0.05, the powder was y = 0.3 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例20]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.05、y=0.4とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 20]
(La 1-x Sr x) (Fe 1-y Ti y) O 3 in x = 0.05, the powder was y = 0.4 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例21]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.1、y=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 21]
(La 1-x Sr x) (Fe 1-y Ti y) O 3 in x = 0.1, the powder was y = 0.1 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例22]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.1、y=0.2とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 22]
(La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0.1, the powder was y = 0.2 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例23]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.1、y=0.3とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 23]
(La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0.1, the powder was y = 0.3 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例24]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.1、y=0.4とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 24]
(La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0.1, the powder was y = 0.4 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例9]
(La1−xSr)(Fe1−yTi)Oにおけるx=0、y=0.5とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 9]
Prepared in (La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0, y = 0.5 and powder said method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例10]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.05、y=0.5とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 10]
(La 1-x Sr x) (Fe 1-y Ti y) O 3 in x = 0.05, the powder was y = 0.5 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[比較例11]
(La1−xSr)(Fe1−yTi)Oにおけるx=0.1、y=0.5とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Comparative Example 11]
(La 1-x Sr x) (Fe 1-y Ti y) x in O 3 = 0.1, the powder was y = 0.5 was prepared by the method. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

実施例16から30、及び比較例1、2、3、5、7及び9〜11の調査結果を表2にまとめた。   The survey results of Examples 16 to 30 and Comparative Examples 1, 2, 3, 5, 7, and 9 to 11 are summarized in Table 2.

Figure 2006185697
Figure 2006185697

表2に、(La1−xSr)(Fe1−yTi)Oバルク体の相対密度及び還元安定性を示す。Ti量に係らず相対密度95%以上を確保でき、還元安定性も確保できた。本発明の((La1−xSr)(Fe1−yTi)Oはバルク体においてLa0.8Sr0.2CrOよりも焼結性において優れることが示された。 Table 2 shows the relative density and reducing the stability of the (La 1-x Sr x) (Fe 1-y Ti y) O 3 bulk. Regardless of the amount of Ti, a relative density of 95% or more could be secured, and reduction stability could be secured. Of the present invention ((La 1-x Sr x ) (Fe 1-y Ti y) O 3 was shown to be excellent in sinterability than La 0.8 Sr 0.2 CrO 3 in bulk.

表2に、導電率から算出した抵抗率を示す。Ti量が多くなると抵抗率が増加することが判る。また、Sr量が多くなると抵抗率は減少することが判る。本発明の(La1−xSr)(Fe1−yCr)Oの抵抗率は、1〜5Ωcm程度であった。既存材料であるLa0.8Ca0.2CrOの抵抗率は0.2Ωcmであり、本発明の(La1−xSr)(Fe1−yCr)Oよりも小さい値であった。算出した抵抗率の差からセルの電位低下の影響を算出すると、インターコネクタの膜厚が20μmの場合、0.3A/cmの電流を流した時の円筒セルの電位低下の差は4〜20mVである。このことから、出力性能には大きな影響がないと推測される。一方、Ti量が0.5となると抵抗率は20〜30Ωcmとなり、電位低下は最大120mVと算出され、大幅な電位低下が予想される為、好ましくないことが推測される。 Table 2 shows the resistivity calculated from the conductivity. It can be seen that the resistivity increases as the amount of Ti increases. It can also be seen that the resistivity decreases as the amount of Sr increases. (La 1-x Sr x) (Fe 1-y Cr y) resistivity of O 3 of the present invention was about 1~5Omucm. The resistivity of La 0.8 Ca 0.2 CrO 3 which is an existing material is 0.2 Ωcm, which is smaller than (La 1-x Sr x ) (Fe 1-y Cr y ) O 3 of the present invention. there were. When the influence of the cell potential drop is calculated from the calculated difference in resistivity, when the interconnector film thickness is 20 μm, the difference in potential drop of the cylindrical cell when a current of 0.3 A / cm 2 is passed is 4 to 20 mV. From this, it is presumed that the output performance is not greatly affected. On the other hand, when the amount of Ti is 0.5, the resistivity is 20 to 30 Ωcm, and the potential drop is calculated to be 120 mV at the maximum.

表2に、(La1−xSr)(Fe1−yTi)Oをインターコネクタとした燃料電池セルの前記発電条件での電位を示す。Ti量が0.4までは0.6V以上の良好な結果を得ることが出来たが、Ti量が0.5となると電位が大きく低下した。これは電子導電性の低下が原因である。以上より、本発明の(La1−xSr)(Fe1−yTi)Oはいずれの組成においても既存材料よりインターコネクタとして良好な材料であることが明らかである。また(La1−xSr)(Fe1−yCr)Oにおける、より好ましいx及びyの値は0≦x≦0.1、0.1≦y≦0.4である。 Table 2 shows the potentials of the fuel cells using (La 1-x Sr x ) (Fe 1-y Ti y ) O 3 as interconnectors under the above power generation conditions. A good result of 0.6 V or more could be obtained until the Ti amount was 0.4, but when the Ti amount was 0.5, the potential was greatly reduced. This is due to a decrease in electronic conductivity. From the above, the present invention (La 1-x Sr x) (Fe 1-y Ti y) O 3 is found to be good materials for interconnector than existing materials in any of the composition. Also in (La 1-x Sr x) (Fe 1-y Cr y) O 3, the value of the more preferred x and y is 0 ≦ x ≦ 0.1,0.1 ≦ y ≦ 0.4.

実施例31から62をもって、(La1−xSr)(Fe1−y−zCr)OにおけるMの種類及びx、y、z値の適正範囲を調査した。 With 62 from Example 31, was examined (La 1-x Sr x) (Fe 1-y-z Cr y M z) type M at O 3 and x, y, a proper range of z values.

[実施例25]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 25]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Mn, x = 0, y = 0.1, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例26]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 26]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Mn, x = 0 , y = 0.1, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例27]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 27]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Co, x = 0, y = 0.1, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例28]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 28]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 powder with M = Co, x = 0, y = 0.1, z = 0.1 was prepared by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例29]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 29]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Ni, x = 0, y = 0.1, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例30]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 30]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 powder with M = Ni, x = 0, y = 0.1, z = 0.1 was prepared by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例31]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 31]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Cu, x = 0 , y = 0.1, z = 0.05 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例32]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 32]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Cu, x = 0 , y = 0.1, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例33]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 33]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Mn, x = 0.05, y = 0.1, z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例34]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 34]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Mn, x = 0.05, y = 0.1, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例35]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 35]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Co in O 3, x = 0.05, y = 0.1, the method powder with z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例36]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 36]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Co, x = 0.05, y = 0.1, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例37]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 37]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Ni in O 3, x = 0.05, y = 0.1, the method powder with z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例38]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 38]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Ni, x = 0.05 , y = 0.1, the method powder with z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例39]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 39]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Cu in O 3, x = 0.05, y = 0.1, the method powder with z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例40]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 40]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Cu in O 3, x = 0.05, y = 0.1, the method powder with z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例41]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 41]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Mn, x = 0, y = 0.4, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例42]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 42]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Mn, x = 0 , y = 0.4, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例43]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 43]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 powder with M = Co, x = 0, y = 0.4, z = 0.05 was prepared by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例44]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 44]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Co, x = 0, y = 0.4, z = 0.1 did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例45]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 45]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Ni, x = 0, y = 0.4, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例46]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 46]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Ni, x = 0 , y = 0.4, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例47]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 47]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Cu, x = 0 , y = 0.4, z = 0.05 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例48]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 48]
Prepared in (La 1-x Sr x) (Fe 1-y-z Cr y M z) M in O 3 = Cu, x = 0 , y = 0.4, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例49]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 49]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Mn, x = 0.05, y = 0.4, z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例50]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Mn、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 50]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Mn, x = 0.05, y = 0.4, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例51]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 51]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Co in O 3, x = 0.05, y = 0.4, the method powder with z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例52]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Co、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 52]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Co, x = 0.05, y = 0.4, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例53]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 53]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Ni in O 3, x = 0.05, y = 0.4, the method powder with z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例54]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Ni、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 54]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Ni, x = 0.05, y = 0.4, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例55]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 55]
(La 1-x Sr x) (Fe 1-y-z Cr y M z) M = Cu in O 3, x = 0.05, y = 0.4, the method powder with z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例56]
(La1−xSr)(Fe1−y−zCr)OにおけるM=Cu、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 56]
(La 1-x Sr x ) (Fe 1-yz Cr y M z ) O 3 M = Cu, x = 0.05, y = 0.4, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

実施例31から62の調査結果を表3にまとめた。   The survey results of Examples 31 to 62 are summarized in Table 3.

Figure 2006185697
Figure 2006185697

表3に、(La1−xSr)(Fe1−y−zCr)Oバルク体の相対密度及び還元安定性を示す。Cr量、M量、Mの種類に係らず相対密度95%以上を確保でき、還元安定性も確保できた。また、Co、Cuを添加することにより焼結性の向上も見られた。 Table 3 shows the (La 1-x Sr x) (Fe 1-y-z Cr y M z) relative density and reducing the stability of the O 3 bulk. Regardless of the amount of Cr, amount of M, and type of M, a relative density of 95% or more could be secured, and reduction stability could be secured. Moreover, the improvement of sinterability was also seen by adding Co and Cu.

表3に、導電率から算出した抵抗率を示す。Sr量、Cr量に関わらず、遷移金属Mを添加することにより抵抗率が減少することが判る。本発明の(La1−xSr)(Fe1−y−zCr)Oの抵抗率は、0.5〜1.1Ωcm程度であった。 Table 3 shows the resistivity calculated from the conductivity. Regardless of the amount of Sr and the amount of Cr, it can be seen that the resistivity decreases by adding the transition metal M. (La 1-x Sr x) (Fe 1-y-z Cr y M z) resistivity of O 3 of the present invention was about 0.5~1.1Omucm.

表3に、(La1−xSr)(Fe1−y−zCr)Oをインターコネクタとした燃料電池セルの前記発電条件での電位を示す。遷移金属Mを添加することにより、燃料電池セルの電位が概ね向上した。電子導電性の向上が影響しているものと考えられる。例外として、(La0.95Sr0.05)(Fe0.8Cr0.1Cu0.1)O及び(La0.95Sr0.05)(Fe0.8Cr0.1Ni0.1)Oでは、置換しないものと比較して電位が低下したが、該サンプルの起電力は他と比較してやや低めであったが、イオン導電性がやや大きいことが原因であると推察している。以上より、本発明の(La1−xSr)(Fe1−y−zCr)Oはいずれの組成においても既存材料よりインターコネクタとして良好な材料であることが明らかである。また、より好ましいx、y、zの値は0≦x≦0.05、0.1≦y≦0.4、0≦z≦0.1(M:Mn)、0≦z≦0.05(M:Co,Ni,Cu)である。 Table 3 shows the potential at the power generation condition of (La 1-x Sr x) (Fe 1-y-z Cr y M z) fuel cell of O 3 was interconnector. By adding the transition metal M, the potential of the fuel cell was generally improved. It is thought that the improvement in electronic conductivity is affecting. Exceptions include (La 0.95 Sr 0.05 ) (Fe 0.8 Cr 0.1 Cu 0.1 ) O 3 and (La 0.95 Sr 0.05 ) (Fe 0.8 Cr 0.1 Ni In 0.1 ) O 3 , the potential decreased compared to that without substitution, but the electromotive force of the sample was slightly lower than the others, but the cause was that the ionic conductivity was slightly higher. I guess. It is clear that a good material as the interconnector over existing material even in (La 1-x Sr x) (Fe 1-y-z Cr y M z) O 3 is any composition of the above, the present invention . Further, more preferable values of x, y, and z are 0 ≦ x ≦ 0.05, 0.1 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.1 (M: Mn), and 0 ≦ z ≦ 0.05. (M: Co, Ni, Cu).

実施例63から94をもって、(La1−xSr)(Fe1−y−zTi)OにおけるMの種類及びx、y、z値の適正範囲を調査した。 With 94 from Example 63, was examined (La 1-x Sr x) (Fe 1-y-z Ti y M z) type M at O 3 and x, y, a proper range of z values.

[実施例57]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 57]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Mn, x = 0, y = 0.1, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例58]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 58]
Prepared in (La 1-x Sr x) (Fe 1-y-z Ti y M z) M in O 3 = Mn, x = 0 , y = 0.1, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例59]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 59]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0, y = 0.1, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例60]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 60]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0, y = 0.1, z = 0.1 Powder produced by the above method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例61]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 61]
Prepared in (La 1-x Sr x) (Fe 1-y-z Ti y M z) M in O 3 = Ni, x = 0 , y = 0.1, z = 0.05 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例62]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 62]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0, y = 0.1, z = 0.1 did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例63]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 63]
Prepared in (La 1-x Sr x) (Fe 1-y-z Ti y M z) M in O 3 = Cu, x = 0 , y = 0.1, z = 0.05 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例64]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 64]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Cu, x = 0, y = 0.1, z = 0.1 Powder produced by the above method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例65]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 65]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Mn, x = 0.05, y = 0.1, z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例66]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 66]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Mn, x = 0.05, y = 0.1, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例67]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 67]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0.05, y = 0.1, z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例68]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 68]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0.05, y = 0.1, z = 0.1 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例69]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 69]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0.05, y = 0.1, z = 0.05 It was produced with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例70]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 70]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0.05, y = 0.1, z = 0.1 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例71]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0.05、y=0.1、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 71]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Cu, x = 0.05, y = 0.1, z = 0.05 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例72]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0.05、y=0.1、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 72]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Cu, x = 0.05, y = 0.1, z = 0.1 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例73]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 73]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Mn, x = 0, y = 0.4, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例74]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 74]
Prepared in (La 1-x Sr x) (Fe 1-y-z Ti y M z) M in O 3 = Mn, x = 0 , y = 0.4, z = 0.1 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例75]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 75]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0, y = 0.4, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例76]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 76]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0, y = 0.4, z = 0.1 did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例77]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 77]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0, y = 0.4, z = 0.05 was produced by the above method. did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例78]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 78]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0, y = 0.4, z = 0.1 did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例79]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 79]
Prepared in (La 1-x Sr x) (Fe 1-y-z Ti y M z) M in O 3 = Cu, x = 0 , y = 0.4, z = 0.05 and powder said method did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例80]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 80]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Cu, x = 0, y = 0.4, z = 0.1 did. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例81]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 81]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Mn, x = 0.05, y = 0.4, z = 0.05 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例82]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Mn、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 82]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Mn, x = 0.05, y = 0.4, z = 0.1 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例83]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 83]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0.05, y = 0.4, z = 0.05 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例84]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Co、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 84]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Co, x = 0.05, y = 0.4, z = 0.1 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例85]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 85]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0.05, y = 0.4, z = 0.05 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例86]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Ni、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 86]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Ni, x = 0.05, y = 0.4, z = 0.1 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例87]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0.05、y=0.4、z=0.05とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 87]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Cu, x = 0.05, y = 0.4, z = 0.05 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

[実施例88]
(La1−xSr)(Fe1−y−zTi)OにおけるM=Cu、x=0.05、y=0.4、z=0.1とした粉末を前記方法で作製した。前記方法に従い、バルク体の評価、燃料電池セルの評価を行った。
[Example 88]
(La 1-x Sr x ) (Fe 1-yz Ti y M z ) O 3 M = Cu, x = 0.05, y = 0.4, z = 0.1 It was made with. According to the said method, evaluation of the bulk body and evaluation of the fuel cell were performed.

実施例63から94の調査結果を表4にまとめた。 The survey results of Examples 63 to 94 are summarized in Table 4.

Figure 2006185697
Figure 2006185697

表4に、(La1−xSr)(Fe1−y−zTi)Oバルク体の相対密度及び還元安定性を示す。Ti量、M量、Mの種類に係らず相対密度95%以上を確保でき、還元安定性も確保できた。また、Co、Cuを置換することにより焼結性の向上も見られた。 Table 4 shows the (La 1-x Sr x) (Fe 1-y-z Ti y M z) relative density and reducing the stability of the O 3 bulk. Regardless of the amount of Ti, amount of M, and type of M, a relative density of 95% or more could be secured, and reduction stability could be secured. Moreover, the improvement of sinterability was also seen by substituting Co and Cu.

表4に、導電率から算出した抵抗率を示す。Sr量、Ti量に関わらず、遷移金属Mを添加することにより抵抗率が減少することが判る。本発明の(La1−xSr)(Fe1−y−zTi)Oの抵抗率は、0.5〜1.3Ωcm程度であった。 Table 4 shows the resistivity calculated from the conductivity. Regardless of the amount of Sr and the amount of Ti, it can be seen that the resistivity decreases by adding the transition metal M. (La 1-x Sr x) (Fe 1-y-z Ti y M z) resistivity of O 3 of the present invention was about 0.5~1.3Omucm.

表4に、(La1−xSr)(Fe1−y−zTi)Oをインターコネクタとした燃料電池セルの前記発電条件での電位を示す。遷移金属Mを添加することにより、全ての燃料電池セルの電位が向上した。電子導電性の向上が影響しているものと考えられる。以上より、本発明の(La1−xSr)(Fe1−y−zTi)Oはいずれの組成においても既存材料よりインターコネクタとして良好な材料であることが明らかである。また、より好ましいx、y、zの値は0≦x≦0.05、0.1≦y≦0.4、0≦z≦0.1(M:Mn)、0≦z≦0.05(M:Co,Ni,Cu)である。 Table 4 shows the potential at the power generation condition of (La 1-x Sr x) (Fe 1-y-z Ti y M z) fuel cell of O 3 was interconnector. By adding the transition metal M, the potential of all the fuel cells was improved. It is thought that the improvement in electronic conductivity is affecting. It is clear that a good material as the interconnector over existing material even in (La 1-x Sr x) (Fe 1-y-z Ti y M z) O 3 is any composition of the above, the present invention . Further, more preferable values of x, y, and z are 0 ≦ x ≦ 0.05, 0.1 ≦ y ≦ 0.4, 0 ≦ z ≦ 0.1 (M: Mn), and 0 ≦ z ≦ 0.05. (M: Co, Ni, Cu).

本発明の1例に係る円筒縦縞型燃料電池を示す図である。It is a figure which shows the cylindrical vertical stripe fuel cell which concerns on one example of this invention. 本発明の1例に係る円筒横縞型燃料電池を示す図である。It is a figure which shows the cylindrical horizontal stripe type fuel cell which concerns on one example of this invention. 本発明の1例に係るフラットチューブ型燃料電池を示す図である。It is a figure which shows the flat tube type fuel cell which concerns on one example of this invention. 本発明の1例に係るモノリス型燃料電池を示す図である。It is a figure which shows the monolith type fuel cell which concerns on one example of this invention.

符号の説明Explanation of symbols

1 …空気極
2 …電解質
3 …燃料極
4 …インターコネクタ
5 …多孔質基体管
10…円筒縦縞型燃料電池
11…円筒横縞型燃料電池
12…フラットチューブ型燃料電池
13…モノリス型燃料電池
DESCRIPTION OF SYMBOLS 1 ... Air electrode 2 ... Electrolyte 3 ... Fuel electrode 4 ... Interconnector 5 ... Porous base tube 10 ... Cylindrical vertical stripe type fuel cell 11 ... Cylindrical horizontal stripe type fuel cell 12 ... Flat tube type fuel cell 13 ... Monolith type fuel cell

Claims (11)

A群からなる空気極、B群からなる電解質、C群からなる燃料極、及び、La及びFeを主成分としFeの50mol%未満をCrまたはTiで置換したペロブスカイト型酸化物からなるインターコネクタを備えた固体酸化物形燃料電池。
A群:ABO(A:Mgを除くアルカリ土類金属、Ceを除くランタノイド、Sc、Yから選ばれる少なくとも一種、B:Cr、Mn、Fe、Co、Ni、Cu、Al、Mgから選ばれる少なくとも一種)
B群:安定化ジルコニア、セリア系固溶体、ランタンガレートから選ばれる少なくとも一種
C群:Ni、Co、Cu、Feから選ばれる少なくとも一種と、B群から選ばれる少なくとも1種との複合体
An air electrode composed of Group A, an electrolyte composed of Group B, a fuel electrode composed of Group C, and an interconnector composed of a perovskite oxide in which La and Fe are the main components and less than 50 mol% of Fe is replaced with Cr or Ti. A solid oxide fuel cell provided.
Group A: ABO 3 (A: alkaline earth metal excluding Mg, lanthanoid excluding Ce, Sc, Y, B: selected from Cr, Mn, Fe, Co, Ni, Cu, Al, Mg At least one)
Group B: at least one selected from stabilized zirconia, ceria-based solid solution, lanthanum gallate C group: a composite of at least one selected from Ni, Co, Cu, Fe and at least one selected from Group B
請求項1に記載の固体酸化物形燃料電池が、円筒縦縞型、円筒横縞型、フラットチューブ型、モノリス型のいずれかであることを特徴とする固体酸化物形燃料電池。 2. The solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell is any one of a cylindrical vertical stripe type, a cylindrical horizontal stripe type, a flat tube type, and a monolith type. 一般式が(La1−xSr)(Fe1−yCr)O(0≦x≦0.1、0<y<0.5)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池。 Claim comprising the general formula of (La 1-x Sr x) (Fe 1-y Cr y) O 3 (0 ≦ x ≦ 0.1,0 <y <0.5) interconnector material expressed by 3. The solid oxide fuel cell according to 1 or 2. 一般式が(La1−xSr)(Fe1−y−zCr)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池。 General formula (La 1-x Sr x) (Fe 1-y-z Cr y M z) O 3 (M: Mn, Co, Ni, Cu, 0 ≦ x ≦ 0.05,0 <y <0. The solid oxide fuel cell according to claim 1, further comprising an interconnector material represented by 5, 0 <z ≦ 0.1). 一般式が(La1−xSr)(Fe1−yTi)O(0≦x≦0.1、0<y<0.5)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池。 Claim comprising the general formula of (La 1-x Sr x) (Fe 1-y Ti y) O 3 (0 ≦ x ≦ 0.1,0 <y <0.5) interconnector material expressed by 3. The solid oxide fuel cell according to 1 or 2. 一般式が(La1−xSr)(Fe1−y−zTi)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表されるインターコネクタ材料を備えた請求項1または2に記載の固体酸化物形燃料電池。 General formula (La 1-x Sr x) (Fe 1-y-z Ti y M z) O 3 (M: Mn, Co, Ni, Cu, 0 ≦ x ≦ 0.05,0 <y <0. The solid oxide fuel cell according to claim 1, further comprising an interconnector material represented by 5, 0 <z ≦ 0.1). A群からなる空気極、B群からなる電解質、C群からなる燃料極、及びインターコネクタからなる固体酸化物形燃料電池を形成する為のインターコネクタ材料であって、La及びFeを主成分としFeの50mol%未満をCrまたはTiで置換したペロブスカイト型酸化物からなるインターコネクタ材料。
A群:ABO(A:Mgを除くアルカリ土類金属、Ceを除くランタノイド、Sc、Yから選ばれる少なくとも一種、B:Cr、Mn、Fe、Co、Ni、Cu、Al、Mgから選ばれる少なくとも一種)
B群:安定化ジルコニア、セリア系固溶体、ランタンガレートから選ばれる少なくとも一種
C群:Ni、Co、Cu、Feから選ばれる少なくとも一種と、B群から選ばれる少なくとも1種との複合体
An interconnector material for forming a solid oxide fuel cell composed of an air electrode composed of a group A, an electrolyte composed of a group B, a fuel electrode composed of a group C, and an interconnector, comprising La and Fe as main components An interconnector material comprising a perovskite oxide in which less than 50 mol% of Fe is replaced by Cr or Ti.
Group A: ABO 3 (A: alkaline earth metal excluding Mg, lanthanoid excluding Ce, Sc, Y, B: selected from Cr, Mn, Fe, Co, Ni, Cu, Al, Mg At least one)
Group B: at least one selected from stabilized zirconia, ceria-based solid solution, and lanthanum gallate C group: a composite of at least one selected from Ni, Co, Cu, and Fe and at least one selected from Group B
一般式が(La1−xSr)(Fe1−yCr)O(0≦x≦0.1、0<y<0.5)で表される請求項7に記載のインターコネクタ材料。 Interconnector of claim 7 of the general formula expressed by (La 1-x Sr x) (Fe 1-y Cr y) O 3 (0 ≦ x ≦ 0.1,0 <y <0.5) material. 一般式が(La1−xSr)(Fe1−y−zCr)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表される請求項7に記載のインターコネクタ材料。 General formula (La 1-x Sr x) (Fe 1-y-z Cr y M z) O 3 (M: Mn, Co, Ni, Cu, 0 ≦ x ≦ 0.05,0 <y <0. The interconnector material according to claim 7, represented by 5, 0 <z ≦ 0.1). 一般式が(La1−xSr)(Fe1−yTi)O(0≦x≦0.1、0<y<0.5)で表されるで表される請求項7に記載のインターコネクタ材料。 The general formula (La 1-x Sr x) (Fe 1-y Ti y) O 3 (0 ≦ x ≦ 0.1,0 <y <0.5) according to claim 7 represented by represented by The interconnector material described. 一般式が(La1−xSr)(Fe1−y−zTi)O(M:Mn,Co,Ni,Cu、0≦x≦0.05、0<y<0.5、0<z≦0.1)で表される請求項7に記載のインターコネクタ材料。

General formula (La 1-x Sr x) (Fe 1-y-z Ti y M z) O 3 (M: Mn, Co, Ni, Cu, 0 ≦ x ≦ 0.05,0 <y <0. The interconnector material according to claim 7, represented by 5, 0 <z ≦ 0.1).

JP2004376830A 2004-12-27 2004-12-27 Interconnector material and solid oxide fuel cell having the same Expired - Fee Related JP4719940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376830A JP4719940B2 (en) 2004-12-27 2004-12-27 Interconnector material and solid oxide fuel cell having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376830A JP4719940B2 (en) 2004-12-27 2004-12-27 Interconnector material and solid oxide fuel cell having the same

Publications (2)

Publication Number Publication Date
JP2006185697A true JP2006185697A (en) 2006-07-13
JP4719940B2 JP4719940B2 (en) 2011-07-06

Family

ID=36738662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376830A Expired - Fee Related JP4719940B2 (en) 2004-12-27 2004-12-27 Interconnector material and solid oxide fuel cell having the same

Country Status (1)

Country Link
JP (1) JP4719940B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259252A1 (en) * 2006-05-02 2007-11-08 Board Of Trustees Of Southern Illinois Univesity Ceramic cathode material for solid oxide fuel cells and gas separation systems
JP2009238430A (en) * 2008-03-26 2009-10-15 Kyocera Corp Horizontal stripe type solid oxide fuel cell stack, and fuel cell
JP2009537958A (en) * 2006-05-23 2009-10-29 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング INTERCONNECTOR FOR FUEL CELL STACK AND MANUFACTURING METHOD THEREOF
JP2009263225A (en) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique Titanate of perovskite or derived structure thereof, and use thereof
WO2010007722A1 (en) * 2008-07-14 2010-01-21 株式会社村田製作所 Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
JP2010102959A (en) * 2008-10-23 2010-05-06 Noritake Co Ltd Interconnector for solid oxide fuel cell, and solid oxide fuel cell
JP2010186645A (en) * 2009-02-12 2010-08-26 Noritake Co Ltd Interconnector for solid-oxide fuel cell and use thereof
JP2015053235A (en) * 2013-09-09 2015-03-19 株式会社ノリタケカンパニーリミテド Electrochemical reactor cell
US9255948B2 (en) 2011-03-22 2016-02-09 Kabushiki Kaisha Toshiba Data converting device, data processing device, power consumption processing system and computer program product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113720A (en) * 1997-02-06 1999-01-06 Mitsubishi Heavy Ind Ltd Inter-connector material
WO2003052858A1 (en) * 2001-12-18 2003-06-26 The Regents Of The University Of California Metal current collect protected by oxide film
JP2004513867A (en) * 2000-11-14 2004-05-13 フオースクニングスセンター・リセ Conductive material containing at least two phases
JP2004517791A (en) * 2000-11-29 2004-06-17 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Ceramic material and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113720A (en) * 1997-02-06 1999-01-06 Mitsubishi Heavy Ind Ltd Inter-connector material
JP2004513867A (en) * 2000-11-14 2004-05-13 フオースクニングスセンター・リセ Conductive material containing at least two phases
JP2004517791A (en) * 2000-11-29 2004-06-17 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Ceramic material and method of manufacturing the same
WO2003052858A1 (en) * 2001-12-18 2003-06-26 The Regents Of The University Of California Metal current collect protected by oxide film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070259252A1 (en) * 2006-05-02 2007-11-08 Board Of Trustees Of Southern Illinois Univesity Ceramic cathode material for solid oxide fuel cells and gas separation systems
JP2009537958A (en) * 2006-05-23 2009-10-29 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング INTERCONNECTOR FOR FUEL CELL STACK AND MANUFACTURING METHOD THEREOF
JP2009238430A (en) * 2008-03-26 2009-10-15 Kyocera Corp Horizontal stripe type solid oxide fuel cell stack, and fuel cell
JP2009263225A (en) * 2008-04-14 2009-11-12 Commissariat A L'energie Atomique Titanate of perovskite or derived structure thereof, and use thereof
JP5251982B2 (en) * 2008-07-14 2013-07-31 株式会社村田製作所 Interconnector material, cell separation structure, and solid oxide fuel cell
CN102089912A (en) * 2008-07-14 2011-06-08 株式会社村田制作所 Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
KR101175599B1 (en) 2008-07-14 2012-08-22 가부시키가이샤 무라타 세이사쿠쇼 Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
WO2010007722A1 (en) * 2008-07-14 2010-01-21 株式会社村田製作所 Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
US8841043B2 (en) 2008-07-14 2014-09-23 Murata Manufacturing Co., Ltd. Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
US9941524B2 (en) 2008-07-14 2018-04-10 Murata Manufacturing Co., Ltd. Interconnector material, intercellular separation structure, and solid electrolyte fuel cell
JP2010102959A (en) * 2008-10-23 2010-05-06 Noritake Co Ltd Interconnector for solid oxide fuel cell, and solid oxide fuel cell
JP2010186645A (en) * 2009-02-12 2010-08-26 Noritake Co Ltd Interconnector for solid-oxide fuel cell and use thereof
US9255948B2 (en) 2011-03-22 2016-02-09 Kabushiki Kaisha Toshiba Data converting device, data processing device, power consumption processing system and computer program product
JP2015053235A (en) * 2013-09-09 2015-03-19 株式会社ノリタケカンパニーリミテド Electrochemical reactor cell

Also Published As

Publication number Publication date
JP4719940B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
KR20180124919A (en) Alternative anode materials for solid oxide fuel cells
JP5622754B2 (en) Method for producing solid oxide fuel cell and solid oxide fuel cell
JP4719940B2 (en) Interconnector material and solid oxide fuel cell having the same
US10003088B2 (en) Solid oxide fuel cell stack
JP4524791B2 (en) Solid oxide fuel cell
JP3661676B2 (en) Solid oxide fuel cell
JP2011210623A (en) Power generation film for solid electrolyte fuel cell, and solid electrolyte fuel cell having the same
JP5470326B2 (en) Compact
JP5222011B2 (en) Solid oxide fuel cell
JP3729194B2 (en) Solid oxide fuel cell
JP2003217597A (en) Solid electrolyte type fuel cell
US9755249B2 (en) Solid oxide fuel cell stack
JP2005243528A (en) Solid oxide fuel cell
JP6654765B2 (en) Solid oxide fuel cell stack
JP4192733B2 (en) Solid oxide fuel cell
JP6301231B2 (en) FUEL BATTERY CELL STACK AND METHOD FOR MANUFACTURING THE SAME, FUEL CELL MODULE, HIGH TEMPERATURE STEAM ELECTROLYTIC CELL STACK AND METHOD FOR MANUFACTURING SAME
JP2017157553A (en) Fuel cell
US20160093910A1 (en) Solid oxide fuel cell stack
JP2008226762A (en) Solid oxide type fuel battery cell and solid oxide type fuel battery
JP2004303713A (en) Solid oxide fuel cell
JP2007305319A (en) Solid oxide fuel cell
JP2008258170A (en) Solid oxide fuel cell
JP6712119B2 (en) Solid oxide fuel cell stack
JP5270296B2 (en) Interconnector for solid oxide fuel cell and solid oxide fuel cell
JP5597177B2 (en) Air electrode material for solid oxide fuel cell and solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4719940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees