JPH11350106A - Production of structural member - Google Patents

Production of structural member

Info

Publication number
JPH11350106A
JPH11350106A JP10155588A JP15558898A JPH11350106A JP H11350106 A JPH11350106 A JP H11350106A JP 10155588 A JP10155588 A JP 10155588A JP 15558898 A JP15558898 A JP 15558898A JP H11350106 A JPH11350106 A JP H11350106A
Authority
JP
Japan
Prior art keywords
structural member
ceramic particles
particle
high temperature
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10155588A
Other languages
Japanese (ja)
Inventor
Isao Masaoka
功 正岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10155588A priority Critical patent/JPH11350106A/en
Publication of JPH11350106A publication Critical patent/JPH11350106A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a structural member by forming a coating which has high ductility, denseness and adhesion and low porosity on a high m.p. material. SOLUTION: In a production method of a structural member used in environment contg. the atmosphere or a gas at a high temp. over 250 deg.C or in an aq. solution environment at a high temp. over 100 deg.C, a coating material contg. ceramic particles is plasma-sprayed onto the surface of the structural member at a particle temp. of >=2000 deg.C and a particle speed of >=600 m/sec.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な方法による表
面コーテングによって製造される部材の製造法に係り、
250℃を越える高温での大気またはガスを含む環境、
或いは100℃を越える高温での水溶液環境で使用する
に好適な構造部材の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a member produced by surface coating by a novel method.
An environment containing air or gas at a high temperature exceeding 250 ° C.,
Alternatively, the present invention relates to a method for producing a structural member suitable for use in an aqueous solution environment at a high temperature exceeding 100 ° C.

【0002】[0002]

【従来の技術】250℃を越える高温での大気またはガ
スを含む環境、或いは100℃を越える高温での水溶液
環境では、室温で使用される場合と異なり、材料の高温
での劣化を考慮して高温強度の高い材料,高温での耐食
性に優れた材料が使用される。250℃を越える高温で
の大気またはガスを含む環境で使用される場合には、特
に高温でのクリープ強度,高温での酸化,腐食性ガスに
よる腐食損傷が重要で、これらに強い材料が選定,使用
されてきた。高温においても比較的低い温度では金属系
の合金が使用され、より高温ではセラミックスや複合材
料が使用されてきた。また100℃を越える高温での水
溶液環境で使用される場合には、水溶液中における電気
化学反応による腐食が問題で、水溶液中に溶解している
不純物によっては著しい腐食損傷を生じて破損に至る。
100℃を越える高温での水溶液環境では、高温高圧環
境になるので、温度が高くなるとこの損傷はより大きく
なる。こうした損傷が起こらないよう一般には耐食性の
高い材料が選定され、使用されてきた。
2. Description of the Related Art In an environment containing air or gas at a high temperature exceeding 250 ° C., or in an aqueous solution environment at a high temperature exceeding 100 ° C., unlike the case where it is used at room temperature, the deterioration of the material at a high temperature is taken into consideration. Materials with high strength at high temperatures and materials with excellent corrosion resistance at high temperatures are used. When used in an atmosphere containing gas or air at a temperature higher than 250 ° C, creep strength at high temperature, oxidation at high temperature, and corrosion damage by corrosive gas are important. Have been used. At relatively high temperatures, metal alloys have been used at relatively low temperatures, and at higher temperatures, ceramics and composite materials have been used. Further, when used in an aqueous solution environment at a high temperature exceeding 100 ° C., corrosion due to an electrochemical reaction in the aqueous solution is a problem. Depending on the impurities dissolved in the aqueous solution, significant corrosion damage is caused, leading to breakage.
In an aqueous solution environment at a high temperature exceeding 100 ° C., a high-temperature and high-pressure environment is established, so that the higher the temperature, the greater the damage. Generally, a material having high corrosion resistance has been selected and used so as not to cause such damage.

【0003】このような耐熱或いは耐食性の材料に加え
て、構造部材の表面をこのような耐熱或いは耐食性の材
料でコーテングする技術も広く適用されてきた。この表
面コーテング技術としては、フレーム溶射,アーク溶
射,プラズマ溶射,爆発溶射等があり、このうち構造部
材の表面コーテングとしては、減圧プラズマ溶射と高速
粉末式フレーム溶射(HVOF)が多く使用されてい
る。
In addition to such heat-resistant or corrosion-resistant materials, techniques for coating the surface of structural members with such heat-resistant or corrosion-resistant materials have been widely applied. As the surface coating technology, there are flame spraying, arc spraying, plasma spraying, explosive spraying, etc. Among them, as the surface coating of the structural member, reduced pressure plasma spraying and high-speed powder type flame spraying (HVOF) are often used. .

【0004】[0004]

【発明が解決しようとする課題】減圧プラズマ溶射法は
雰囲気が制御された減圧チャンバー内でプラズマ溶射を
行うことを特徴とするため、大気中での溶射に比べ溶射
粒子の大気との反応がなく、気孔が少なく、皮膜と母材
との密着もより改善された。プラズマの温度も高く高融
点金属やセラミックスのコーテングも可能になった。し
かし、皮膜の延性が低く、緻密性も十分とはいえない。
The reduced pressure plasma spraying method is characterized in that plasma spraying is performed in a reduced pressure chamber in which the atmosphere is controlled, so that the spray particles do not react with the atmosphere as compared with the spraying in the atmosphere. The pores were small, and the adhesion between the film and the base material was further improved. The high plasma temperature has made it possible to coat high melting point metals and ceramics. However, the ductility of the film is low and the denseness is not sufficient.

【0005】一方、近年開発された高速粉末式フレーム
溶射(HVOF)はジェットの流速が早く、高い粒子速
度が得られるが、減圧プラズマ溶射に比べ、炎の温度が
低い。この結果、減圧プラズマ溶射に比べ、非常に緻密
な皮膜が得られ、粒子間結合力が高い。しかし、炎の温
度が低く、基本的に高融点の材料に対しての適用が困難
である。酸化物セラミックスを溶射した場合、十分溶融
しないで素地と衝突するため良い皮膜が得られていな
い。
On the other hand, the high-speed powder flame spraying (HVOF) developed recently has a high jet velocity and a high particle velocity, but the flame temperature is lower than that of the reduced pressure plasma spraying. As a result, a very dense film is obtained and the bonding force between the particles is high as compared with the low pressure plasma spraying. However, the flame temperature is low, and it is basically difficult to apply to a material having a high melting point. When oxide ceramics are sprayed, they do not melt sufficiently and collide with the substrate, so that a good coating has not been obtained.

【0006】本発明の目的は、高融点の材料に対して、
皮膜の延性,緻密性,密着性が高く、気孔も少ないコー
テングを形成する構造部材の製造方法を提供するにあ
る。
An object of the present invention is to provide a material having a high melting point.
An object of the present invention is to provide a method for manufacturing a structural member that forms a coating having high ductility, denseness, and adhesion and a small number of pores.

【0007】[0007]

【課題を解決するための手段】本発明は、250℃を越
える高温での大気またはガスを含む環境、或いは100℃
を越える高温での水溶液環境で使用される構造部材の製
造法において、構造部材の表面を、粒子温度2000℃
以上,粒子速度600m/sec 以上の速度でセラミック
粒子を含むコーテング材料をプラズマ溶射することを特
徴とする。
SUMMARY OF THE INVENTION The present invention is directed to an atmosphere containing air or gas at a high temperature exceeding 250.degree.
In a method for producing a structural member used in an aqueous solution environment at a high temperature exceeding
As described above, a coating material containing ceramic particles is plasma-sprayed at a particle speed of 600 m / sec or more.

【0008】本発明は、特に、構造部材の表面を、粒子
温度2000℃以上,粒子速度600m/sec 以上の速度
をゆうし、かつその表面が一部半溶融状態、或いは溶融
状態のセラミック粒子を含むコーテング材料によってコ
ーテングすることにより優れた耐熱性或いは耐食性、ま
たはその両方を兼ね備えることを特徴とする。
[0008] The present invention particularly provides a ceramic material having a surface having a particle temperature of 2000 ° C or higher, a particle speed of 600 m / sec or higher, and a partially semi-molten or molten ceramic surface. It is characterized by having excellent heat resistance or corrosion resistance, or both, by coating with a coating material containing the same.

【0009】また、粒子温度2000℃以上,粒子速度
600m/sec 以上の速度をゆうするコーテング用セラ
ミック粒子が酸化物を含むセラミックス粒子であること
を特徴とする。粒子温度2000℃以上,粒子速度60
0m/sec 以上の速度をゆうするコーテング材料がセラ
ミック粒子の他に金属,合金,金属間化合物の少なくと
も1種を含むコーテング材料によってコーテングするこ
とにより優れた耐熱性或いは耐食性、またはその両方を
兼ね備えることを特徴とする。
Further, the coating ceramic particles having a particle temperature of 2000 ° C. or more and a particle speed of 600 m / sec or more are ceramic particles containing an oxide. Particle temperature 2000 ° C or higher, particle velocity 60
A coating material having a speed of 0 m / sec or more is coated with a coating material containing at least one of a metal, an alloy, and an intermetallic compound in addition to ceramic particles, thereby having excellent heat resistance and / or corrosion resistance. It is characterized by.

【0010】粒子温度2000℃以上,粒子速度600
m/sec 以上の速度をゆうするコーテング用セラミック
粒子が酸化物,炭化物,窒化物,硼化物の一種または、
二種以上を複合して構成するコーテング材でコーテング
することにより優れた耐熱性或いは耐食性、またはその
両方を兼ね備えることを特徴とする。
[0010] Particle temperature 2000 ° C or higher, particle speed 600
The coating ceramic particles having a speed of at least m / sec are one of oxides, carbides, nitrides, borides or
By coating with a coating material composed of a combination of two or more, excellent heat resistance and / or corrosion resistance, or both, are provided.

【0011】本発明は、250℃を越える高温での大気
またはガスを含む環境、或いは100℃を越える高温での
水溶液環境で使用される構造部材、特に、優れた耐熱性
或いは耐食性、またはその両方を兼ね備えることを要求
する、ガスタービン,ジェットエンジン,ごみ焼却炉,
ごみ発電,石炭ガス化,核分裂炉,核融合炉,再処理,
廃棄物処理,化学プラントの構造部材の製造法にある。
The present invention relates to a structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C., or an aqueous solution environment at a high temperature exceeding 100 ° C., and particularly excellent heat resistance and / or corrosion resistance. Gas turbines, jet engines, refuse incinerators,
Waste power generation, coal gasification, nuclear fission reactor, fusion reactor, reprocessing,
Waste treatment and manufacturing methods for structural members of chemical plants.

【0012】本発明が解決しようとする250℃を越え
る高温での大気またはガスを含む環境、或いは100℃
を越える高温での水溶液環境で、優れた耐熱性或いは耐
食性、またはその両方を兼ね備えた表面コーテング構造
部材を提供するためには、従来使用されていた減圧プラ
ズマ溶射と高速粉末式フレーム溶射(HVOF)の長所
を生かし、欠点を克服した新規の技術によって達成でき
る。種々の表面コーテング技術を検討した結果、従来の
減圧プラズマ溶射及び高速粉末式フレーム溶射(HVO
F)では得られない高い皮膜の延性,緻密性,密着性を
有し、気孔が少なく、優れた耐熱性或いは耐食性、また
はその両方を兼ね備えたコーテングを可能にする技術を
見いだした。即ち、粒子温度2000℃以上,粒子速度
600m/sec 以上の速度をゆうするセラミック粒子を
含むコーテング材料を母材に衝突させてコーテングする
ことによって目的が達成される。
[0012] Atmosphere or gas-containing environment at a high temperature exceeding 250 ° C or 100 ° C to be solved by the present invention.
In order to provide a surface-coated structural member having excellent heat resistance and / or corrosion resistance in an aqueous solution environment at a high temperature exceeding 100 ° C., conventionally used low-pressure plasma spraying and high-speed powder flame spraying (HVOF) have been used. It can be achieved by a new technology that takes advantage of the advantages of the above and overcomes the disadvantages. As a result of examining various surface coating technologies, conventional vacuum plasma spraying and high-speed powder flame spraying (HVO)
The present inventors have found a technique which enables coating having high ductility, denseness and adhesion, a small number of pores, and excellent heat resistance or corrosion resistance, or both, which cannot be obtained by F). That is, the object can be achieved by colliding a base material with a coating material containing ceramic particles having a particle temperature of 2000 ° C. or higher and a particle speed of 600 m / sec or higher.

【0013】粒子温度2000℃以上,粒子速度600
m/sec 以上の速度をゆうするセラミック粒子を含むコ
ーテング材料の表面が一部半溶融状態、或いは溶融状態
のセラミック粒子を含むコーテング材料によってコーテ
ングすることはより望ましい。また、粒子温度2000
℃以上,粒子速度600m/sec 以上の速度をゆうする
コーテング用セラミック粒子が酸化物を含むセラミック
ス粒子,セラミック粒子の他に金属,合金,金属間化合
物の少なくとも1種を含むコーテング材料によってコー
テングする場合も効果を発揮する。このような複合状態
の粒子を含む場合、適切な条件を選定することにより、
より高い皮膜の延性,緻密性,密着性を有し、気孔が少
なく、優れた耐熱性或いは耐食性、またはその両方を兼
ね備えたコーテング皮膜が得られる。目的によって、コ
ーテング用セラミック粒子は酸化物,炭化物,窒化物,
硼化物の一種または、二種以上を複合して使用される。
Particle temperature 2000 ° C. or higher, particle speed 600
It is more desirable that the surface of a coating material containing ceramic particles having a speed of m / sec or more is partially coated with a coating material containing ceramic particles in a semi-molten state or a molten state. In addition, particle temperature 2000
When the coating ceramic particles having a velocity of 600 ° C. or more and a particle velocity of 600 m / sec or more are coated with a ceramic material containing an oxide, a coating material containing at least one kind of metal, alloy, or intermetallic compound in addition to the ceramic particles. Is also effective. When including such composite particles, by selecting appropriate conditions,
A coating film having higher film ductility, denseness and adhesion, less pores, and excellent heat resistance and / or corrosion resistance can be obtained. Depending on the purpose, the ceramic particles for coating can be oxides, carbides, nitrides,
One type of boride or a combination of two or more types is used.

【0014】粒子温度が2000℃未満の場合は、温度
が低いため、形成された皮膜は気孔が多く、密着性に乏
しく、強度が低い。粒子速度が600m/sec 未満の場
合は、形成された皮膜は緻密性にかけ、脆い皮膜が形成
される。
When the particle temperature is lower than 2000 ° C., the temperature is low, so that the formed film has many pores, poor adhesion, and low strength. When the particle velocity is less than 600 m / sec, the formed film is subjected to denseness and a brittle film is formed.

【0015】本発明は、使用環境が250℃を越える高
温での大気またはガスを含む環境、或いは100℃を越
える高温での水溶液環境で効果を発揮する。250℃未
満の高温での大気またはガスを含む環境では温度が低
く、耐熱性も酸化を主体とする耐食性も大きくない。1
00℃未満の高温での水溶液環境での腐食は大きくな
く、本発明の効果は小さい。
The present invention is effective in an environment containing air or gas at a high temperature exceeding 250 ° C. or in an aqueous solution environment at a high temperature exceeding 100 ° C. In an atmosphere containing gas or air at a high temperature of less than 250 ° C., the temperature is low, and heat resistance and corrosion resistance mainly due to oxidation are not large. 1
Corrosion in an aqueous solution environment at a high temperature of less than 00 ° C. is not large, and the effect of the present invention is small.

【0016】[0016]

【発明の実施の形態】(実施例1)溶射材料に主成分を
粒子サイズ12μmのアルミナ粉末とし、若干のチタニ
ウム酸化物を含む粉末を燃料ガスに適量の水素を加えた
特殊なガンで、アルミナ粒子温度2200℃、アルミナ
平均粒子速度800m/sec の速度で焼結アルミナ母材
の表面にコーテングした。この試験体を1800℃で曲
げ試験した結果、母材と皮膜の境界での剥離は見られ
ず、アルミナ単結晶と同等の強度,延性を示した。一
方、同様な粉末を減圧プラズマ溶射でコーテングした試
験体を1800℃で曲げ試験した結果、母材と皮膜の境
界で剥離が見られ、かつ皮膜の気孔が多く、低荷重で皮
膜に割れを生じた。さらに同様な粉末を高速粉末式フレ
ーム溶射(HVOF)でコーテングした場合は、粒子が
十分溶融しないで素地と衝突し十分試験に供する皮膜が
得られなかった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) A special gun in which a main component of a thermal spray material is alumina powder having a particle size of 12 μm, and a powder containing a slight amount of titanium oxide is added to a fuel gas by adding a proper amount of hydrogen to the alumina, Coating was performed on the surface of the sintered alumina base material at a particle temperature of 2200 ° C. and an average alumina particle speed of 800 m / sec. As a result of a bending test of this specimen at 1800 ° C., no peeling was observed at the boundary between the base material and the coating, and the specimen exhibited the same strength and ductility as the alumina single crystal. On the other hand, as a result of a bending test at 1800 ° C. of a test piece coated with the same powder by reduced pressure plasma spraying, peeling was observed at the boundary between the base material and the coating, the coating had many pores, and the coating was cracked at a low load. Was. Further, when the same powder was coated by high-speed powder flame spraying (HVOF), the particles did not melt sufficiently and collided with the base material, and a coating sufficient for the test could not be obtained.

【0017】(実施例2)溶射材料に粒子サイズ12μ
mのアルミナ粉末を主成分とした粉末を、燃料ガスに適
量の水素を加えた特殊なガンで、アルミナ粒子温度22
50℃,アルミナ平均粒子速度900m/sec の速度で
アルミナ系耐火物の表面にコーテングした。この試験体
を1500℃で塩基度CaO/SiO2:1.25の溶融
灰中で24hの耐食性試験及び1500℃−水冷繰返し
耐熱衝撃試験を実施した。この結果、本発明の試験体は
侵食量が0.5mm 、き裂発生までの熱衝撃試験繰返し数
は40回に及んだ。一方、アルミナ系耐火物では、侵食
量が4.0mm 、き裂発生までの熱衝撃試験繰返し数は8
回で、また減圧プラズマ溶射でコーテングした試験体も
前者が6.2mm 、後者は3回でき裂が生じた。このよう
に粒子温度2000℃以上、粒子速度600m/sec 以
上の速度をゆうするセラミック粒子を含むコーテング材
料によってコーテングすることにより優れた耐熱性或い
は耐食性、またはその両方を兼ね備えることを特徴とす
る構造部材が得られることが明らかとなった。
(Example 2) A sprayed material has a particle size of 12 μm.
m powder of alumina as the main component, a special gun in which an appropriate amount of hydrogen is added to the fuel gas.
Coating was performed on the surface of an alumina-based refractory at 50 ° C. and an average alumina particle speed of 900 m / sec. The test specimen was subjected to a corrosion resistance test at 1500 ° C. for 24 hours in molten ash having a basicity of CaO / SiO 2 of 1.25 and a thermal shock resistance test at 1500 ° C.-water cooling repeatedly. As a result, the specimen of the present invention had an erosion amount of 0.5 mm, and the number of repetitions of the thermal shock test until crack initiation reached 40 times. On the other hand, in the case of alumina refractories, the erosion amount was 4.0 mm, and the number of repetitions of the thermal shock test until crack initiation was 8
In the test specimen coated by low pressure plasma spraying, the former was 6.2 mm, and the latter was cracked three times. A structural member characterized by having excellent heat resistance and / or corrosion resistance by coating with a coating material containing ceramic particles having a particle temperature of 2000 ° C. or higher and a particle speed of 600 m / sec or higher. Was obtained.

【0018】(実施例3)溶射材料に粒子サイズ12μ
mのジルコニア粉末を主成分とした粉末を、燃料ガスに
適量の水素を加えた特殊なガンで、ジルコニア粒子温度
2850℃,ジルコニア平均粒子速度900m/sec の
速度で耐熱合金製のガスタービン翼の翼面の表面にコー
テングした。なお、ジルコニア系コーテング層と翼材と
の間には、高温耐食性に優れたCoNiCrAlY合金
層を予めコーテングした。このような方法で、CoNi
CrAlY合金層の表面に厚さ0.4mm のジルコニア系
コーテング層を被覆した。なお、比較の為、同様のジル
コニア系粉末を用い減圧雰囲気中プラズマ溶射にてコー
テング層を形成したガスタービン翼も作製した。これら
のガスタービン翼をガス温度1550℃の燃焼炎に曝
し、翼内部を冷却した状態での加熱と燃焼筒外での冷却
とを繰り返す熱サイクル試験を実施した。なお、加熱状
態での熱流速は4.5MW/m2であり、加熱時間は10
min である。試験結果、本発明のコーテング層を設けた
ガスタービン翼では103 回の繰り返しでもコーテング
層のはく離損傷が認められなかったが、比較例では50
回でジルコニア系コーテング層のはく離が生じた。従っ
て、本発明のジルコニア系コーテング層は高熱負荷の環
境下でも十分な耐熱性を有していることが明らかになっ
た。
(Example 3) A sprayed material has a particle size of 12 μm.
m zirconia powder as a main component, a special gun obtained by adding an appropriate amount of hydrogen to a fuel gas, using a zirconia particle temperature of 2850 ° C. and a zirconia average particle velocity of 900 m / sec. Coated on the wing surface. Note that a CoNiCrAlY alloy layer having excellent high-temperature corrosion resistance was previously coated between the zirconia-based coating layer and the blade material. In this way, CoNi
The surface of the CrAlY alloy layer was coated with a zirconia-based coating layer having a thickness of 0.4 mm. For comparison, a gas turbine blade having a coating layer formed by plasma spraying in a reduced-pressure atmosphere using the same zirconia-based powder was also manufactured. These gas turbine blades were exposed to a combustion flame having a gas temperature of 1550 ° C., and a heat cycle test in which heating in a state where the inside of the blade was cooled and cooling outside the combustion cylinder were repeated was performed. The heat flow rate in the heating state was 4.5 MW / m 2 , and the heating time was 10
min. Test results, although delamination damage Kotengu layer at 10 3 repetitions in the gas turbine blade provided with Kotengu layer of the present invention was not observed, 50 in the comparative example
The peeling of the zirconia-based coating layer occurred at each turn. Therefore, it has been clarified that the zirconia-based coating layer of the present invention has sufficient heat resistance even under a high heat load environment.

【0019】[0019]

【発明の効果】本発明は、250℃を越える高温での大
気またはガスを含む環境、或いは100℃を越える高温で
の水溶液環境、特に優れた耐熱性或いは耐食性、または
その両方を兼ね備えることを要求する、ガスタービン,
ジェットエンジン,ごみ焼却炉,ごみ発電,石炭ガス
化,核分裂炉,核融合炉,再処理,廃棄物処理,化学プ
ラントの構造部材で大きな効果が得られる。
The present invention requires an environment containing air or gas at a high temperature exceeding 250 ° C., or an aqueous solution environment at a high temperature exceeding 100 ° C., particularly, having excellent heat resistance or corrosion resistance, or both. Gas turbine
Significant effects can be obtained in jet engine, refuse incinerator, refuse power generation, coal gasification, nuclear fission reactor, fusion reactor, reprocessing, waste treatment, and structural components of chemical plant.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】250℃を越える高温での大気またはガス
を含む環境、或いは100℃を越える高温での水溶液環
境で使用される構造部材の製造法において、該構造部材
の表面を、粒子温度2000℃以上,粒子速度600m
/sec 以上の速度でセラミック粒子を含むコーテング材
料をプラズマ溶射することを特徴とする構造部材の製造
法。
In a method for manufacturing a structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C., or in an aqueous environment at a high temperature exceeding 100 ° C., the surface of the structural member has a particle temperature of 2,000. ℃ or higher, particle velocity 600m
A method for producing a structural member, comprising plasma-spraying a coating material containing ceramic particles at a speed of at least about / sec.
【請求項2】250℃を越える高温での大気またはガス
を含む環境、或いは100℃を越える高温での水溶液環
境で使用される構造部材の製造法において、構造部材の
表面に、粒子温度2000℃以上,粒子速度600m/
sec 以上の速度で、セラミックス粒子をその表面が一部
半溶融状態、或いは溶融状態でプラズマ溶射することを
特徴とする構造部材の製造法。
2. A method for producing a structural member used in an environment containing air or gas at a high temperature exceeding 250 ° C. or in an aqueous solution environment at a high temperature exceeding 100 ° C., wherein a particle temperature of 2000 ° C. Above, the particle velocity 600m /
A method for producing a structural member, comprising plasma-spraying ceramic particles in a semi-molten state or a partially molten state at a speed of at least sec.
【請求項3】特許請求項1又は2において、セラミック
粒子が酸化物を含むセラミックス粒子であることを特徴
とする構造部材の製造法。
3. The method according to claim 1, wherein the ceramic particles are ceramic particles containing an oxide.
【請求項4】特許請求項1又は2において、コーテング
材料がセラミック粒子の他に金属,合金,金属間化合物
の少なくとも1種を含むコーテング材料によってコーテ
ングすることを特徴とする構造部材の製造法。
4. The method according to claim 1, wherein the coating material is coated with a coating material containing at least one of a metal, an alloy, and an intermetallic compound in addition to the ceramic particles.
【請求項5】特許請求項1又は2において、前記セラミ
ック粒子が酸化物,炭化物,窒化物,硼化物の一種また
は、二種以上の複合であることを特徴とする構造部材の
製造法。
5. A method according to claim 1, wherein said ceramic particles are one or a combination of two or more of oxides, carbides, nitrides, and borides.
【請求項6】特許請求項1〜5のいずれかにおいて、構
造部材が、ガスタービン,ジェットエンジン,ごみ焼却
炉,ごみ発電,石炭ガス化,核分裂炉,核融合炉,再処
理,廃棄物処理,化学プラントの構造部材であることを
特徴とする構造部材の製造法。
6. The structural member according to claim 1, wherein the structural member is a gas turbine, a jet engine, a refuse incinerator, a refuse power generation, a coal gasification, a nuclear fission reactor, a nuclear fusion reactor, a reprocessing, a waste treatment. A method for producing a structural member, characterized by being a structural member of a chemical plant.
JP10155588A 1998-06-04 1998-06-04 Production of structural member Pending JPH11350106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10155588A JPH11350106A (en) 1998-06-04 1998-06-04 Production of structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10155588A JPH11350106A (en) 1998-06-04 1998-06-04 Production of structural member

Publications (1)

Publication Number Publication Date
JPH11350106A true JPH11350106A (en) 1999-12-21

Family

ID=15609327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10155588A Pending JPH11350106A (en) 1998-06-04 1998-06-04 Production of structural member

Country Status (1)

Country Link
JP (1) JPH11350106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512566A (en) * 2004-09-13 2008-04-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
WO2012138891A2 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods for providing high-surface area coating to mitigate hydrocarbon deposits on engine and powertrain components
JP2012220174A (en) * 2011-04-14 2012-11-12 Toshiba Corp Heating equipment structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512566A (en) * 2004-09-13 2008-04-24 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
JP4738414B2 (en) * 2004-09-13 2011-08-03 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method for producing thin and dense ceramic layers
WO2012138891A2 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods for providing high-surface area coating to mitigate hydrocarbon deposits on engine and powertrain components
WO2012138891A3 (en) * 2011-04-06 2013-03-28 Basf Corporation Methods for providing high-surface area coating to mitigate hydrocarbon deposits on engine and powertrain components
JP2012220174A (en) * 2011-04-14 2012-11-12 Toshiba Corp Heating equipment structure

Similar Documents

Publication Publication Date Title
JP5124468B2 (en) Strontium titanium oxide and machinable coating made therefrom
JP5554488B2 (en) Alumina-based protective coating for thermal barrier coating
US4942732A (en) Refractory metal composite coated article
US20110048017A1 (en) Method of depositing protective coatings on turbine combustion components
US20110171488A1 (en) Thermal barrier coating systems
JP2007231422A (en) Coating process and coated article
CN111004990B (en) MAX phase coating for thermal barrier coating anti-melting CMAS corrosion and thermal spraying preparation method
CN109930102B (en) Novel thermal barrier coating preparation process
EP0304176A2 (en) Refractory metal composite coated article
JP2015166479A (en) New structure for thermal barrier coating improved in erosion and impact property and having ultralow thermal conductivity
Rhys-Jones The use of thermally sprayed coatings for compressor and turbine applications in aero engines
CN109628929A (en) A kind of thermal barrier coating and the preparation method and application thereof, aero engine turbine blades
JP3865705B2 (en) Heat shielding coating material excellent in corrosion resistance and heat resistance, and method for producing the same
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
CN112279682A (en) Silicon-based composite coating, preparation method and application thereof, and aircraft engine
JP2000144365A (en) Thermal barrier coating member, production of thermal barrier coating member and high temperature gas turbine using thermal barrier coating member
CN113151768A (en) Thermal barrier coating for jet engine blade and preparation method thereof
Suzuki et al. The current status of environmental barrier coatings and future direction of thermal spray process
CN114592164B (en) DVC thermal barrier coating and preparation method and application thereof
JPH11350106A (en) Production of structural member
JPS61174385A (en) Ceramic-coated fire resistant member and its production
JPH07292453A (en) Heat shielding coating method for preventing high temperature oxidation
Pavan et al. Review of ceramic coating on mild steel methods, applications and opportunities
JP2008174787A (en) Method for forming thermal spray coating
JPS62211387A (en) Production of ceramic coated heat resistant member