JPH11350105A - Structural member - Google Patents
Structural memberInfo
- Publication number
- JPH11350105A JPH11350105A JP10155590A JP15559098A JPH11350105A JP H11350105 A JPH11350105 A JP H11350105A JP 10155590 A JP10155590 A JP 10155590A JP 15559098 A JP15559098 A JP 15559098A JP H11350105 A JPH11350105 A JP H11350105A
- Authority
- JP
- Japan
- Prior art keywords
- structural member
- ceramics
- melting
- high temperature
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coating By Spraying Or Casting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は新規な方法による表
面改質によって製造される部材に係り、250℃を越え
る高温での大気またはガスを含む環境、或いは100℃
を越える高温での水溶液環境で使用するに好適な構造部
材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member manufactured by surface modification by a novel method, and to an atmosphere containing air or gas at a high temperature exceeding 250.degree.
The present invention relates to a structural member suitable for use in an aqueous solution environment at a high temperature exceeding the above.
【0002】[0002]
【従来の技術】250℃を越える高温での大気またはガ
スを含む環境、或いは100℃を越える高温での水溶液
環境では、室温で使用される場合と異なり、材料の高温
での劣化を考慮して高温強度の高い材料,高温での耐食
性に優れた材料が使用される。250℃を越える高温で
の大気またはガスを含む環境で使用される場合には、特
に高温でのクリープ強度,高温での酸化,腐食性ガスに
よる腐食損傷が重要で、これらに強い材料が選定,使用
されてきた。高温においても比較的低い温度では金属系
の合金が使用され、より高温ではセラミックスや複合材
料が使用されてきた。また100℃を越える高温での水
溶液環境で使用される場合には、水溶液中における電気
化学反応による腐食が問題で、水溶液中に溶解している
不純物によっては著しい腐食損傷を生じて破損に至る。
100℃を越える高温での水溶液環境では、高温高圧環
境になるので、温度が高くなるとこの損傷はより大きく
なる。こうした損傷が起こらないよう一般には耐食性の
高い材料が選定され、使用されてきた。2. Description of the Related Art In an environment containing air or gas at a high temperature exceeding 250 ° C., or in an aqueous solution environment at a high temperature exceeding 100 ° C., unlike the case where it is used at room temperature, the deterioration of the material at a high temperature is taken into consideration. Materials with high strength at high temperatures and materials with excellent corrosion resistance at high temperatures are used. When used in an atmosphere containing gas or air at a temperature higher than 250 ° C, creep strength at high temperature, oxidation at high temperature, and corrosion damage by corrosive gas are important. Have been used. At relatively high temperatures, metal alloys have been used at relatively low temperatures, and at higher temperatures, ceramics and composite materials have been used. Further, when used in an aqueous solution environment at a high temperature exceeding 100 ° C., corrosion due to an electrochemical reaction in the aqueous solution is a problem. Depending on the impurities dissolved in the aqueous solution, significant corrosion damage is caused, leading to breakage.
In an aqueous solution environment at a high temperature exceeding 100 ° C., a high-temperature and high-pressure environment is established, so that the higher the temperature, the greater the damage. Generally, a material having high corrosion resistance has been selected and used so as not to cause such damage.
【0003】このような耐熱或いは耐食性の材料に加え
て、構造部材の表面をこのような耐熱或いは耐食性のセ
ラミックスでコーテングする技術も広く適用されてき
た。この表面コーテング技術としては、各種プラズマ溶
射技術等が広く適用されている。またプラズマ溶射した
表面をレーザで改質し、皮膜の不均一性を除去して強度
向上をはかることも行われている。In addition to such heat-resistant or corrosion-resistant materials, techniques for coating the surface of a structural member with such heat-resistant or corrosion-resistant ceramics have also been widely applied. As the surface coating technique, various plasma spraying techniques and the like are widely applied. In addition, the plasma-sprayed surface is modified with a laser to remove the non-uniformity of the coating and improve the strength.
【0004】[0004]
【発明が解決しようとする課題】各種溶射法には、フレ
ーム溶射,アーク溶射,プラズマ溶射,爆発溶射等があ
るが、セラミックスに対しては、プラズマの温度が高い
減圧プラズマ溶射が使用されている。減圧プラズマ溶射
法は、雰囲気が制御された減圧チャンバー内でプラズマ
溶射を行うことを特徴とするため、大気中での溶射に比
べ、溶射粒子の大気との反応がなく、気孔が少なくなっ
てはいるが十分とはいえず、皮膜と母材との密着も十分
でない。また、皮膜の延性が低く、緻密性も十分とはい
えない。Various thermal spraying methods include flame spraying, arc spraying, plasma spraying, and explosive spraying. For ceramics, low-pressure plasma spraying, which has a high plasma temperature, is used. . The reduced pressure plasma spraying method is characterized in that plasma spraying is performed in a reduced pressure chamber in which the atmosphere is controlled.Therefore, compared with spraying in the air, there is no reaction of spray particles with the air and the number of pores is reduced. But not enough, and the adhesion between the film and the base material is not sufficient. In addition, the ductility of the film is low and the denseness is not sufficient.
【0005】このような溶射によるコーテングの欠点を
補うために溶射した表面をレーザで再溶融することも実
施されているが、皮膜の不均一性を除去する利点はある
ものの、皮膜中の気孔による影響、皮膜と母材との密着
性は改善されず、問題がある。[0005] In order to make up for the drawbacks of coating by such thermal spraying, it has been practiced to re-melt the thermal sprayed surface with a laser. The effect and the adhesion between the film and the base material are not improved, which is problematic.
【0006】本発明の目的は、皮膜の延性,緻密性,密
着性が高く、気孔も少ないセラミックス層を有する優れ
た耐熱性或いは耐食性、またはその両方を兼ね備えた構
造部材を提供するにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a structural member having a ceramic layer having high ductility, denseness and adhesion, and having few pores, having excellent heat resistance and / or corrosion resistance, or both.
【0007】[0007]
【課題を解決するための手段】本発明は、250℃を越
える高温での大気またはガスを含む環境、或いは100℃
を越える高温での水溶液環境で使用される構造部材にお
いて、セラミックス,金属,合金,金属間化合物のいず
れかよりなる構造部材表面に存在するセラミックスを含
む表面を、レーザにて照射し、少なくとも表面深さ10
0μm以上で部材の肉厚の10%未満の深さを、一部半
溶融或いは溶融して凝固させることにより優れた耐熱性
或いは耐食性、またはその両方を兼ね備えることを特徴
とする構造部材にある。SUMMARY OF THE INVENTION The present invention is directed to an atmosphere containing air or gas at a high temperature exceeding 250.degree.
In a structural member used in an aqueous solution environment at a high temperature exceeding 100 ° C., the surface containing the ceramics existing on the surface of the structural member made of any of ceramics, metal, alloy, and intermetallic compound is irradiated by a laser, 10
A structural member having excellent heat resistance and / or corrosion resistance, or both, by partially semi-melting or melting and solidifying a depth of 0 μm or more and less than 10% of the thickness of the member.
【0008】本発明は、250℃を越える高温での大気
またはガスを含む環境、或いは100℃を越える高温での
水溶液環境で使用される構造部材において、構造セラミ
ックス表面、或いは金属,合金,金属間化合物構造部材
表面に高速粉末式フレーム溶射(HVOF)法でセラミ
ックスを含む粉末を溶射した後の表面を、レーザにて照
射し、少なくとも表面深さ100μm以上で部材の肉厚
の10%未満の深さを、一部半溶融或いは溶融,凝固す
ることにより優れた耐熱性或いは耐食性、またはその両
方を兼ね備えることを特徴とする。The present invention relates to a structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C. or an aqueous solution environment at a high temperature exceeding 100 ° C. The surface after spraying the powder containing ceramics on the surface of the compound structural member by the high-speed powder flame spraying (HVOF) method is irradiated with a laser, and the surface depth is at least 100 μm or more and less than 10% of the member thickness. It is characterized by having excellent heat resistance and / or corrosion resistance by partially semi-melting or melting and solidifying.
【0009】本発明は、特に、構造セラミックス表面、
或いは金属,合金,金属間化合物構造部材表面に粒子温
度2000℃以上,粒子速度600m/sec 以上の速度
を有するセラミック粒子を含むコーテング粉末を溶射し
た後の表面を、レーザにて照射し、少なくとも表面深さ
100μm以上で部材の肉厚の10%未満の深さを、一
部半溶融或いは溶融,凝固することによって製造された
優れた耐熱性或いは耐食性、またはその両方を兼ね備え
ることを特徴とする構造部材にある。The present invention is particularly directed to structural ceramic surfaces,
Alternatively, the surface of the metal, alloy, or intermetallic compound structural member after thermal spraying a coating powder containing ceramic particles having a particle temperature of 2,000 ° C. or more and a particle velocity of 600 m / sec or more is irradiated with a laser, and A structure characterized by having excellent heat resistance and / or corrosion resistance, or both, which is manufactured by partially semi-melting or melting and solidifying a depth of 100 μm or more and less than 10% of the thickness of the member. In the member.
【0010】また、構造部材表面に存在するセラミック
スが酸化物或いは酸化皮膜を含むセラミックスであるこ
とを特徴とする構造部材を含む。セラミックス、或いは
金属,合金,金属間化合物構造部材表面に存在するセラ
ミックスが50%以上存在し、セラミックス他に金属,
合金,金属間化合物の少なくとも一種を含む表面に、レ
ーザを照射し、部材の肉厚の10%未満の深さを、一部
半溶融或いは溶融,凝固することにより優れた耐熱性或
いは耐食性、またはその両方を兼ね備えることを特徴と
する。The present invention also includes a structural member characterized in that the ceramic present on the surface of the structural member is an oxide or a ceramic containing an oxide film. 50% or more of ceramics or ceramics present on the surface of a metal, alloy, or intermetallic compound structural member.
A surface containing at least one of an alloy and an intermetallic compound is irradiated with a laser to partially or partially melt or melt or solidify a depth of less than 10% of the thickness of the member, thereby providing excellent heat resistance or corrosion resistance, or It is characterized by having both of them.
【0011】構造部材表面に存在するセラミックスが酸
化物,炭化物,窒化物,硼化物の一種または、二種以上
を複合して構成する表面を、レーザにて照射し、部材の
肉厚の10%未満の深さを、一部半溶融或いは溶融,凝
固することにより優れた耐熱性或いは耐食性、またはそ
の両方を兼ね備えることを特徴とする構造部材にある。[0011] The surface of the structural member composed of one or two or more of oxides, carbides, nitrides, and borides of ceramics is irradiated with a laser, and the thickness of the member is 10% of the thickness of the member. A structural member having excellent heat resistance or corrosion resistance, or both, by partially semi-melting, melting, or solidifying a depth of less than one.
【0012】構造部材として、セラミックス、或いは金
属,合金,金属間化合物のいずれかよりなる管状構造部
材で、その内表面,外表面に存在するセラミックスのい
ずれか一方、或いは双方の表面をレーザにて照射し、部
材の肉厚の10%未満の深さを、一部半溶融或いは溶
融,凝固することにより優れた耐熱性或いは耐食性、ま
たはその両方を兼ね備えることを特徴とする構造部材に
ある。As a structural member, a tubular structural member made of ceramics or any one of a metal, an alloy, and an intermetallic compound, and one or both surfaces of ceramics present on an inner surface and an outer surface thereof are irradiated with a laser. A structural member having excellent heat resistance or corrosion resistance, or both, by irradiating and partially semi-melting, melting or solidifying a depth of less than 10% of the thickness of the member.
【0013】本発明は、250℃を越える高温での大気
またはガスを含む環境、或いは100℃を越える高温での
水溶液環境で使用される構造部材、特に、優れた耐熱性
或いは耐食性、またはその両方を兼ね備えることを要求
する、ガスタービン,ジェットエンジン,ごみ焼却炉,
ごみ発電,石炭ガス化,核分裂炉,核融合炉,再処理,
廃棄物処理,化学プラントの構造部材にある。The present invention relates to a structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C. or an aqueous solution environment at a high temperature exceeding 100 ° C., and particularly excellent heat resistance and / or corrosion resistance. Gas turbines, jet engines, refuse incinerators,
Waste power generation, coal gasification, nuclear fission reactor, fusion reactor, reprocessing,
Structural components of waste treatment and chemical plants.
【0014】本発明が解決しようとする250℃を越え
る高温での大気またはガスを含む環境、或いは100℃
を越える高温での水溶液環境で、優れた耐熱性或いは耐
食性、またはその両方を兼ね備えた表面コーテング構造
部材を提供するためには、従来使用されていたプラズマ
溶射の欠点を克服した新規の技術によって達成できる。
種々の表面コーテング技術を検討した結果、従来の減圧
プラズマ溶射及び高速粉末式フレーム溶射(HVOF)
では得られない高い皮膜の延性,緻密性,密着性を有
し、気孔が少なく、優れた耐熱性或いは耐食性、または
その両方を兼ね備えたコーテングを可能にする技術を見
いだした。それは基本的に、セラミックス、或いは金
属,合金,金属間化合物構造部材表面に存在するセラミ
ックスを含む表面を、レーザにて照射し、少なくとも表
面深さ100μm以上で部材の肉厚の10%未満の深さ
を、一部半溶融或いは溶融,凝固することであり、さら
に適切な溶射法とこのレーザ照射とを適切に組み合わせ
ることによって目的が達成されることを見いだした。[0014] Atmosphere or gas containing environment at a high temperature exceeding 250 ° C, or 100 ° C to be solved by the present invention.
In order to provide a surface coating structural member that has excellent heat resistance and / or corrosion resistance in an aqueous environment at a high temperature that exceeds the above, it is achieved by a new technology that overcomes the disadvantages of the plasma spraying conventionally used it can.
As a result of studying various surface coating technologies, conventional vacuum plasma spraying and high-speed powder flame spraying (HVOF)
We have found a technology that enables coatings that have high ductility, denseness, and adhesiveness, have few pores, and have excellent heat resistance or corrosion resistance, or both. Basically, a surface containing ceramics or ceramics existing on the surface of a metal, alloy, or intermetallic compound structural member is irradiated with a laser and has a depth of at least 100 μm or more and less than 10% of the member thickness. That is, partial melting or melting and solidification, and it has been found that the object can be achieved by appropriately combining an appropriate thermal spraying method and this laser irradiation.
【0015】構造セラミックス表面、或いは金属,合
金,金属間化合物構造部材表面に高速粉末式フレーム溶
射(HVOF)法でセラミックスを含む粉末を溶射した
後の表面を、レーザにて照射し、少なくとも表面深さ1
00μm以上で部材の肉厚の10%未満の深さを、一部
半溶融或いは溶融,凝固することにより達成されるが、
構造セラミックス表面、或いは金属,合金,金属間化合
物構造部材表面に粒子温度2000℃以上,粒子速度6
00m/sec 以上の速度を有するセラミック粒子を含む
コーテング粉末を溶射した後の表面を、レーザにて照射
し、少なくとも表面深さ100μm以上で部材の肉厚の
10%未満の深さを、一部半溶融或いは溶融,凝固する
ことによりさらに優れた耐熱性或いは耐食性、またはそ
の両方を兼ね備えることを特徴とする構造部材が得られ
る。セラミックスが、酸化物或いは酸化皮膜を含むセラ
ミックスで効果を発揮する。The surface of the structural ceramic or the surface of the metal, alloy, or intermetallic compound structural member after the ceramic-containing powder is sprayed by the high-speed powder flame spraying (HVOF) method is irradiated with a laser, and at least the surface depth is increased. Sa1
This is achieved by partially semi-melting or melting and solidifying a depth of at least 00 μm and less than 10% of the thickness of the member.
Particle temperature 2000 ° C or higher, particle velocity 6 on the surface of structural ceramics or metal, alloy, or intermetallic compound structural member
The surface after spraying the coating powder containing the ceramic particles having a speed of not less than 00 m / sec is irradiated with a laser, and a depth of at least 100 μm or more and less than 10% of the thickness of the member is partially reduced. A structural member characterized by having more excellent heat resistance and / or corrosion resistance by semi-melting or melting and solidifying is obtained. Ceramics are effective with ceramics containing an oxide or oxide film.
【0016】また、セラミックス或いは金属,合金,金
属間化合物構造部材表面に存在するセラミックスが50
%以上存在し、セラミックス他に金属,合金,金属間化
合物の少なくとも一種を含む表面に、レーザを照射し、
部材の肉厚の10%未満の深さを、一部半溶融或いは溶
融,凝固する場合も効果がある。このような複合状態の
粒子を含む場合、適切な条件を選定することにより、よ
り高い皮膜の延性,緻密性,密着性を有し、気孔が少な
く、優れた耐熱性或いは耐食性、またはその両方を兼ね
備えたコーテング皮膜が得られる。目的によって、コー
テング用セラミック粒子は酸化物,炭化物,窒化物,硼
化物の一種または、二種以上を複合して使用される。In addition, 50% of ceramics or ceramics existing on the surface of the metal, alloy, or intermetallic compound structural member are present.
% Or more, and irradiates a laser to the surface containing at least one of metals, alloys, and intermetallic compounds in addition to ceramics.
It is also effective when a part of the member having a depth of less than 10% is partially melted or melted and solidified. In the case of containing particles in such a composite state, by selecting appropriate conditions, the film has higher ductility, denseness, and adhesion, has fewer pores, and has excellent heat resistance or corrosion resistance, or both. A combined coating film is obtained. Depending on the purpose, the ceramic particles for coating may be used alone or in combination of two or more of oxides, carbides, nitrides and borides.
【0017】プラズマ溶射した皮膜をレーザ照射した皮
膜は、プラズマ溶射皮膜にもともと気孔が多く、密着性
に乏しいため、レーザ照射しても大きな改善が望めな
い。高速粉末式フレーム溶射(HVOF)法の場合は炎
の温度が低いために溶射のみでは十分溶融しないで素地
と衝突するため良い皮膜が得られないが、レーザで再溶
融することによって皮膜が改善される。しかし、粒子温
度2000℃以上,粒子速度600m/sec 以上の速度
を有するセラミック粒子を含むコーテング粉末を溶射し
た表面皮膜はより高い延性,緻密性,密着性を有し、気
孔が少なく、この皮膜をレーザで照射し、少なくとも表
面深さ100μm以上で部材の肉厚の10%未満の深さ
を、一部半溶融或いは溶融,凝固させれば、さらに優れ
た耐熱性或いは耐食性、またはその両方を兼ね備えるこ
とを特徴とする構造部材が得られる。[0017] A film obtained by irradiating a plasma-sprayed coating with a laser originally has many pores and poor adhesion to the plasma-sprayed coating, so that a large improvement cannot be expected even by laser irradiation. In the case of the high-speed powder flame spraying (HVOF) method, a good film cannot be obtained because the flame temperature is low and the spraying alone does not melt sufficiently and collides with the substrate, but the film is improved by remelting with a laser. You. However, a surface coating sprayed with a coating powder containing ceramic particles having a particle temperature of 2000 ° C. or more and a particle velocity of 600 m / sec or more has higher ductility, denseness, and adhesion, and has less pores. By irradiating with a laser and partially semi-melting, melting or solidifying a depth of at least 100 μm or more and less than 10% of the thickness of the member, it has more excellent heat resistance or corrosion resistance, or both. A structural member characterized by the above is obtained.
【0018】レーザ照射では、少なくとも表面深さ10
0μm以上で部材の肉厚の10%未満の深さを、一部半
溶融或いは溶融、凝固させるが、これは表面深さ100
μm未満ではあまりにも表面の厚さが薄く、耐熱,耐食
機能が十分でないため、また肉厚の10%以上の深さで
は熱応力等によって割れが生じて健全な皮膜が形成でき
ないためである。In laser irradiation, at least a surface depth of 10
A part having a depth of 0 μm or more and less than 10% of the thickness of the member is partially melted or melted and solidified.
If the thickness is less than μm, the surface thickness is too small and the heat and corrosion resistance functions are not sufficient, and if the thickness is 10% or more of the wall thickness, cracks occur due to thermal stress and the like, and a sound film cannot be formed.
【0019】本発明は、使用環境が250℃を越える高
温での大気またはガスを含む環境、或いは100℃を越
える高温での水溶液環境で効果を発揮する。250℃未
満の高温での大気またはガスを含む環境では温度が低
く、耐熱性も酸化を主体とする耐食性も大きくない。1
00℃未満の高温での水溶液環境での腐食は大きくな
く、本発明の効果は小さい。The present invention is effective in an environment containing air or gas at a high temperature exceeding 250 ° C. or an aqueous environment at a high temperature exceeding 100 ° C. In an atmosphere containing gas or air at a high temperature of less than 250 ° C., the temperature is low, and heat resistance and corrosion resistance mainly due to oxidation are not large. 1
Corrosion in an aqueous solution environment at a high temperature of less than 00 ° C. is not large, and the effect of the present invention is small.
【0020】[0020]
【発明の実施の形態】(実施例1)溶射材料に主成分を
粒子サイズ12μmのアルミナ粉末とし、若干のチタニ
ウム酸化物を含む粉末を、アルミナ粒子温度2000
℃,アルミナ平均粒子速度800m/sec の速度で焼結
アルミナ母材の表面に溶射した後、この表面を炭酸ガス
レーザで再溶融した。この試験体を1800℃で曲げ試
験した結果、母材と皮膜の境界での剥離は見られず、ア
ルミナ単結晶と同等の強度,延性を示した。一方、同様
な粉末を減圧プラズマ溶射でコーテングした後、この表
面を炭酸ガスレーザで再溶融した試験体を1800℃で
曲げ試験した結果、母材と皮膜の境界で剥離が見られ、
かつ皮膜の気孔が多く、低荷重で皮膜に割れを生じた。DESCRIPTION OF THE PREFERRED EMBODIMENTS (Example 1) A main component of a thermal spray material was alumina powder having a particle size of 12 μm, and a powder containing a slight amount of titanium oxide was used at an alumina particle temperature of 2,000.
After spraying onto the surface of the sintered alumina base material at a temperature of 800 ° C. and an average alumina particle speed of 800 m / sec, the surface was re-melted with a carbon dioxide gas laser. As a result of a bending test of this specimen at 1800 ° C., no peeling was observed at the boundary between the base material and the coating, and the specimen exhibited the same strength and ductility as the alumina single crystal. On the other hand, after coating the same powder by reduced pressure plasma spraying, the surface was remelted with a carbon dioxide gas laser, and a test specimen was bent at 1800 ° C. As a result, peeling was observed at the boundary between the base material and the coating,
In addition, the coating had many pores, and the coating was cracked at a low load.
【0021】(実施例2)実施例1と作製した本発明の
コーテング層及び比較の為に作製した従来のコーテング
層について、1600℃で塩基度CaO/SiO2:1.
25の溶融灰中で24hの耐食性試験及び1600℃−
水冷繰り返し耐熱衝撃試験を実施した。この結果、本発
明の試験体は侵食量が0.5mm 、き裂発生までの熱衝撃
試験繰り返し数は50回に及んだ。一方、従来のコーテ
ング層では侵食量が3.0mm 、き裂発生までの繰り返し
数が5回であった。(Example 2) The coating layer of the present invention prepared in Example 1, and the conventional coating layer prepared for comparison, at 1600 ° C, basicity CaO / SiO 2 : 1.
Corrosion resistance test in 24 hours in 25 molten ash and 1600 ° C.
A water-cooled repeated thermal shock test was performed. As a result, the test piece of the present invention had an erosion amount of 0.5 mm, and the number of repetitions of the thermal shock test until crack initiation reached 50 times. On the other hand, in the conventional coating layer, the amount of erosion was 3.0 mm, and the number of repetitions until crack initiation was 5 times.
【0022】(実施例3)溶射材料に粒子サイズ12μ
mのジルコニア粉末を主成分とした粉末を、燃料ガスに
適量の水素を加えた特殊なガンで、ジルコニア粒子温度
2850℃,ジルコニア平均粒子速度900m/sec の
速度で耐熱合金製のガスタービン翼の翼面の表面に溶射
した後、翼の前縁部の部分に炭酸ガスレーザを照射し、
溶射層の表面部を再溶融した。なお、ジルコニア系コー
テング層と翼材との間には、高温耐食性に優れたCoN
iCrAlY合金層を予めコーテングした。このような
方法で、CoNiCrAlY合金層の表面に厚さ0.4m
m で表面部の0.15mm が再溶融処理したジルコニア系
コーテング層を作製した。なお、比較の為、同様のジル
コニア系粉末を用い減圧雰囲気中プラズマ溶射にてコー
テング層を形成し、前縁部を再溶融処理したスタービン
翼も作製した。これらのガスタービン翼をガス温度16
50℃の燃焼炎に曝し、翼内部を冷却した状態での加熱
と燃焼筒外での冷却とを繰り返す熱サイクル試験を実施
した。なお、加熱状態での熱流速は5.5MW/m2 であ
り、加熱時間は10min である。試験結果、本発明のコ
ーテング層を設けたガスタービン翼では500回の繰り
返しでもコーテング層のはく離損傷が認められなかった
が、比較例では20回で翼前縁部のジルコニア系コーテ
ング層のはく離が生じた。従って、本発明のジルコニア
系コーテング層は高熱負荷の環境下でも十分な耐熱性を
有していることが明らかになった。Example 3 A sprayed material has a particle size of 12 μm.
m of zirconia powder as a main component, a special gun obtained by adding an appropriate amount of hydrogen to a fuel gas at a zirconia particle temperature of 2850 ° C. and a zirconia average particle velocity of 900 m / sec. After spraying on the surface of the wing surface, the leading edge of the wing is irradiated with a carbon dioxide laser,
The surface portion of the sprayed layer was re-melted. The zirconia coating layer and the wing material are provided with CoN having excellent high-temperature corrosion resistance.
The iCrAlY alloy layer was previously coated. By such a method, the surface of the CoNiCrAlY alloy layer is 0.4 m thick.
A zirconia-based coating layer was prepared in which 0.15 mm of the surface portion was remelted at m. For comparison, a sturbine blade was formed by forming a coating layer by plasma spraying in a reduced-pressure atmosphere using the same zirconia-based powder and re-melting the leading edge. These gas turbine blades are operated at a gas temperature of 16
A heat cycle test was repeated in which heating was performed while cooling the inside of the blade and cooling outside the combustion cylinder by exposing to a combustion flame at 50 ° C. The heat flow rate in the heating state is 5.5 MW / m 2 and the heating time is 10 minutes. As a result of the test, in the gas turbine blade provided with the coating layer of the present invention, peeling damage of the coating layer was not recognized even after 500 repetitions, but in the comparative example, peeling of the zirconia-based coating layer at the blade leading edge was performed in 20 times. occured. Therefore, it has been clarified that the zirconia-based coating layer of the present invention has sufficient heat resistance even under a high heat load environment.
【0023】[0023]
【発明の効果】本発明は、250℃を越える高温での大
気またはガスを含む環境、或いは100℃を越える高温で
の水溶液環境、特に優れた耐熱性或いは耐食性、または
その両方を兼ね備えることを要求する、ガスタービン,
ジェットエンジン,ごみ焼却炉,ごみ発電,石炭ガス
化,核分裂炉,核融合炉,再処理,廃棄物処理,化学プ
ラントの構造部材で大きな効果が得られる。The present invention requires an environment containing air or gas at a high temperature exceeding 250 ° C., or an aqueous solution environment at a high temperature exceeding 100 ° C., particularly, having excellent heat resistance or corrosion resistance, or both. Gas turbine
Significant effects can be obtained in jet engine, refuse incinerator, refuse power generation, coal gasification, nuclear fission reactor, fusion reactor, reprocessing, waste treatment, and structural components of chemical plant.
Claims (8)
を含む環境、或いは100℃を越える高温での水溶液環
境で使用される構造部材において、該構造部材はセラミ
ックス,金属,合金及び金属間化合物のいずれかからな
り、前記構造部材表面に半溶融或いは溶融して凝固した
セラミックス層を有することを特徴とする構造部材。1. A structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C. or an aqueous solution environment at a high temperature exceeding 100 ° C., wherein the structural member is made of ceramics, metals, alloys and intermetallic compounds. And a semi-melted or molten ceramic layer solidified on the surface of the structural member.
を含む環境、或いは100℃を越える高温での水溶液環
境で使用される構造部材において、セラミックス,金
属,合金,金属間化合物のいずれかからなる構造部材表
面に高速粉末式フレーム溶射(HVOF)法でセラミッ
クスを含む粉末を溶射した後の表面を、レーザにて照射
し、少なくとも表面深さ100μm以上で部材の肉厚の
10%未満の深さを、半溶融或いは溶融して凝固したセ
ラミックス層を有することを特徴とする構造部材。2. A structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C. or an aqueous solution environment at a high temperature exceeding 100 ° C., from any of ceramics, metals, alloys, and intermetallic compounds. The surface after spraying a powder containing ceramics on the surface of the structural member by high-speed powder flame spraying (HVOF) method is irradiated with a laser, and has a depth of at least 100 μm or more and less than 10% of the thickness of the member. A structural member characterized by having a ceramic layer solidified by semi-melting or melting.
を含む環境、或いは100℃を越える高温での水溶液環
境で使用される構造部材において、セラミックス,金
属,合金,金属間化合物のいずれかからなる構造部材表
面に粒子温度2000℃以上,粒子速度600m/sec
以上の速度を有するセラミック粒子を含むコーテング粉
末を溶射した後の表面を、レーザにて照射し、少なくと
も表面深さ100μm以上で部材の肉厚の10%未満の
深さを、半溶融或いは溶融して凝固したセラミックス層
を有することを特徴とする構造部材。3. A structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C., or an aqueous solution environment at a high temperature exceeding 100 ° C., from any of ceramics, metals, alloys, and intermetallic compounds. Particle temperature 2000 ° C or higher, particle velocity 600m / sec
The surface after spraying the coating powder containing the ceramic particles having the above speed is irradiated with a laser to semi-melt or melt at least a surface depth of 100 μm or more and less than 10% of the thickness of the member. A structural member having a ceramic layer solidified by solidification.
セラミックス層が酸化物或いは酸化皮膜を含むセラミッ
クスであることを特徴とする構造部材。4. A structural member according to claim 1, wherein said ceramic layer is a ceramic containing an oxide or an oxide film.
材において、セラミックス、或いは金属,合金,金属間
化合物構造部材表面に存在するセラミックスが50%以
上存在し、セラミックス他に金属,合金,金属間化合物
の少なくとも一種を含む表面に、レーザを照射し、部材
の肉厚の10%未満の深さを、半溶融或いは溶融して凝
固してなることを特徴とする構造部材。5. The structural member according to claim 1, wherein 50% or more of ceramics, ceramics present on the surface of the metal, alloy, or intermetallic compound structural member are present, and metals, alloys, etc. other than ceramics are present. A structural member characterized in that a surface containing at least one of the intermetallic compounds is irradiated with a laser to solidify a part of the member having a depth of less than 10% of its thickness by semi-melting or melting.
物,炭化物,窒化物,硼化物の一種または、二種以上を
複合して構成する表面を、レーザにて照射し、部材の肉
厚の10%未満の深さを、半溶融或いは溶融して凝固し
てなる請求項1〜6のいずれかに記載の構造部材。6. A surface formed by combining one or more of oxides, carbides, nitrides, and borides of ceramics present on the surface, and irradiating the surface with a laser to reduce the thickness of the member to 10%. The structural member according to any one of claims 1 to 6, wherein the structural member is semi-molten or melted and solidified to a depth of less than 10%.
材において、構造部材がセラミックス、或いは金属,合
金,金属間化合物の管状構造部材で、その内表面,外表
面に存在するセラミックスのいずれか一方、或いは双方
の表面をレーザにて照射し、部材の肉厚の10%未満の
深さを、半溶融或いは溶融して凝固してなることを特徴
とする構造部材。7. The structural member according to claim 1, wherein the structural member is a ceramic or a tubular structural member of a metal, an alloy, or an intermetallic compound, and the ceramic member present on an inner surface and an outer surface thereof. A structural member characterized by irradiating one or both surfaces with a laser and semi-melting or melting and solidifying a depth of less than 10% of the thickness of the member.
構造部材が、ガスタービン,ジェットエンジン,ごみ焼
却炉,ごみ発電,石炭ガス化,核分裂炉,核融合炉,再
処理,廃棄物処理,化学プラントの構造部材であること
を特徴とする構造部材。8. The structure according to claim 1, wherein the structural member is a gas turbine, a jet engine, a refuse incinerator, a refuse power generation, a coal gasification, a nuclear fission reactor, a nuclear fusion reactor, a reprocessing, a waste treatment. , A structural member of a chemical plant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10155590A JPH11350105A (en) | 1998-06-04 | 1998-06-04 | Structural member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10155590A JPH11350105A (en) | 1998-06-04 | 1998-06-04 | Structural member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11350105A true JPH11350105A (en) | 1999-12-21 |
Family
ID=15609367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10155590A Pending JPH11350105A (en) | 1998-06-04 | 1998-06-04 | Structural member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11350105A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007175881A (en) * | 2005-12-26 | 2007-07-12 | Nikken Toso Kogyo Kk | Super-engineering plastic laminated film and flame spray film forming method by compounding |
JP2010531269A (en) * | 2007-06-26 | 2010-09-24 | エアバス・オペレーションズ・ゲーエムベーハー | Corrosion resistant connection between the first element and the second element |
-
1998
- 1998-06-04 JP JP10155590A patent/JPH11350105A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007175881A (en) * | 2005-12-26 | 2007-07-12 | Nikken Toso Kogyo Kk | Super-engineering plastic laminated film and flame spray film forming method by compounding |
JP2010531269A (en) * | 2007-06-26 | 2010-09-24 | エアバス・オペレーションズ・ゲーエムベーハー | Corrosion resistant connection between the first element and the second element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sivakumar et al. | High temperature coatings for gas turbine blades: a review | |
JP3983323B2 (en) | Method for coating a metal part with a metal adhesion layer for a thermal sprayed ceramic insulation layer and a metal adhesion layer | |
JP5124468B2 (en) | Strontium titanium oxide and machinable coating made therefrom | |
US4382976A (en) | Method of forming corrosion resistant coatings on metal articles | |
JP2007231422A (en) | Coating process and coated article | |
JP2001152310A (en) | Method of improving oxidation resistance of metallic base material coated with thermal barrier coating | |
JP2009108410A (en) | Alumina-based protective coating for thermal barrier coating | |
Galetz | Coatings for superalloys | |
US7445434B2 (en) | Coating material for thermal barrier coating having excellent corrosion resistance and heat resistance and method of producing the same | |
JP2826824B2 (en) | Thermal insulation coating method and gas turbine combustor | |
JPH0447018B2 (en) | ||
US3061482A (en) | Ceramic coated metal bodies | |
JPH0251978B2 (en) | ||
Prashar et al. | Application of thermal spraying techniques used for the surface protection of boiler tubes in power plants: Thermal spraying to combat hot corrosion | |
JP2001288554A (en) | Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method | |
Xie et al. | Effect of an enamel coating on the oxidation and hot corrosion behavior of an HVOF-sprayed Co–Ni–Cr–Al–Y coating | |
JPH11350105A (en) | Structural member | |
JP2934599B2 (en) | High temperature corrosion resistant composite surface treatment method | |
Podchernyaeva et al. | Protective coatings on heat-resistant nickel alloys | |
JPH07292453A (en) | Heat shielding coating method for preventing high temperature oxidation | |
JPS62210329A (en) | Ceramic coated heat-resistant material and manufacture thereof | |
JPH11131206A (en) | Powder material for thermal spraying coating and high temperature member using the same | |
JPH11350106A (en) | Production of structural member | |
JPS62211387A (en) | Production of ceramic coated heat resistant member | |
Grünling et al. | Coatings in industrial gas turbines: Experience and further requirements |