JP2001288554A - Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method - Google Patents

Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method

Info

Publication number
JP2001288554A
JP2001288554A JP2000099732A JP2000099732A JP2001288554A JP 2001288554 A JP2001288554 A JP 2001288554A JP 2000099732 A JP2000099732 A JP 2000099732A JP 2000099732 A JP2000099732 A JP 2000099732A JP 2001288554 A JP2001288554 A JP 2001288554A
Authority
JP
Japan
Prior art keywords
heat
alloy member
resistant alloy
repairing
repair material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000099732A
Other languages
Japanese (ja)
Inventor
Masako Nakabashi
昌子 中橋
Masafumi Fukuda
雅文 福田
Satoru Asai
知 浅井
Toshiaki Fuse
俊明 布施
Kazutoshi Nishimoto
和俊 西本
Kazuyuki Saida
一幸 才田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000099732A priority Critical patent/JP2001288554A/en
Publication of JP2001288554A publication Critical patent/JP2001288554A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding

Abstract

PROBLEM TO BE SOLVED: To obtain a repairing material for repairing the cracks and wall- thickness loss of a heat resisting alloy member having controlled crystal structure, e.g. a member made of unidirectionally solidified alloy or single crystal alloy, particularly a γ'-strengthened type heat resisting alloy member, to obtain a method for repairing a heat resisting alloy member, by which the resultant repaired part can be provided with a crystal-structure-controlled structure equal to that of the heat resisting alloy member and properties equal to those of the heat resisting alloy member, and also to obtain hot zone parts repaired by the method. SOLUTION: The repairing material 3 is used for repairing the defective part, such as cracks and wall-thickness loss, of the heat resisting alloy member 1 having controlled crystal structure, particularly a γ'-strengthened type Ni-base alloy member. The repairing material 3 has a composition composed essentially of Ni and containing, by weight, <=6.0% Cr and 1.0-3.5% B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービン等に
用いられる結晶構造が一方向や単結晶に制御された、特
にγ′強化型Ni基合金などの補修を行う補修材料、お
よびこの材料を用いた耐熱合金部材の補修方法および本
方法により補修された高温部品に関する技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repair material for repairing, in particular, a .gamma .'- strengthened Ni-based alloy, in which the crystal structure used for a gas turbine or the like is controlled to be unidirectional or single crystal, and this material is used. The present invention relates to a method for repairing a heat-resistant alloy member used and a technique relating to a high-temperature component repaired by the method.

【0002】[0002]

【従来の技術】高温部品であるガスタービンの動翼およ
び静翼の補修技術として、生成した亀裂の中に翼の材料
である耐熱合金部材と同等の組成の合金粉末と、耐熱合
金部材と主成分が同等で融点を低下させる成分、例え
ば、BやSiを含有する合金粉末を有機バインダにて混
練したペーストを注入し、その後真空加熱してろう材を
溶融凝固させる技術が知られている(商品名:ADH、
TURBOFIX等と称されている。)。
2. Description of the Related Art As a technique for repairing a moving blade and a stationary blade of a gas turbine, which is a high-temperature component, an alloy powder having a composition equivalent to that of a heat-resistant alloy member as a material of the blade, a heat-resistant alloy member, There is known a technique of injecting a paste obtained by kneading a component having the same composition and lowering the melting point, for example, an alloy powder containing B or Si in an organic binder, and then heating the mixture in vacuum to melt and solidify the brazing material ( Product name: ADH,
It is called TURBOFIX or the like. ).

【0003】また、耐熱合金部材に生じた面積の広い欠
損に対しては、上記2種類の合金粉末を有機バインダで
固めたシートを欠損部にあてがい、真空熱処理により溶
融凝固させて肉盛りする技術が知られている。
[0003] In addition, for a defect having a large area generated in a heat-resistant alloy member, a sheet obtained by solidifying the above two kinds of alloy powders with an organic binder is applied to the defect portion, and the material is melt-solidified by vacuum heat treatment to build up. It has been known.

【0004】さらに、このような技術以外にも、耐熱合
金部材の欠損を補修する方法が開発されており、耐熱合
金部材と同等の組成からなる合金粉末を溶射法により補
修部に被覆し肉盛り補修する技術が、特開平10−18
0442号公報に掲載されている。この方法では、さら
に溶射法として高速ガス溶射(HVOF)を用いる技術
が特開平8−284606号公報に掲載されている。
In addition to this technique, a method of repairing a defect in a heat-resistant alloy member has been developed. An alloy powder having a composition equivalent to that of the heat-resistant alloy member is coated on the repaired portion by a thermal spraying method to build up the portion. Repair technology is disclosed in
No. 0442. In this method, a technique using high-speed gas spraying (HVOF) as a thermal spraying method is disclosed in Japanese Patent Application Laid-Open No. 8-284606.

【0005】上述したような技術を用いて翼などの高温
部品に発生した亀裂や欠損部に補修材料を充填して補修
することで、亀裂のさらなる進展や欠損部の薄肉化を低
減することが可能である。
[0005] By using a technique as described above to fill and repair a crack or a defect generated in a high-temperature component such as a wing with a repair material, it is possible to reduce the further propagation of the crack and the thinning of the defect. It is possible.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の耐熱合金部材の補修方法では、亀裂など
の欠陥部に補修材料が充填されるものの、結晶構造が一
方向や単結晶に制御された耐熱合金部材を補修する場合
には、補修部の結晶構造が耐熱合金部材の結晶構造と同
等にならないことから、補修部の特性が耐熱合金部材と
大きく異なってしまうという問題を有していた。
However, in the conventional method for repairing a heat-resistant alloy member as described above, although a repair material is filled in a defective portion such as a crack, the crystal structure is controlled to be unidirectional or single crystal. When repairing a heat-resistant alloy member, the crystal structure of the repaired part does not become the same as the crystal structure of the heat-resistant alloy member, so that the properties of the repaired part are greatly different from those of the heat-resistant alloy member. .

【0007】すなわち、一方向凝固合金や単結晶合金な
どの結晶構造が制御された耐熱合金、特に、γ′(Ni
(Al,Ti))強化型Ni基耐熱合金からなる耐熱
合金部材の亀裂や減肉を補修するための補修材料は従来
においては知られていなかった。
That is, a heat-resistant alloy having a controlled crystal structure, such as a directionally solidified alloy or a single crystal alloy, particularly γ ′ (Ni
Repair materials for repairing cracks and thinning of heat-resistant alloy members made of 3 (Al, Ti)) reinforced Ni-based heat-resistant alloys have not been known in the past.

【0008】本発明は、このような問題を解決するため
になされたものであり、結晶構造が制御された耐熱合金
部材、特に、γ′強化型Ni基耐熱合金部材の亀裂や減
肉を補修するための補修材料を提供することを目的とす
る。
The present invention has been made to solve such a problem, and repairs cracks and thinning of a heat-resistant alloy member having a controlled crystal structure, particularly a γ′-reinforced Ni-base heat-resistant alloy member. The purpose of the present invention is to provide a repair material for performing the repair.

【0009】また、補修部が耐熱合金部材と同等の結晶
構造が制御された構造となり、耐熱合金部材と同等の特
性を有する耐熱合金部材の補修方法および本方法により
補修された高温部品を得ることを目的とする。
Further, the repair part has a controlled crystal structure equivalent to that of the heat-resistant alloy member, and a method for repairing a heat-resistant alloy member having the same characteristics as the heat-resistant alloy member and a high-temperature part repaired by the method are provided. With the goal.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本願発明者らは、種々研究を行った。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies.

【0011】従来の多結晶体合金では、合金組成が、N
iまたはCoを主成分として、Cr量が8〜30%でB
やSi量が0.01〜5%程度含有するものが知られて
いる。しかしながら、従来組成の補修材料を用いて、結
晶構造が制御された耐熱合金部材の補修を行うべく、補
修材料の充填および加熱を行うと、補修材料の溶融凝固
に伴い、補修された欠陥部分に多くの結晶粒界が生じ
て、耐熱合金部材と比較して結晶方位の異なった組織構
造に変質することが分かった。その要因について鋭意検
討を行った結果、本願発明者らは、補修材料中のCr、
Bおよび酸素量と、結晶粒界の生成し易さとに相関関係
があることを見い出し、本願発明に至ったものである。
In a conventional polycrystalline alloy, the alloy composition is N
i or Co as the main component, Cr content of 8-30% and B
And those containing about 0.01 to 5% of Si are known. However, when the repair material is filled and heated in order to repair the heat-resistant alloy member with a controlled crystal structure using the repair material of the conventional composition, the repaired material is melted and solidified, and the repaired defect is repaired. It was found that many crystal grain boundaries were generated and the structure was changed to a structure having a different crystal orientation as compared with the heat-resistant alloy member. As a result of intensive studies on the factors, the present inventors found that Cr,
The inventors have found that there is a correlation between the amounts of B and oxygen and the easiness of formation of crystal grain boundaries, and have reached the present invention.

【0012】すなわち、請求項1記載の発明は、結晶構
造が制御された耐熱合金部材、特にγ′強化型Ni基合
金部材の亀裂や減肉などの欠陥部を補修するための補修
材料であって、この補修材料は、Niを主成分とし、C
rを最大6.0重量%、Bを1.0〜3.5重量%含有
することを特徴とする。
That is, the invention according to claim 1 is a repair material for repairing a defective portion such as a crack or a thinning of a heat-resistant alloy member having a controlled crystal structure, particularly a γ′-reinforced Ni-based alloy member. The repair material is composed mainly of Ni and C
It is characterized by containing at most 6.0% by weight of r and 1.0 to 3.5% by weight of B.

【0013】Crは、耐食性を保つために必要な成分で
あり、Bは耐熱合金部材よりも融点を低下させて、耐熱
合金部材を多量に溶融することなく補修材料を優先的に
溶融する目的で添加される元素である。本発明におい
て、CrおよびBの添加量を調整した補修材料を用いる
ことにより、補修材料の溶融および凝固時に、粒界の生
成による結晶構造を妨げる微結晶の生成を防止でき、耐
熱合金部材の結晶構造を延長した状態での凝固挙動が得
られ易いことから、耐熱合金部材と近い結晶構造を得る
ことができる。
Cr is a component necessary for maintaining corrosion resistance. B is used for lowering the melting point of the heat-resistant alloy member and for preferentially melting the repair material without melting a large amount of the heat-resistant alloy member. It is an element to be added. In the present invention, by using a repair material in which the amounts of Cr and B added are adjusted, it is possible to prevent the generation of microcrystals that hinder the crystal structure due to the generation of grain boundaries during melting and solidification of the repair material, Since the solidification behavior in a state where the structure is extended is easily obtained, a crystal structure close to that of the heat-resistant alloy member can be obtained.

【0014】請求項2記載の発明は、結晶構造が制御さ
れた耐熱合金部材、特にγ′強化型Ni基合金部材の亀
裂や減肉などの欠陥部を補修するための補修材料であっ
て、この補修材料は、Niを主成分とし、Crを最大
5.0重量%、Bを1.5〜3.0重量%含有し、酸素
を0.1重量%以下としたことを特徴とする。
According to a second aspect of the present invention, there is provided a repair material for repairing a defective portion such as a crack or a reduced thickness of a heat-resistant alloy member having a controlled crystal structure, particularly a γ′-reinforced Ni-based alloy member, This repair material is characterized by containing Ni as a main component, containing up to 5.0% by weight of Cr, 1.5 to 3.0% by weight of B, and 0.1% by weight or less of oxygen.

【0015】本発明において、補修材料中の酸素量は粒
界生成のみならず、補修部分の酸化物生成を低減する上
からも少ない方が良いが、実用的には、製造コストとの
関連から僅少化は困難さを伴うため、酸素量の上限を
0.1重量%と規定すると良い。
In the present invention, the amount of oxygen in the repair material should preferably be small not only to reduce the generation of grain boundaries but also to reduce the formation of oxides in the repaired portion. Since the reduction is accompanied by difficulty, the upper limit of the oxygen content is preferably set to 0.1% by weight.

【0016】請求項3記載の発明は、結晶構造が制御さ
れた耐熱合金部材、特にγ′強化型Ni基耐熱合金部材
の亀裂や減肉などの欠陥部を補修する耐熱合金部材の補
修方法であって、この欠陥部の存在する補修面に、Cr
を最大6.0重量%、Bを1.0〜3.5重量%含有
し、Niを主成分とした補修材料を被覆した後、不活性
雰囲気下、加熱処理することを特徴とする。
A third aspect of the present invention is a method of repairing a heat-resistant alloy member having a controlled crystal structure, particularly a defect-resistant portion such as a crack or thinning of a γ′-reinforced Ni-base heat-resistant alloy member. Then, the repaired surface where this defect exists
Is contained at most 6.0% by weight of B and 1.0 to 3.5% by weight of B, and is coated with a repair material mainly composed of Ni, and then heated in an inert atmosphere.

【0017】請求項4記載の発明は、結晶構造が制御さ
れた耐熱合金部材、特にγ′強化型Ni基耐熱合金部材
の亀裂や減肉などの欠陥部を補修する耐熱合金部材の補
修方法であって、この欠陥部の存在する補修面に、Ni
を主成分とし、Crを最大5.0重量%、Bを1.5〜
3.0重量%含有し、酸素を0.1重量%以下とした補
修材料を被覆した後、不活性雰囲気下、加熱処理するこ
とを特徴とする。
The invention according to claim 4 is a method of repairing a heat-resistant alloy member having a controlled crystal structure, particularly a defect-resistant portion such as a crack or thinning of a γ′-reinforced Ni-base heat-resistant alloy member. The repaired surface where this defect exists is
As a main component, up to 5.0% by weight of Cr, and 1.5 to 1.5% by weight of B.
After coating with a repair material containing 3.0% by weight and oxygen at 0.1% by weight or less, heat treatment is performed in an inert atmosphere.

【0018】本発明において、補修材料を欠陥部に被覆
した後、不活性雰囲気下、加熱処理することにより、補
修材料を欠陥部内部に浸透させることができる。
In the present invention, after the repair material is coated on the defective portion, the repair material can be permeated into the defective portion by performing a heat treatment in an inert atmosphere.

【0019】請求項5記載の発明は、耐熱合金部材と同
等の素材で、かつ欠陥部の寸法に合わせた形状に加工し
た部品をこの欠陥部に装填した後、前記欠陥部とこの欠
陥部に装填された前記部品との間隙部に、補修材料を被
覆し、不活性雰囲気下、加熱処理することを特徴とする
請求項3または4記載の耐熱合金部材の補修方法であ
る。
According to a fifth aspect of the present invention, after a component made of a material equivalent to a heat-resistant alloy member and processed into a shape conforming to the size of a defective portion is loaded into the defective portion, the defective portion and the defective portion are removed. 5. The method for repairing a heat-resistant alloy member according to claim 3, wherein a repair material is coated on a gap between the component and the component, and a heat treatment is performed in an inert atmosphere.

【0020】欠陥部の寸法が大きい場合、本発明のよう
に、耐熱合金部材と同等素材からなる部品を欠陥部に装
填することにより、効率的に短時間で耐熱合金部材を補
修することが可能である。
When the size of the defective portion is large, the heat-resistant alloy member can be efficiently repaired in a short time by loading a component made of the same material as the heat-resistant alloy member into the defective portion as in the present invention. It is.

【0021】請求項6記載の発明は、耐熱合金部材と同
等の組成を有する合金粉末と、請求項3または4記載の
補修材料とを混合した混合物を補修材料として用いるこ
とを特徴とする請求項3ないし5のいずれかに記載の耐
熱合金部材の補修方法である。
According to a sixth aspect of the present invention, a mixture of an alloy powder having the same composition as the heat-resistant alloy member and the repair material according to the third or fourth aspect is used as the repair material. 6. A method for repairing a heat-resistant alloy member according to any one of 3 to 5.

【0022】本発明において、補修材料として、耐熱合
金部材と同等の組成を有する合金粉末と組成の調整され
た補修材料の混合物を用いても良い。この場合、主とし
て補修材料部分が耐熱合金部材と同等の結晶構造になる
が、耐熱合金部材の合金粉末にもBが拡散するため拡散
の進行が早くなり、加熱時間が短縮できる。したがっ
て、欠陥部のサイズが大きく補修材料の量が多い場合、
特に有効な方法となる。なお、この場合においても、加
熱処理は酸化を防止するため、不活性ガス雰囲気中また
は真空中で行うことが望ましい。
In the present invention, as the repair material, a mixture of an alloy powder having the same composition as that of the heat-resistant alloy member and a repair material whose composition is adjusted may be used. In this case, the repair material portion mainly has a crystal structure equivalent to that of the heat-resistant alloy member. However, since B also diffuses into the alloy powder of the heat-resistant alloy member, the diffusion progresses quickly, and the heating time can be reduced. Therefore, if the size of the defect is large and the amount of repair material is large,
This is a particularly effective method. Note that also in this case, the heat treatment is desirably performed in an inert gas atmosphere or in a vacuum to prevent oxidation.

【0023】請求項7記載の発明は、補修材料と、有機
バインダとからなるペーストを塗布して、補修材料を欠
陥部に被覆することを特徴とする請求項3ないし5のい
ずれかに記載の耐熱合金部材の補修方法である。
According to a seventh aspect of the present invention, the defective material is covered with the repair material by applying a paste comprising the repair material and an organic binder. This is a repair method for heat-resistant alloy members.

【0024】本発明において、合金粉末と有機バインダ
からなるペーストの欠陥部への充填塗布する方法は、個
々の欠陥にそれぞれ充填する必要があり、また有機物を
使用して環境に優しくない等の問題があるものの、本方
法は、大がかりな設備が不要であることから簡易的方法
であり、また、材料の歩留まりを良くすることができ
る。
In the present invention, the method of filling and applying a paste composed of an alloy powder and an organic binder to a defective portion requires filling each defect individually, and is not environmentally friendly by using an organic substance. However, this method is a simple method because no large-scale equipment is required, and can improve the yield of materials.

【0025】請求項8記載の発明は、補修材料を溶射法
により積層して、補修材料を欠陥部に被覆することを特
徴とする請求項3ないし5のいずれかに記載の耐熱合金
部材の補修方法である。
The invention according to claim 8 is characterized in that the repair material is laminated by a thermal spraying method and the repair material is coated on the defective portion. Is the way.

【0026】本発明によれば、補修材料の歩留まりは前
述したペーストよりも悪くなるものの、欠陥部を含む全
面に同時に形成でき、自動化も可能であることから、補
修方法が簡単であるとともに、有機物等を用いないこと
から環境に優しい。
According to the present invention, although the yield of the repair material is worse than that of the above-mentioned paste, the repair material can be simultaneously formed on the entire surface including the defective portion and automation can be performed. It is environmentally friendly because it does not use any other means.

【0027】請求項9記載の発明は、溶射法が、高速ガ
ス炎溶射法(HVOF)または低圧プラズマ溶射法(V
PS)であることを特徴とする請求項8記載の耐熱合金
部材の補修方法である。
According to a ninth aspect of the present invention, the thermal spraying method is a high-speed gas flame thermal spraying method (HVOF) or a low-pressure plasma thermal spraying method (V
The method for repairing a heat-resistant alloy member according to claim 8, wherein

【0028】溶射法としては、大気中プラズマ溶射(A
PS)よりも酸素量の少ない皮膜の形成が可能である低
圧プラズマ溶射(VPS)や高速ガス炎溶射法(HVO
F)が好ましい。また、このような溶射の前処理とし
て、一般に被溶射面を粗面化する工程があるが、その場
合、補修部表面荒さをRaで10μm以下にすることが
望ましい。これは、結晶制御された耐熱合金部材は、粗
面化処理により変形を受けた部分が熱処理により再結晶
化して元の結晶構造が変化したり、多結晶化し易いため
である。被溶射面を粗面化する方法として、ガス圧力を
2kg/cm以下に低減したブラスト処理を施した
り、または、ブラスト粉末として、硬いアルミナに変え
てガラスビーズを用いる方法なども挙げられる。
As the thermal spraying method, plasma spraying in air (A
Low pressure plasma spraying (VPS) and high-speed gas flame spraying (HVO), which can form films with less oxygen content than PS)
F) is preferred. As a pretreatment for such thermal spraying, there is generally a step of roughening the surface to be sprayed. In this case, it is desirable that the surface roughness of the repaired part be 10 μm or less in Ra. This is because the crystal-controlled heat-resistant alloy member is liable to be recrystallized by the heat treatment at the portion deformed by the surface roughening treatment to change the original crystal structure or to be easily polycrystallized. Examples of a method of roughening the surface to be sprayed include a method of performing blasting with a gas pressure reduced to 2 kg / cm 2 or less, and a method of using glass beads instead of hard alumina as blast powder.

【0029】また、溶射工程において補修部に冷却ガス
を吹き付けることにより、補修部や耐熱合金部材の酸化
を防止できる効果がある。
Further, by spraying a cooling gas to the repaired portion in the thermal spraying step, there is an effect that oxidation of the repaired portion and the heat-resistant alloy member can be prevented.

【0030】請求項10記載の発明は、加熱温度が、1
050℃から1250℃の範囲であることを特徴とする
請求項3ないし5のいずれかに記載の耐熱合金部材の補
修方法である。
[0030] In the invention according to claim 10, the heating temperature is 1
The method for repairing a heat-resistant alloy member according to any one of claims 3 to 5, wherein the temperature is in a range of 050 ° C to 1250 ° C.

【0031】請求項11記載の発明は、加熱温度が、1
100℃から1200℃の範囲であることを特徴とする
請求項3ないし5のいずれかに記載の耐熱合金部材の補
修方法である。
In the eleventh aspect, the heating temperature may be 1
The method for repairing a heat-resistant alloy member according to any one of claims 3 to 5, wherein the temperature is in a range of 100 ° C to 1200 ° C.

【0032】本発明の1050℃から1250℃の範囲
での加熱処理を継続することで、補修材料中のBが、十
分に耐熱合金部材に拡散して補修材料の融点が上昇し、
拡散部分から凝固が進行する等温凝固現象が進行する。
等温凝固現象を十分進行させることにより、補修部分の
結晶構造が、耐熱合金部材の結晶構造を延伸した状態の
凝固が進む。加熱温度が高すぎると、溶融した補修材料
の蒸発が生じて補修材料が減少してしまう。一方、加熱
温度が低すぎると、B拡散の進行が遅くなる問題が生じ
るため、加熱温度は、1050℃から1250℃の範
囲、望ましくは、1100℃から1200℃の範囲の加
熱温度で行うことが好ましい。なお、加熱時間は、加熱
温度との関係で決定されるが、大略1時間から100時
間である。補修材料と耐熱合金部材の成分は、これらの
加熱処理中に相互拡散が生じ、本発明の加熱温度と時間
の組み合わせにより、補修部の組成と耐熱合金部材は同
等の組成を有するようになるため、耐熱合金部材と結晶
構造ならびに組成とも同等になる。
By continuing the heat treatment in the range of 1050 ° C. to 1250 ° C. of the present invention, B in the repair material is sufficiently diffused into the heat-resistant alloy member to increase the melting point of the repair material.
The isothermal solidification phenomenon in which solidification proceeds from the diffusion portion proceeds.
By allowing the isothermal solidification phenomenon to proceed sufficiently, solidification proceeds in a state where the crystal structure of the repaired portion is elongated from the crystal structure of the heat-resistant alloy member. If the heating temperature is too high, the melted repair material evaporates and the repair material is reduced. On the other hand, if the heating temperature is too low, there is a problem that the progress of B diffusion slows down. Therefore, the heating temperature is set in the range of 1050 ° C to 1250 ° C, preferably in the range of 1100 ° C to 1200 ° C. preferable. The heating time is determined depending on the relationship with the heating temperature, but is generally from 1 hour to 100 hours. The components of the repair material and the heat-resistant alloy member cause mutual diffusion during these heat treatments, and the combination of the heating temperature and time of the present invention causes the composition of the repair portion and the heat-resistant alloy member to have the same composition. Therefore, the crystal structure and the composition of the heat-resistant alloy member are equivalent.

【0033】なお、補修に先立ち、亀裂などの欠陥部に
酸化物などが生成している場合には、酸化物を機械的に
除去するか、または、酸洗浄や水素中加熱洗浄などの方
法により酸化物を除去する工程を含むことが好ましい。
In the case where an oxide or the like is formed in a defect such as a crack prior to the repair, the oxide is removed mechanically or by a method such as acid cleaning or heat cleaning in hydrogen. It is preferable to include a step of removing the oxide.

【0034】請求項12記載の発明は、請求項3ないし
11のいずれかに記載の耐熱合金部材の補修方法により
補修された高温部品である。
According to a twelfth aspect of the present invention, there is provided a high-temperature component repaired by the method for repairing a heat-resistant alloy member according to any one of the third to eleventh aspects.

【0035】本発明によれば、欠陥部の補修により補修
部が元の耐熱合金部材に近い特性を有し、良好な補修の
なされた結晶構造が制御された耐熱合金製の高温部品を
得ることができる。
According to the present invention, it is possible to obtain a high-temperature component made of a heat-resistant alloy in which the repaired portion has properties similar to those of the original heat-resistant alloy member by repairing the defective portion, and the crystal structure of which has been well repaired is controlled. Can be.

【0036】請求項13記載の発明は、請求項12記載
の高温部品にHIP処理を施したことを特徴とする高温
部品である。
According to a thirteenth aspect of the present invention, there is provided a high-temperature component wherein the high-temperature component according to the twelfth aspect is subjected to HIP processing.

【0037】本発明において、補修方法を適用して得ら
れた高温部品にHIP処理を施すことで、微小ボイドが
残存していても、つぶして緻密化することが可能であ
る。なお、HIP処理の条件は、温度1200℃、ガス
圧力1700kgf/cm、処理時間4時間とすると
良い。
In the present invention, by subjecting a high-temperature component obtained by applying the repair method to HIP processing, even if minute voids remain, it is possible to crush and densify. Note that the conditions of the HIP treatment are preferably a temperature of 1200 ° C., a gas pressure of 1700 kgf / cm 2 , and a treatment time of 4 hours.

【0038】請求項14記載の発明は、高温部品が、ガ
スタービン用高温部品であることを特徴とする請求項1
2または13記載の高温部品である。
According to a fourteenth aspect of the present invention, the high temperature component is a high temperature component for a gas turbine.
A high-temperature component according to 2 or 13.

【0039】本発明において、特に、苛酷な使用条件に
おかれるガスタービン用高温部品に適用できる高温部品
を得られる。
In the present invention, it is possible to obtain a high-temperature component which can be applied particularly to a high-temperature component for a gas turbine under severe operating conditions.

【0040】請求項15記載の発明は、耐熱合金部材の
補修方法により補修された高温部品の表面に耐食コーテ
ィング層または遮熱コーティング層が形成された請求項
11ないし14のいずれかに記載の高温部品である。
According to a fifteenth aspect of the present invention, the high-temperature component repaired by the method for repairing a heat-resistant alloy member has a corrosion-resistant coating layer or a heat-shielding coating layer formed on a surface thereof. Parts.

【0041】高温部品がガスタービン翼などのガスター
ビン用高温部品の場合、補修後、補修された面を含み、
翼面に耐食コーティング層、またはこの耐食コーティン
グ層と遮熱コーティング層とを形成することで、耐食性
および遮熱性を向上させて高温使用に適した高温部品と
なりうる。なお、コーティング層の形成は、溶射により
施工することが適当である。
In the case where the high-temperature component is a high-temperature component for a gas turbine such as a gas turbine blade, after the repair, it includes the repaired surface,
By forming a corrosion-resistant coating layer or a corrosion-resistant coating layer and a heat-shielding coating layer on a wing surface, corrosion resistance and heat-shielding properties can be improved to provide a high-temperature component suitable for high-temperature use. It is appropriate that the coating layer is formed by thermal spraying.

【0042】[0042]

【発明の実施の形態】以下、本発明の補修材料、この補
修材料を用いた耐熱合金部材の補修方法およびこの方法
により補修された高温部品について、図1〜図6および
表1を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A repair material of the present invention, a method for repairing a heat-resistant alloy member using the repair material, and a high-temperature component repaired by this method will be described below with reference to FIGS. I do.

【0043】本実施形態においては、Ni基単結晶合金
を耐熱合金部材として用い、欠陥部として、耐熱合金部
材に人工的な溝状欠陥を設け、この溝状欠陥に補修材料
を浸透させて補修を行った。
In the present embodiment, a Ni-based single crystal alloy is used as a heat-resistant alloy member, an artificial groove-like defect is provided in the heat-resistant alloy member as a defect portion, and a repair material is penetrated into the groove-like defect to repair. Was done.

【0044】耐熱合金部材はNi基単結晶合金からな
り、この合金の概略的な組成は、重量%で、Cr:6.
5、Co:9.0、Mo:0.6、W:6.0、Ta:
6.5、Ti:1.0、Al:5.5、Re:3.0、
Hf:0.1および残部がNiである。
The heat-resistant alloy member is made of a Ni-based single crystal alloy, and the approximate composition of this alloy is as follows:
5, Co: 9.0, Mo: 0.6, W: 6.0, Ta:
6.5, Ti: 1.0, Al: 5.5, Re: 3.0,
Hf: 0.1 and the balance being Ni.

【0045】図1は、耐熱合金部材の断面を示す図であ
り、図1(a)は、耐熱合金部材に溝状欠陥を形成した
断面を示す図、図1(b)は、補修を行った後の耐熱合
金部材の断面を示す図である。
FIG. 1 is a diagram showing a cross section of a heat-resistant alloy member. FIG. 1 (a) is a diagram showing a cross-section in which a groove-like defect is formed in a heat-resistant alloy member. FIG. It is a figure showing the section of the heat-resistant alloy member after it did.

【0046】図1(a)に示すように、耐熱合金部材1
には、幅0.1mm、深さ1mmの溝状欠陥2が人工的
に設けられている。また、図1(a)に示す溝よりも大
きいサイズの幅0.2mm、深さ2mmの溝状欠陥を人
工的に設けた。
As shown in FIG. 1A, the heat-resistant alloy member 1
Is artificially provided with a groove defect 2 having a width of 0.1 mm and a depth of 1 mm. In addition, a groove defect having a width of 0.2 mm and a depth of 2 mm larger than the groove shown in FIG. 1A was artificially provided.

【0047】溝状欠陥2を含む補修面を粒径50メッシ
ュ以下のアルミナ粉末を用いてブラスト処理して表面を
Ra:1〜10μmに粗した。その後、高速ガス炎溶射
(HVOF)法により、粒子径5〜50μmの補修材料
粉末を用いて、厚さ約0.3mmに形成した。なお、溶
射条件は、流速850m/秒、補修面温度を約150〜
200℃とした。
The repaired surface including the groove defect 2 was blasted using alumina powder having a particle size of 50 mesh or less to roughen the surface to Ra: 1 to 10 μm. Thereafter, a repair material powder having a particle diameter of 5 to 50 μm was formed to a thickness of about 0.3 mm by a high-speed gas flame spraying (HVOF) method. The spraying conditions were as follows: the flow velocity was 850 m / sec, and the repair surface temperature was about 150 to
The temperature was set to 200 ° C.

【0048】補修材料は、表1に示す組成を有する材料
であり、実施例では、Niを主成分とし、Crを最大
6.0重量%含み、Bを1.0〜3.5重量%、酸素量
を0.1重量%未満とした試料No.1〜試料No.5
を用いた。一方、比較例として試料No.6〜試料N
o.8を用い、試料No.6は、Cr量を20重量%と
し、試料No.7は、Cr量を15重量%、B量を4重
量%添加して、本発明の添加量よりも多く添加したもの
である。また、試料No.8は、酸素量が本発明の範囲
外のものであり、酸素量が0.1より多い。
The repair material is a material having the composition shown in Table 1. In the embodiment, the repair material contains Ni as a main component, contains up to 6.0% by weight of Cr, contains 1.0 to 3.5% by weight of B, Sample No. 1 in which the amount of oxygen was less than 0.1% by weight. No. 1 to No. 1 5
Was used. On the other hand, as a comparative example, sample No. 6 to sample N
o. Sample No. 8 was used. Sample No. 6 had a Cr content of 20% by weight, In No. 7, the amount of Cr was added at 15% by weight and the amount of B was added at 4% by weight, so that the amounts added were larger than those of the present invention. In addition, the sample No. In No. 8, the amount of oxygen is out of the range of the present invention, and the amount of oxygen is more than 0.1.

【0049】[0049]

【表1】 [Table 1]

【0050】上述した実施例および比較例の試料No.
1ないし試料No.8の各補修材料を溝状欠陥2に溶射
した後、約5×10―5torrの真空中で加熱し、補
修材料を溝状欠陥2に浸透させて補修を行い、図1
(b)に示すように、溝状欠陥2が補修材料3により補
修された耐熱合金部材1を得た。
The sample Nos. Of the above Examples and Comparative Examples were used.
1 to Sample No. 8 was sprayed onto the groove defect 2 and then heated in a vacuum of about 5 × 10 −5 torr, and the repair material was permeated into the groove defect 2 and repaired.
As shown in (b), the heat-resistant alloy member 1 in which the groove-like defects 2 were repaired with the repair material 3 was obtained.

【0051】その後、耐熱合金部材1の断面を切断研磨
して、溝状欠陥2の補修状態を光学顕微鏡および走査電
子顕微鏡により観察し、調査を行った。その結果、実施
例および比較例のいずれの補修材料についても、溝状欠
陥2に補修材料3が良好に充填していた。
Thereafter, the cross section of the heat-resistant alloy member 1 was cut and polished, and the repaired state of the groove-like defect 2 was observed and examined by an optical microscope and a scanning electron microscope. As a result, the repair material 3 filled the groove-like defect 2 satisfactorily in each of the repair materials of the example and the comparative example.

【0052】図2は、実施例の補修部の組織を示す図で
あり、補修部の組織には結晶粒界が殆どなく、電子顕微
鏡観察で耐熱合金部材と同等のγ′の析出4が確認され
た。特に、補修幅0.1mm程度の領域では等温凝固が
十分に進行し結晶構造も耐熱合金部材1と同等であっ
た。補修幅が0.1mmを大幅に越えると、等温凝固の
ため長時間が必要となる傾向が見られた。等温凝固領域
についてX線回折により結晶構造を調査した。その結果
を図3に示す。なお、横軸は回折角度(2θ)を示し、
縦軸は強度を示す。図3に示すように、回折角度が60
度付近にピークが現れていることから、単一の結晶面の
みが検出されており、単結晶化が進行していることが分
かった。
FIG. 2 is a view showing the structure of the repaired part of the embodiment. The structure of the repaired part has almost no crystal grain boundaries, and the observation 4 shows that the precipitation 4 of γ 'equivalent to that of the heat-resistant alloy member was observed by an electron microscope. Was done. In particular, in the region with a repair width of about 0.1 mm, isothermal solidification proceeded sufficiently and the crystal structure was equivalent to that of the heat-resistant alloy member 1. When the repair width greatly exceeds 0.1 mm, a long time tends to be required for isothermal solidification. The crystal structure of the isothermally solidified region was investigated by X-ray diffraction. The result is shown in FIG. The horizontal axis indicates the diffraction angle (2θ),
The vertical axis indicates the intensity. As shown in FIG.
Since a peak appears in the vicinity of the degree, only a single crystal plane was detected, indicating that single crystallization was in progress.

【0053】一方、本発明の補修材料組成と異なる補修
材料を用いた場合や、本発明の加熱温度領域を越えた温
度での加熱処理を行った場合、補修部には、耐熱合金部
材1と整合しない結晶粒界が多く生成し、実施例とは異
なった結晶構造となった。
On the other hand, when a repairing material different from the repairing material composition of the present invention is used, or when a heat treatment is performed at a temperature exceeding the heating temperature range of the present invention, the repaired part has Many unmatched crystal grain boundaries were generated, and the crystal structure was different from that of the example.

【0054】図4は、比較例の試料No.6の補修材料
を用いた補修部を示す図であり、補修材料のCr量を2
0%とした場合には、補修部に多数の結晶粒界5が生成
していることが判明した。
FIG. 4 shows a sample No. of the comparative example. 6 is a view showing a repaired part using the repair material of No. 6;
When it was set to 0%, it was found that many crystal grain boundaries 5 were formed in the repaired portion.

【0055】また、図5は、比較例の試料No.7の補
修材料を用いた補修部を示す図であり、補修材料のB量
を4%とした場合にも、図4と同様に多数の結晶粒界5
が生成していることが判明した。
FIG. 5 shows the sample No. of the comparative example. 7 is a view showing a repaired part using the repair material of FIG. 7, and when the B amount of the repair material is set to 4%, as in FIG.
Turned out to be generated.

【0056】さらに、図6は、比較例の試料No.7の
補修材料を用いて、1280℃にて加熱処理を行った場
合の補修部の組織を示す図である。図6に示すように、
補修部には大きな空洞6が生成しており、本発明の範囲
よりも高い温度で加熱処理を行った場合、補修部から補
修材料3が蒸発してしまっていることが分かった。
FIG. 6 shows a sample No. of the comparative example. FIG. 9 is a view showing a structure of a repaired part when a heat treatment is performed at 1280 ° C. using the repair material No. 7; As shown in FIG.
Large cavities 6 were formed in the repaired portion, and it was found that when the heat treatment was performed at a temperature higher than the range of the present invention, the repair material 3 had evaporated from the repaired portion.

【0057】本実施形態によれば、本発明の範囲の組成
を有する補修材料により耐熱合金部材の補修を行うこと
により、補修材料の溶融および凝固時に、粒界の生成に
よる結晶構造を妨げる微結晶の生成を防止でき、耐熱合
金部材の結晶構造を延長した状態での凝固挙動が得られ
易いことから、一方向凝固合金や単結晶合金などの結晶
構造が制御された耐熱合金部材と近い結晶構造を得るこ
とができる。
According to the present embodiment, by repairing a heat-resistant alloy member with a repair material having a composition falling within the range of the present invention, a microcrystal that prevents a crystal structure due to generation of grain boundaries when the repair material is melted and solidified. Can be prevented, and the solidification behavior of the heat-resistant alloy member with its crystal structure extended can be easily obtained. Therefore, the crystal structure is similar to a heat-resistant alloy member whose crystal structure is controlled, such as a directionally solidified alloy or a single crystal alloy. Can be obtained.

【0058】また、本実施形態においては、耐熱合金部
材1に溝状欠陥2を形成し、この溝状欠陥2に補修材料
4を溶射して補修を行ったが、欠陥部が溝状欠陥2では
なく、欠陥部の幅が大きい場合には、耐熱合金部材1と
同等の素材からなり、欠陥部の近傍を加工により形状を
整え、その形状に合わせた形状に加工した部品を、欠陥
部に装填した後、間隙に対して、本実施形態において示
した溝状欠陥2と同様の方法にて補修を行うことによ
り、補修時間を大幅に短縮することができる。また、両
者の結晶方位を数゜以内に整合することで、両者の間隙
は、溝状欠陥2と同様な等温凝固組織を呈し、良好な補
修がなされた。
In this embodiment, the groove-like defect 2 is formed in the heat-resistant alloy member 1 and the repair material 4 is sprayed on the groove-like defect 2 for repair. Instead, when the width of the defective portion is large, the part made of the same material as the heat-resistant alloy member 1 is shaped by processing the vicinity of the defective portion, and the part processed into the shape corresponding to the shape is replaced with the defective portion. After the loading, the gap is repaired by the same method as the groove-shaped defect 2 shown in the present embodiment, so that the repair time can be greatly reduced. In addition, by matching the crystal orientations of the two within several degrees, the gap between the two exhibited an isothermal solidification structure similar to that of the groove-like defect 2 and was successfully repaired.

【0059】また、本実施形態においては、粗面化工程
で表面をRa:1〜10μmに粗したが、粗面化工程
で、空気圧力を変えてNi基合金の表面をサンドブラス
トして、表面粗さと耐熱合金部材の変形の関係を測定し
たところ、表面粗さが1μmを越えると、特に粗さが大
きくなるに従い顕著な変形と結晶構造の乱れが見られ
た。単結晶合金の場合、熱処理により多結晶化が見られ
た。ブラスト粉末は、空気圧力が高いと、耐熱合金部材
に多く突き刺さって観察された。また、溶射工程におい
て、補修部に冷却ガスを吹き付けないと、表面の酸化に
よる変色が観察されたが、吹き付けにより目視観察でき
る顕著な酸化は見られなかった。
In this embodiment, the surface is roughened to Ra: 1 to 10 μm in the surface roughening step. However, in the surface roughening step, the surface of the Ni-based alloy is sand-blasted by changing the air pressure. When the relationship between the roughness and the deformation of the heat-resistant alloy member was measured, when the surface roughness exceeded 1 μm, remarkable deformation and disorder of the crystal structure were observed particularly as the roughness increased. In the case of a single crystal alloy, polycrystallization was observed by heat treatment. When the air pressure was high, a large amount of the blast powder penetrated the heat-resistant alloy member and was observed. Further, in the thermal spraying step, when a cooling gas was not sprayed on the repaired portion, discoloration due to oxidation of the surface was observed, but no remarkable oxidation which could be visually observed by spraying was not observed.

【0060】なお、本実施形態においては、欠陥部近傍
に補修材料を被覆する方法として、溶射法を用いたが、
溶射法以外の方法を適用することもでき、例えば、ペー
スト法を適用できる。ペースト法を適用した場合には、
真空熱処理中に有機物が蒸発して真空度を低下させる問
題はあったが、補修材料の使用量が少なくてすむという
利点を有する。
In the present embodiment, the thermal spraying method is used as a method for coating the repair material in the vicinity of the defect.
A method other than the thermal spraying method can be applied. For example, a paste method can be applied. When the paste method is applied,
Although there was a problem that the degree of vacuum was reduced due to evaporation of organic substances during the vacuum heat treatment, there is an advantage that the amount of the repair material used can be reduced.

【0061】次に、高温部品としてガスタービン翼を適
用した場合には、補修部を後加工により所定の部品形状
に整える工程を行い、補修工程後、一般にMCrAlY
と称される耐食コーティング、または、耐食コーティン
グおよび部分安定化ジルコニア材料などの遮熱コーティ
ングを行った。具体的には、高速ガス炎溶射法(HVO
F)によりNiCoCrAlY合金の耐食コーティング
を約0.15mm形成し、また、大気中プラズマ溶射法
(APS)により、8%イットリア安定化ジルコニア粉
末を溶射して、約0.3mmの遮熱コーティング層を形
成した。
Next, when a gas turbine blade is applied as a high-temperature component, a step of adjusting the repaired part to a predetermined component shape by post-processing is performed.
A thermal barrier coating such as a corrosion resistant coating, or a corrosion resistant coating and a partially stabilized zirconia material, was provided. Specifically, high-speed gas flame spraying (HVO)
F) to form a corrosion-resistant coating of NiCoCrAlY alloy of about 0.15 mm, and spray 8% yttria-stabilized zirconia powder by atmospheric plasma spraying (APS) to form a thermal barrier coating layer of about 0.3 mm. Formed.

【0062】本実施形態において、耐食コーティングお
よび遮熱コーティングを施すことにより、耐熱性に富
み、良好なガスタービン翼を得ることができる。
In the present embodiment, by applying the corrosion-resistant coating and the heat-shielding coating, it is possible to obtain a good gas turbine blade having high heat resistance.

【0063】[0063]

【発明の効果】以上説明したように、本発明の補修材料
および耐熱合金部材の方法によれば、一方向凝固合金お
よび単結晶合金などの結晶構造が制御された耐熱合金部
材を補修でき、この補修により補修部が耐熱合金部材と
同等の結晶構造となることから、補修の性能を向上でき
るとともに、長寿命化を図った高温部品を得られる。
As described above, according to the repair material and heat-resistant alloy member method of the present invention, a heat-resistant alloy member having a controlled crystal structure such as a directionally solidified alloy and a single crystal alloy can be repaired. Since the repaired portion has a crystal structure equivalent to that of the heat-resistant alloy member by the repair, the performance of the repair can be improved and a high-temperature component having a longer life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明する図で、(a)は溝
状欠陥を設けた耐熱合金部材の断面図、(b)は溝状欠
陥を補修材料により修復した耐熱合金部材の断面図。
FIGS. 1A and 1B are diagrams illustrating an embodiment of the present invention, in which FIG. 1A is a cross-sectional view of a heat-resistant alloy member provided with groove defects, and FIG. FIG.

【図2】本発明の実施形態を説明する図で、電子顕微鏡
観察による補修部の組織を示す図。
FIG. 2 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a structure of a repaired part observed by an electron microscope.

【図3】本発明の実施形態を説明する図で、X線回折に
より結晶構造を調査した結果を示す図。
FIG. 3 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a result of investigating a crystal structure by X-ray diffraction.

【図4】本発明の実施形態における、比較例の試料N
o.6の補修材料を用いた補修部の組織を示す図。
FIG. 4 shows a sample N of a comparative example in the embodiment of the present invention.
o. The figure which shows the structure of the repair part using the repair material of No. 6.

【図5】本発明の実施形態における、比較例の試料N
o.7の補修材料を用いた補修部の組織を示す図。
FIG. 5 is a sample N of a comparative example in the embodiment of the present invention.
o. The figure which shows the structure of the repair part using the repair material of No. 7.

【図6】本発明の実施形態における、比較例の試料N
o.7の補修材料を用い、1280℃にて加熱処理を行
った補修部の組織を示す図。
FIG. 6 shows a sample N of a comparative example in the embodiment of the present invention.
o. The figure which shows the structure of the repair part which performed the heat processing at 1280 degreeC using the repair material of No. 7.

【符号の説明】[Explanation of symbols]

1 耐熱合金部材 2 溝状欠陥 3 補修材料 4 γ´の析出 5 結晶粒界 6 空洞 DESCRIPTION OF SYMBOLS 1 Heat-resistant alloy member 2 Groove defect 3 Repair material 4 Precipitation of γ '5 Crystal grain boundary 6 Cavity

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 4/12 C23C 4/12 F01D 5/28 F01D 5/28 F02C 7/00 F02C 7/00 C D // B23K 35/30 340 B23K 35/30 340L C22C 19/05 C22C 19/05 B B23K 103:16 B23K 103:16 (72)発明者 浅井 知 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 布施 俊明 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 西本 和俊 大阪府茨木市北春日丘1−12−16 (72)発明者 才田 一幸 大阪府大阪市大正区泉尾5−12−17 Fターム(参考) 3G002 AA11 AA13 AB07 AB08 BA06 BA10 BB04 BB05 EA05 EA06 GA10 GB04 4E067 AA09 AB05 AD08 BA06 DB03 DC06 EB02 4K031 AA02 AB02 AB06 AB08 BA03 CB22 DA01 DA04 EA10 EA11 FA03 FA06 FA07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 4/12 C23C 4/12 F01D 5/28 F01D 5/28 F02C 7/00 F02C 7/00 CD / / B23K 35/30 340 B23K 35/30 340L C22C 19/05 C22C 19/05 B B23K 103: 16 B23K 103: 16 (72) Inventor Satoshi Asai 2-4 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa Prefecture Toshiba Corporation Inside Keihin Works (72) Inventor Toshiaki Fuse 2-4-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside Keihin Works, Toshiba Corporation (72) Kazutoshi Nishimoto 1-12-16 Kita-Kasugaoka, Ibaraki-shi, Osaka (72) Invention Person Kazuyuki Saida 5-12-17 Izumi, Taisho-ku, Osaka, Osaka F term (reference) 3G002 AA11 AA13 AB07 AB08 BA06 BA10 BB04 BB05 EA05 EA06 GA10 GB04 4E0 67 AA09 AB05 AD08 BA06 DB03 DC06 EB02 4K031 AA02 AB02 AB06 AB08 BA03 CB22 DA01 DA04 EA10 EA11 FA03 FA06 FA07

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 結晶構造が制御された耐熱合金部材、特
にγ′強化型Ni基合金部材の亀裂や減肉などの欠陥部
を補修するための補修材料であって、この補修材料は、
Niを主成分とし、Crを最大6.0重量%、Bを1.
0〜3.5重量%含有することを特徴とする補修材料。
1. A repair material for repairing a defective portion such as a crack or a thinning of a heat-resistant alloy member having a controlled crystal structure, particularly a γ′-reinforced Ni-based alloy member, the repair material comprising:
Ni is a main component, Cr is up to 6.0% by weight, and B is 1.
A repair material characterized by containing 0 to 3.5% by weight.
【請求項2】 結晶構造が制御された耐熱合金部材、特
にγ′強化型Ni基合金部材の亀裂や減肉などの欠陥部
を補修するための補修材料であって、この補修材料は、
Niを主成分とし、Crを最大5.0重量%、Bを1.
5〜3.0重量%含有し、酸素を0.1重量%以下とし
たことを特徴とする補修材料。
2. A repair material for repairing a defect such as a crack or a thinning of a heat-resistant alloy member having a controlled crystal structure, particularly a γ′-reinforced Ni-based alloy member, wherein the repair material is:
Ni as a main component, maximum of 5.0% by weight of Cr, and 1.
A repair material containing 5 to 3.0% by weight and oxygen at 0.1% by weight or less.
【請求項3】 結晶構造が制御された耐熱合金部材、特
にγ′強化型Ni基耐熱合金部材の亀裂や減肉などの欠
陥部を補修する耐熱合金部材の補修方法であって、この
欠陥部の存在する補修面に、Crを最大6.0重量%、
Bを1.0〜3.5重量%含有し、Niを主成分とした
補修材料を被覆した後、不活性雰囲気下、加熱処理する
ことを特徴とする耐熱合金部材の補修方法。
3. A method for repairing a heat-resistant alloy member having a controlled crystal structure, particularly a defect portion such as a crack or a reduction in thickness of a γ′-reinforced Ni-base heat-resistant alloy member, the method comprising: On the repaired surface with Cr up to 6.0% by weight,
A method for repairing a heat-resistant alloy member, comprising coating a repair material containing 1.0 to 3.5% by weight of B and containing Ni as a main component, followed by heat treatment in an inert atmosphere.
【請求項4】 結晶構造が制御された耐熱合金部材、特
にγ′強化型Ni基耐熱合金部材の亀裂や減肉などの欠
陥部を補修する耐熱合金部材の補修方法であって、この
欠陥部の存在する補修面に、Niを主成分とし、Crを
最大5.0重量%、Bを1.5〜3.0重量%含有し、
酸素を0.1重量%以下とした補修材料を被覆した後、
不活性雰囲気下、加熱処理することを特徴とする耐熱合
金部材の補修方法。
4. A method for repairing a defect of a heat-resistant alloy member having a controlled crystal structure, in particular, a crack or a thinning of a γ′-reinforced Ni-base heat-resistant alloy member, comprising the steps of: On the repaired surface containing Ni as a main component, containing up to 5.0% by weight of Cr and 1.5 to 3.0% by weight of B,
After coating the repair material with oxygen less than 0.1% by weight,
A method for repairing a heat-resistant alloy member, which comprises performing a heat treatment in an inert atmosphere.
【請求項5】 耐熱合金部材と同等の素材で、かつ欠陥
部の寸法に合わせた形状に加工した部品をこの欠陥部に
装填した後、前記欠陥部とこの欠陥部に装填された前記
部品との間隙部に、補修材料を被覆し、不活性雰囲気
下、加熱処理することを特徴とする請求項3または4記
載の耐熱合金部材の補修方法。
5. After loading a part made of a material equivalent to a heat-resistant alloy member and having a shape conforming to the size of the defect part into the defect part, the defect part and the part loaded in the defect part are re-formed. The method for repairing a heat-resistant alloy member according to claim 3 or 4, wherein a repair material is coated on the gap portion, and heat treatment is performed in an inert atmosphere.
【請求項6】 耐熱合金部材と同等の組成を有する合金
粉末と、請求項3または4記載の補修材料とを混合した
混合物を補修材料として用いることを特徴とする請求項
3ないし5のいずれかに記載の耐熱合金部材の補修方
法。
6. The repair material according to claim 3, wherein a mixture of an alloy powder having the same composition as the heat-resistant alloy member and the repair material according to claim 3 or 4 is used as the repair material. The method for repairing a heat-resistant alloy member according to item 1.
【請求項7】 補修材料と、有機バインダとからなるペ
ーストを塗布して、補修材料を欠陥部に被覆することを
特徴とする請求項3ないし5のいずれかに記載の耐熱合
金部材の補修方法。
7. The method for repairing a heat-resistant alloy member according to claim 3, wherein a paste comprising a repair material and an organic binder is applied to cover the repair material on the defective portion. .
【請求項8】 補修材料を溶射法により積層して、補修
材料を欠陥部に被覆することを特徴とする請求項3ない
し5のいずれかに記載の耐熱合金部材の補修方法。
8. The method for repairing a heat-resistant alloy member according to claim 3, wherein the repair material is laminated by a thermal spraying method so as to cover the defective portion with the repair material.
【請求項9】 溶射法は、高速ガス炎溶射法(HVO
F)または低圧プラズマ溶射法(VPS)であることを
特徴とする請求項8記載の耐熱合金部材の補修方法。
9. The thermal spraying method is a high-speed gas flame spraying method (HVO).
The method for repairing a heat-resistant alloy member according to claim 8, wherein the method is F) or low pressure plasma spraying (VPS).
【請求項10】 加熱温度は、1050℃から1250
℃の範囲であることを特徴とする請求項3ないし5のい
ずれかに記載の耐熱合金部材の補修方法。
10. The heating temperature is from 1050 ° C. to 1250 ° C.
The method for repairing a heat-resistant alloy member according to any one of claims 3 to 5, wherein the temperature is in the range of ° C.
【請求項11】 加熱温度は、1100℃から1200
℃の範囲であることを特徴とする請求項3ないし5のい
ずれかに記載の耐熱合金部材の補修方法。
11. The heating temperature is from 1100 ° C. to 1200
The method for repairing a heat-resistant alloy member according to any one of claims 3 to 5, wherein the temperature is in the range of ° C.
【請求項12】 請求項3ないし11のいずれかに記載
の耐熱合金部材の補修方法により補修された高温部品。
12. A high-temperature component repaired by the method for repairing a heat-resistant alloy member according to claim 3.
【請求項13】 請求項12記載の高温部品にHIP処
理を施したことを特徴とする高温部品。
13. A high-temperature component, wherein the high-temperature component according to claim 12 is subjected to HIP processing.
【請求項14】 高温部品は、ガスタービン用高温部品
であることを特徴とする請求項12または13記載の高
温部品。
14. The high-temperature component according to claim 12, wherein the high-temperature component is a high-temperature component for a gas turbine.
【請求項15】 耐熱合金部材の補修方法により補修さ
れた高温部品の表面に耐食コーティング層または遮熱コ
ーティング層が形成された請求項11ないし14のいず
れかに記載の高温部品。
15. The high-temperature component according to claim 11, wherein a corrosion-resistant coating layer or a thermal barrier coating layer is formed on a surface of the high-temperature component repaired by the method for repairing a heat-resistant alloy member.
JP2000099732A 2000-03-31 2000-03-31 Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method Pending JP2001288554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000099732A JP2001288554A (en) 2000-03-31 2000-03-31 Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000099732A JP2001288554A (en) 2000-03-31 2000-03-31 Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method

Publications (1)

Publication Number Publication Date
JP2001288554A true JP2001288554A (en) 2001-10-19

Family

ID=18614041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000099732A Pending JP2001288554A (en) 2000-03-31 2000-03-31 Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method

Country Status (1)

Country Link
JP (1) JP2001288554A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147502A (en) * 2001-11-02 2003-05-21 Tocalo Co Ltd Method of forming protective film on high temperature strength member, and b-containing coating material
EP1522375A1 (en) * 2003-10-06 2005-04-13 Siemens Aktiengesellschaft Method for producing a multilayered system
JP2006077325A (en) * 2004-08-30 2006-03-23 Snecma Method for reproducing surface of single crystal metallic part or directionally-solidified part
JP2006207030A (en) * 2005-01-27 2006-08-10 United Technol Corp <Utc> Repair and reclassification of superalloy component
WO2007069409A1 (en) * 2005-12-16 2007-06-21 Honda Motor Co., Ltd. Method of repairing metal mold and paste agent for metal mold repair
JP2007160390A (en) * 2005-12-16 2007-06-28 Honda Motor Co Ltd Paste agent for metallic mold repair
WO2009090622A1 (en) * 2008-01-18 2009-07-23 Mould Technico Cc A method of extending the lifespan of a metal cavity mould
US7568609B2 (en) 2003-11-21 2009-08-04 Mitsubishi Heavy Industries, Ltd. Welding method
JP2009191840A (en) * 2008-01-15 2009-08-27 Toshiba Corp High-temperature component defect repairing method and high temperature component
JP2013046931A (en) * 2011-08-29 2013-03-07 General Electric Co <Ge> Filler metal composition for improved weldability of super alloy
KR20140038269A (en) * 2012-09-20 2014-03-28 한국전력공사 Method for transient liquid phase bonding of single crystal, high heat-resistance alloy by using alloy powder
JP5876563B1 (en) * 2014-11-28 2016-03-02 中国電力株式会社 Welding material for cast steel parts
JP2017177111A (en) * 2016-03-28 2017-10-05 中国電力株式会社 Steel member welding method and welding material
WO2020065817A1 (en) * 2018-09-27 2020-04-02 中国電力株式会社 Method for repairing heat-resistant alloy component
US11131198B2 (en) 2019-03-19 2021-09-28 Mitsubishi Heavy Industries, Ltd. Unidirectionally solidified article, turbine rotor blade and unidirectionally solidified article repair method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147502A (en) * 2001-11-02 2003-05-21 Tocalo Co Ltd Method of forming protective film on high temperature strength member, and b-containing coating material
US7736700B2 (en) 2003-10-06 2010-06-15 Siemens Aktiengesellschaft Method for production of a coating system
EP1522375A1 (en) * 2003-10-06 2005-04-13 Siemens Aktiengesellschaft Method for producing a multilayered system
WO2005037483A1 (en) * 2003-10-06 2005-04-28 Siemens Aktiengesellschaft Method for production of a coating system
US8017250B2 (en) 2003-10-06 2011-09-13 Siemens Aktiengesellschaft Method for production of a coating system
US7568609B2 (en) 2003-11-21 2009-08-04 Mitsubishi Heavy Industries, Ltd. Welding method
JP2006077325A (en) * 2004-08-30 2006-03-23 Snecma Method for reproducing surface of single crystal metallic part or directionally-solidified part
JP4652930B2 (en) * 2004-08-30 2011-03-16 スネクマ Method for regenerating the surface of a single crystal metal part or directionally solidified part
JP2006207030A (en) * 2005-01-27 2006-08-10 United Technol Corp <Utc> Repair and reclassification of superalloy component
WO2007069409A1 (en) * 2005-12-16 2007-06-21 Honda Motor Co., Ltd. Method of repairing metal mold and paste agent for metal mold repair
US7927653B2 (en) 2005-12-16 2011-04-19 Honda Motor Co., Ltd. Metal mold repair method and metal mold repair paste agent
JP4721185B2 (en) * 2005-12-16 2011-07-13 本田技研工業株式会社 Mold repair paste
JP2007160390A (en) * 2005-12-16 2007-06-28 Honda Motor Co Ltd Paste agent for metallic mold repair
US8236088B2 (en) 2005-12-16 2012-08-07 Honda Motor Co., Ltd. Metal mold repair method and metal mold repair paste agent
JP2009191840A (en) * 2008-01-15 2009-08-27 Toshiba Corp High-temperature component defect repairing method and high temperature component
WO2009090622A1 (en) * 2008-01-18 2009-07-23 Mould Technico Cc A method of extending the lifespan of a metal cavity mould
JP2013046931A (en) * 2011-08-29 2013-03-07 General Electric Co <Ge> Filler metal composition for improved weldability of super alloy
KR20140038269A (en) * 2012-09-20 2014-03-28 한국전력공사 Method for transient liquid phase bonding of single crystal, high heat-resistance alloy by using alloy powder
KR101980177B1 (en) * 2012-09-20 2019-05-20 한국전력공사 Method for transient liquid phase bonding of single crystal, high heat-resistance alloy by using alloy powder
JP5876563B1 (en) * 2014-11-28 2016-03-02 中国電力株式会社 Welding material for cast steel parts
JP2017177111A (en) * 2016-03-28 2017-10-05 中国電力株式会社 Steel member welding method and welding material
WO2020065817A1 (en) * 2018-09-27 2020-04-02 中国電力株式会社 Method for repairing heat-resistant alloy component
US11131198B2 (en) 2019-03-19 2021-09-28 Mitsubishi Heavy Industries, Ltd. Unidirectionally solidified article, turbine rotor blade and unidirectionally solidified article repair method

Similar Documents

Publication Publication Date Title
US5498484A (en) Thermal barrier coating system with hardenable bond coat
US6659332B2 (en) Directionally solidified article with weld repair
US7479299B2 (en) Methods of forming high strength coatings
JP2001288554A (en) Repairing material, method for repairing heat resisting alloy member, and hot zone parts repaired by the method
EP1629930A1 (en) Method of repairing cracks in a turbine component using cathodic arc and/or low pressure plasma spraying and high isostatic pressure (HIP)
US8353444B2 (en) Low temperature diffusion braze repair of single crystal components
EP1877598B1 (en) Magnesium repair and build up
US20220062995A1 (en) Method for preventing cracking of nickel-based superalloy fabricated by selective laser melting
EP1629929A1 (en) Method of repairing worn portions of a turbine component restoration using cathodic arc or Low Pressure Plasma Spraying (LPPS) and High Isostatic Pressing (HIP)
JP2004068157A (en) Overlay coating
US5712050A (en) Superalloy component with dispersion-containing protective coating
US7655321B2 (en) Component having a coating
JPS5887273A (en) Parts having ceramic coated layer and their production
JPWO2008032806A1 (en) Heat resistant material
US5900102A (en) Method for repairing a thermal barrier coating
JP2005298973A (en) Nickel based superalloy, composition, article and gas turbine engine blade
JPH0447018B2 (en)
JP2001295021A (en) Method for depositing protective film on metallic substrate and article obtained thereby
US20190299288A1 (en) METHOD FOR PRODUCING A COMPONENT FROM A GRADED TiAl ALLOY AND COMPONENT PRODUCED THEREFROM
JP2021172852A (en) Ni-BASED ALLOY REPAIRING MEMBER AND MANUFACTURING METHOD OF THE REPAIRING MEMBER
US20130323069A1 (en) Turbine Blade for Industrial Gas Turbine and Industrial Gas Turbine
JP2003342617A (en) REPAIRED HIGH-TEMPERATURE COMPONENT MADE OF HEAT- RESISTANT ALLOY, REPAIRED GAS-TURBINE BLADE MADE OF Ni- BASED HEAT RESISTANT ALLOY, METHOD FOR REPAIRING GAS- TURBINE BLADE OF Ni-BASED HEAT RESISTANT ALLOY, AND METHOD FOR REPAIRING GAS-TURBINE BLADE MADE OF HEAT RESISTANT ALLOY
RU2619419C2 (en) Application method of titanium aluminide and product with titanium aluminide surface
JPH07508561A (en) Structural component made of intermetallic compound with aluminum diffusion coating
EP0913495A1 (en) Spray coating powder material and high-temperature components coated therewith