JPH113708A - Lithium ion secondary battery positive electrode and lithium ion secondary battery - Google Patents

Lithium ion secondary battery positive electrode and lithium ion secondary battery

Info

Publication number
JPH113708A
JPH113708A JP9152122A JP15212297A JPH113708A JP H113708 A JPH113708 A JP H113708A JP 9152122 A JP9152122 A JP 9152122A JP 15212297 A JP15212297 A JP 15212297A JP H113708 A JPH113708 A JP H113708A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
positive electrode
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9152122A
Other languages
Japanese (ja)
Inventor
Ryohei Tanuma
良平 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9152122A priority Critical patent/JPH113708A/en
Publication of JPH113708A publication Critical patent/JPH113708A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery which imparts improved high energy density, while maintaining features of a conventional lithium ion secondary battery. SOLUTION: A lithium ion secondary battery constituted of a positive electrode containing a lithium salt, a negative electrode comprising a substance which stores lithium alloy or lithium, and a separator comprising micro-porous plastic film separating both electrodes. The lithium salt of 7,7,8,8- tetracyanoquinodimethane(TCNQ) is used as a positive electrode active material. A lithium ally such as Wood's alloy or a substance storing atomic lithium between layers such as graphite are used conventionally as the negative electrode. A shut-down separator, a film such as micro-porous polyethylene film, is used as the separator for the positive electrode and the negative electrode, in order to block the penetration of ions so as to prevent firing or bursting or the like in case of the rapid rise of a battery temperature, resulting from an external short-circuit or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池、特に改善された高エネルギー密度を有するリチ
ウムイオン二次電池に関する。
The present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery having an improved high energy density.

【0002】[0002]

【従来の技術】近年、エレクトロニクスの発展ととも
に、電子機器、特に携帯機器が急速に小型化している。
また自動車排気ガスによる大気汚染を抑制するため、動
力源に二次電池を用いる電気自動車の開発が強く望まれ
ている。
2. Description of the Related Art In recent years, with the development of electronics, electronic equipment, especially portable equipment, has been rapidly reduced in size.
Also, in order to suppress air pollution due to automobile exhaust gas, development of an electric vehicle using a secondary battery as a power source is strongly desired.

【0003】そこで、高エネルギー密度で長寿命という
特徴を有するリチウムイオン二次電池はこのような分野
に最適と考えられている。
[0003] Therefore, a lithium ion secondary battery having features of high energy density and long life is considered to be most suitable for such a field.

【0004】リチウムイオン二次電池の構造は、正極と
しては、一般にコバルト酸リチウム(LiCoO2 )が
最もよく用いられる。一方、負極にはウッド合金のよう
なリチウム合金や、グラファイトのように、原子状リチ
ウムを層間にたくわえる(インターカレート)物質が用
いられる。電解液としては、リチウムが水と直接反応す
るため、リチウム塩をエチレンカーボネイトのような有
機溶媒に溶かした有機電解液が使用される。また正極と
負極が直接接触しないようにするため、セパレータとし
て微多孔性ポリエチレン等のフィルムが用いられる。
In the structure of a lithium ion secondary battery, lithium cobalt oxide (LiCoO 2 ) is generally most often used as a positive electrode. On the other hand, for the negative electrode, a lithium alloy such as a wood alloy or a substance that stores atomic lithium between layers (intercalate) such as graphite is used. As the electrolyte, since lithium directly reacts with water, an organic electrolyte obtained by dissolving a lithium salt in an organic solvent such as ethylene carbonate is used. In order to prevent direct contact between the positive electrode and the negative electrode, a film made of microporous polyethylene or the like is used as a separator.

【0005】リチウムイオン二次電池の特長としては、
出力電圧が高い(3〜4V)、重量エネルギー密
度、体積エネルギー密度が高い、出力エネルギー密度
が高い、自己放電率が小さい、サイクル特性がよ
い、メモリー効果がない、充電効率が高い、および
残存量表示が容易、等があげられる。
The features of the lithium ion secondary battery include:
High output voltage (3-4V), high weight energy density, high volume energy density, high output energy density, low self-discharge rate, good cycle characteristics, no memory effect, high charging efficiency, and residual amount Display is easy.

【0006】しかし、リチウムイオン二次電池は、正極
活物質として用いるLiCoO2 に含まれるコバルトの
資源が乏しいという欠点がある。そこで、これに代わる
正極活物質として、マンガン酸リチウム(LiMn2
4 )等も検討されているが、これまでLiCoO2 を超
える性能は得られていない。
[0006] However, the lithium ion secondary battery has a disadvantage that the resources of cobalt contained in LiCoO 2 used as a positive electrode active material are scarce. Therefore, lithium manganate (LiMn 2 O) is used as a positive electrode active material instead of this.
4 ) and the like have been studied, but no performance exceeding LiCoO 2 has been obtained so far.

【0007】また、電池のエネルギー密度を高めるため
には、比重の小さい材料を用いることが重要であり、リ
チウムイオン二次電池の負極については、炭素材料と結
着剤の混合物を有機溶剤でペースト状としたものを用い
ることによってこの目的がある程度達成された。しかし
正極材料については、活物質の結着剤であり、かつ導電
剤としてポリアセチレン等が試みられているが、十分な
性能が得られているとは言えない。
In order to increase the energy density of a battery, it is important to use a material having a small specific gravity. For a negative electrode of a lithium ion secondary battery, a mixture of a carbon material and a binder is pasteurized with an organic solvent. This objective has been achieved to some extent by the use of a slab. However, as for the positive electrode material, polyacetylene or the like has been tried as a binder for an active material and as a conductive agent, but it cannot be said that sufficient performance has been obtained.

【0008】[0008]

【発明が解決しようとする課題】このように、リチウム
イオン二次電池の課題は、エネルギー密度を高めるため
の新規な正極活物質を探索することにあるといえる。本
発明の目的は、自然界に豊富に存在する物質で構成さ
れ、かつエネルギーの高密度化が可能な正極活物質を用
いるリチウムイオン二次電池を提供することにある。
Thus, it can be said that the problem of the lithium ion secondary battery is to search for a new positive electrode active material for increasing the energy density. An object of the present invention is to provide a lithium ion secondary battery that uses a positive electrode active material that is made of a material that is abundant in the natural world and that can increase energy density.

【0009】[0009]

【課題を解決するための手段】本発明の第一の態様とし
て、7,7,8,8−テトラシアノキノジメタン(TC
NQ)のリチウム塩を正極活物質として含むリチウムイ
オン二次電池用正極を提供する。
As a first aspect of the present invention, 7,7,8,8-tetracyanoquinodimethane (TC
Provided is a positive electrode for a lithium ion secondary battery, comprising a lithium salt of NQ) as a positive electrode active material.

【0010】さらに、第二の態様として、第一の態様の
正極、リチウム合金あるいはリチウムを吸蔵する物質か
らなる負極、および両極を分離するセパレータを有する
リチウムイオン二次電池を提供する。
Further, as a second aspect, the present invention provides a lithium ion secondary battery having the positive electrode of the first aspect, a negative electrode made of a lithium alloy or a substance occluding lithium, and a separator for separating both electrodes.

【0011】[0011]

【発明の実施の形態】本発明者は、式(1)BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has calculated the formula (1)

【0012】[0012]

【化1】 Embedded image

【0013】で表されるTCNQとLiが安定なイオン
ラジカル塩Li+ TCNQ- を形成する(L. R.Melby
ら、J. Am. Chem. Soc.,Vol. 84, No.5,P.3374 (196
2) )ことに着目した。本発明によるリチウムイオン電
池は、このLi+ TCNQ- を正極活物質として用い
る。正極および負極での電池反応は、正極では、反応式
(2)
[0013] TCNQ and Li represented by stable ion radical salt Li + TCNQ - to form a (L. R.Melby
J. Am. Chem. Soc. , Vol. 84, No. 5, P. 3374 (196
2)). The lithium ion battery according to the present invention uses this Li + TCNQ as a positive electrode active material. The battery reaction at the positive electrode and the negative electrode is represented by the reaction formula (2)

【0014】[0014]

【化2】 Embedded image

【0015】および負極では、反応式(3)In the negative electrode, the reaction formula (3)

【0016】[0016]

【化3】 Embedded image

【0017】で示される。充電により、正極ではLi+
TCNQ- が酸化されてTCNQとなり、リチウムイオ
ンLi+ と電子e- を生成する。負極ではLi+ が還元
されて、インターカレーションにより、リチウム原子L
0 がたくわえられる。放電反応は上記と逆であり、負
極のLi0 はイオン化されて正極に移動し、Li+ TC
NQ- が再生される。
## EQU1 ## By charging, Li +
TCNQ - is TCNQ become oxidized, lithium ion Li + and electrons e - to generate. At the negative electrode, Li + is reduced, and lithium atoms L
i 0 is saved. The discharge reaction is the reverse of the above, and Li 0 of the negative electrode is ionized and moves to the positive electrode, and Li + TC
NQ - is played.

【0018】正極は、Li+ TCNQ- の粉末と導電剤
を混練してペレットに成形する。ここで、導電剤として
は、アセチレンブラック、ファーネスブラック等があげ
られ、アセチレンブラックが特に好ましい。また、人造
黒鉛等を加えてもよい。結着剤としては、ポリテトラフ
ルオロエチレン(PTFE)等があげられる。
[0018] The positive electrode, Li + TCNQ - by kneading a powder and a conductive agent molded into a pellet. Here, examples of the conductive agent include acetylene black and furnace black, and acetylene black is particularly preferable. Further, artificial graphite or the like may be added. Examples of the binder include polytetrafluoroethylene (PTFE) and the like.

【0019】負極としては、従来通り、ウッド合金のよ
うなリチウム合金、およびグラファイトのように原子状
リチウムを層間に蓄える物質が用いられる。
As the negative electrode, a lithium alloy such as a wood alloy and a substance such as graphite, which stores atomic lithium between layers, are conventionally used.

【0020】電解液としては、支持電解質のリチウム塩
を有機溶媒に溶かした有機電解液が使用される。有機溶
媒は、高誘電率でリチウムイオンとの適度な溶媒和能力
を持ち、イオンの移動を妨げない低粘度のものがよく、
エチレンカーボネイト、プロピレンカーボネイト、ジメ
チルカーボネイト、およびジエチルカーボネイト等があ
り、好ましくは、エチレンカーボネイトがあげられる。
As the electrolyte, an organic electrolyte obtained by dissolving a lithium salt of a supporting electrolyte in an organic solvent is used. The organic solvent should have a high dielectric constant, an appropriate solvation ability with lithium ions, and a low viscosity that does not hinder the movement of ions.
There are ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and the like, and preferably ethylene carbonate.

【0021】また、正極と負極の間に、正極と負極との
接触を防ぐセパレータが配設される。セパレータとして
は、外部短絡等によって電池の温度が急上昇した場合、
イオンの透過を妨げて発火や破裂等を防止するためにシ
ャットダウンセパレータが用いられ、微多孔性ポリエチ
レンフィルム等のフィルムが用いられる。
In addition, a separator for preventing contact between the positive electrode and the negative electrode is provided between the positive electrode and the negative electrode. As a separator, if the battery temperature rises suddenly due to an external short circuit, etc.
A shutdown separator is used to prevent the permeation of ions to prevent ignition or rupture, and a film such as a microporous polyethylene film is used.

【0022】以下、実施例に基づき本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to examples.

【0023】[0023]

【実施例】図1は、本発明によるリチウムイオン電池の
一実施例を示す構成図である。本実施例における正極1
は、Li+ TCNQ- の粉末、導電剤としてのアセチレ
ンブラックおよび結着剤としてのPTFEを70:2
5:5の重量比で混練し、ペレットに成形したものであ
る。2は負極であり、グラファイトをペレットに成形し
たものである。3はセパレータとしての微多孔性ポリエ
チレンフィルム、4はステンレススチール製のケースで
あり電極として機能する。電解液は1Mの塩素酸リチウ
ム(LiClO4 )のプロピレンカーボネイト溶液をエ
チレンカーボネイトと1:1で混合してこれを正極1、
負極2、およびセパレータ3に含浸させた。
FIG. 1 is a block diagram showing one embodiment of a lithium ion battery according to the present invention. Positive electrode 1 in this embodiment
Is, Li + TCNQ - powder, acetylene black and PTFE as a binder as a conductive agent 70: 2
The mixture was kneaded at a weight ratio of 5: 5 and formed into pellets. Reference numeral 2 denotes a negative electrode, which is formed by molding graphite into pellets. Reference numeral 3 denotes a microporous polyethylene film as a separator, and reference numeral 4 denotes a case made of stainless steel, which functions as an electrode. The electrolytic solution was a 1: 1 mixture of propylene carbonate solution of 1M lithium chlorate (LiClO 4 ) and ethylene carbonate, and the mixture was mixed with the positive electrode 1.
The negative electrode 2 and the separator 3 were impregnated.

【0024】[0024]

【発明の効果】本発明によるリチウムイオン二次電池
は、有機材料であるTCNQを正極活物質に用いたこと
により、従来のリチウムイオン二次電池より軽量であ
り、高いエネルギー密度を付与することができる。
The lithium ion secondary battery according to the present invention is lighter in weight than the conventional lithium ion secondary battery and can provide a high energy density by using TCNQ, which is an organic material, as the positive electrode active material. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明によるリチウムイオン二次電池の
一実施例の構造図である。
FIG. 1 is a structural diagram of one embodiment of a lithium ion secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 セパレータ 4 ケース 1 Positive electrode 2 Negative electrode 3 Separator 4 Case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 7,7,8,8−テトラシアノキノジメ
タン(TCNQ)のリチウム塩を正極活物質として含む
ことを特徴とするリチウムイオン二次電池用正極。
1. A positive electrode for a lithium ion secondary battery, comprising a lithium salt of 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a positive electrode active material.
【請求項2】 請求項1に記載の正極、リチウム合金あ
るいはリチウムを吸蔵する物質からなる負極、および両
極を分離するセパレータを有することを特徴とするリチ
ウムイオン二次電池。
2. A lithium ion secondary battery comprising: the positive electrode according to claim 1; a negative electrode made of a lithium alloy or a substance occluding lithium; and a separator for separating the two electrodes.
JP9152122A 1997-06-10 1997-06-10 Lithium ion secondary battery positive electrode and lithium ion secondary battery Pending JPH113708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9152122A JPH113708A (en) 1997-06-10 1997-06-10 Lithium ion secondary battery positive electrode and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9152122A JPH113708A (en) 1997-06-10 1997-06-10 Lithium ion secondary battery positive electrode and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH113708A true JPH113708A (en) 1999-01-06

Family

ID=15533550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9152122A Pending JPH113708A (en) 1997-06-10 1997-06-10 Lithium ion secondary battery positive electrode and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH113708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051302A1 (en) * 2011-10-05 2013-04-11 国立大学法人東北大学 Secondary battery
JP2013089413A (en) * 2011-10-17 2013-05-13 Canon Inc Electrode active material for secondary battery, and secondary battery
JP2018530112A (en) * 2015-10-08 2018-10-11 ナノテク インスツルメンツ インク Electrode having ultra-high energy density and method for continuously producing alkali metal battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051302A1 (en) * 2011-10-05 2013-04-11 国立大学法人東北大学 Secondary battery
US9583750B2 (en) 2011-10-05 2017-02-28 Tohoku University Secondary battery
JP2013089413A (en) * 2011-10-17 2013-05-13 Canon Inc Electrode active material for secondary battery, and secondary battery
JP2018530112A (en) * 2015-10-08 2018-10-11 ナノテク インスツルメンツ インク Electrode having ultra-high energy density and method for continuously producing alkali metal battery

Similar Documents

Publication Publication Date Title
WO2005020365A1 (en) Nonflammable nonaqueous electrolyte and lithium-ion battery containing the same
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2013254647A (en) Lithium ion-lithium air composite secondary battery, charging/discharging method using the same, and cathode material for lithium ion-lithium air composite secondary battery
JPH07335261A (en) Lithium secondary battery
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JPH08138745A (en) Nonaqueous electrolyte secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JP3107300B2 (en) Lithium secondary battery
JPH113708A (en) Lithium ion secondary battery positive electrode and lithium ion secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPH11102693A (en) Lithium secondary battery
JP3123780B2 (en) Non-aqueous electrolyte battery
JPH1027627A (en) Lithium secondary battery
JPH0855637A (en) Nonaqueous electrolytic secondary battery
JP5448175B2 (en) Non-aqueous electrolyte for electrochemical element and electrochemical element
JP4626021B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH1154122A (en) Lithium ion secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JP2000040499A (en) Nonaqueous electrolyte secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JP3198774B2 (en) Lithium secondary battery
JP2006040557A (en) Organic electrolyte secondary battery