JPH11345731A - Manufacture for inductor - Google Patents

Manufacture for inductor

Info

Publication number
JPH11345731A
JPH11345731A JP15305798A JP15305798A JPH11345731A JP H11345731 A JPH11345731 A JP H11345731A JP 15305798 A JP15305798 A JP 15305798A JP 15305798 A JP15305798 A JP 15305798A JP H11345731 A JPH11345731 A JP H11345731A
Authority
JP
Japan
Prior art keywords
coil wire
metal coil
inductor
ceramic body
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15305798A
Other languages
Japanese (ja)
Inventor
Takahiro Yamamoto
高弘 山本
Yutaka Komatsu
裕 小松
Masashi Morimoto
正士 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP15305798A priority Critical patent/JPH11345731A/en
Publication of JPH11345731A publication Critical patent/JPH11345731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an inductor which holds a metal coil wire at a predetermined position with high accuracy, reduces restrictions in manufacturing and is superior in electric characteristics. SOLUTION: After a metal coil wire 22 is inserted into a through-hole 23a provided at the center of a ceramic body 23, a slurry-like ferrite ceramic raw material is made to flow into the through-hole 23a. At this time, as the metal coil wire 22 is held on an inner wall face of the through-hole 23a, even if the slurry-like ferrite ceramic raw material is made to flow in, the metal coil wire 22 win not be moved from the position. Next, the ceramic body 23 is put in an oven to have the ferrite ceramic raw material solidify in the through-hole 23a. Then, after the ceramic body is burnt, an external electrode is formed at both the upper and lower end parts of the ceramic body 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、インダクタ、特に
電子機器等から放射されるノイズや、電子機器等に侵入
するノイズを除去するために使用される大電流用のイン
ダクタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an inductor, particularly an inductor for a large current used for removing noise radiated from electronic equipment and the like and noise entering electronic equipment and the like.

【0002】[0002]

【従来の技術】金属コイル線を用いたインダクタは、同
じコイル径及び巻数とした場合、積層型インダクタ等と
比較してその電気抵抗値が約1/10以下になり、大電
流用インダクタとして使用するこことができる。そし
て、このような金属コイル線を用いたインダクタの製造
方法として、特開平8−181021号公報記載の方法
が知られている。このインダクタの製造方法は、押し出
し成形されたセラミックに金属コイル線を巻き付けてコ
イル形状にした後、その外被体を連続して成形するの
で、金属コイル線が所定の位置に精度良く保持される。
2. Description of the Related Art An inductor using a metal coil wire has an electric resistance value of about 1/10 or less as compared with a laminated inductor and the like when the same coil diameter and the same number of turns are used. Can do it. As a method of manufacturing an inductor using such a metal coil wire, there is known a method described in Japanese Patent Application Laid-Open No. Hei 8-181221. According to this method of manufacturing an inductor, a metal coil wire is wound around an extruded ceramic to form a coil shape, and then the outer casing is continuously formed, so that the metal coil wire is accurately held at a predetermined position. .

【0003】しかしながら、コイルピッチを小さくする
ことや、線径が100μm以上の太い金属コイル線の巻
き付け加工が困難である。また、その製造方法の特徴か
ら、インダクタの全長に渡り金属コイル線が粗巻き状態
で周回されるので、密巻きコイル部と直線状の引出し部
を有する金属コイル線と比較してインピーダンスの発生
効率が低くなる。そのため、所望のインピーダンスを得
ようとすると、金属コイル線の長さが長くなり、内部電
極である金属コイル線自身が有する抵抗値が不必要に上
昇してしまうという問題があった。
[0003] However, it is difficult to reduce the coil pitch and to wind a thick metal coil wire having a wire diameter of 100 µm or more. Also, due to the characteristic of the manufacturing method, since the metal coil wire is wound around the entire length of the inductor in a rough winding state, the impedance generation efficiency is higher than that of a metal coil wire having a tightly wound coil portion and a linear lead portion. Becomes lower. Therefore, in order to obtain a desired impedance, there is a problem that the length of the metal coil wire becomes long, and the resistance value of the metal coil wire itself as an internal electrode unnecessarily increases.

【0004】この対策として、出願人は、所定の形状に
加工した金属コイル線を型枠にセットした後、スラリー
状セラミック原料を型枠に流し込む方法(ゲルキャスト
法)によりインダクタを製造することを提案している。
As a countermeasure, the applicant has set an inductor by a method of setting a metal coil wire processed into a predetermined shape in a mold, and then pouring a slurry-like ceramic material into the mold (gel casting method). is suggesting.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法は特開平8−181021号公報記載のインダクタの
製造方法の問題点を解消することができるものの、スラ
リー状セラミック原料を型枠に流し込む際に金属コイル
線の位置がずれ易く、このため電気特性のバラツキが大
きいという新たな問題があった。
However, this method can solve the problem of the inductor manufacturing method described in Japanese Patent Application Laid-Open No. HEI 8-181221, but when the slurry-like ceramic raw material is poured into the mold, it is difficult to remove the metal. There is a new problem that the position of the coil wire is easily displaced, and thus the variation in the electrical characteristics is large.

【0006】そこで、本発明の目的は、金属コイル線が
所定の位置に精度良く保持されると共に、製造上の制約
が少なく、電気特性が優れたインダクタを製造すること
ができるインダクタの製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a method of manufacturing an inductor capable of manufacturing an inductor having excellent electrical characteristics, while maintaining a metal coil wire at a predetermined position with high accuracy, with less restrictions on manufacturing. To provide.

【0007】[0007]

【課題を解決するための手段】以上の目的を達成するた
め、本発明に係るインダクタの製造方法は、金属コイル
線を収容するための空洞部を有するセラミック体を成形
する工程と、前記セラミック体の空洞部に金属コイル線
を挿入した後、前記空洞部にセラミック材を充填し成形
する工程とを備えたことを特徴とする。そして、セラミ
ック体の空洞部にセラミック材を充填し成形する方法と
しては、例えばゲルキャスト法が採用される。
To achieve the above object, a method of manufacturing an inductor according to the present invention comprises the steps of: forming a ceramic body having a cavity for accommodating a metal coil wire; Inserting a metal coil wire into the hollow portion, filling the hollow portion with a ceramic material, and molding the ceramic material. As a method of filling and molding the ceramic material in the cavity of the ceramic body, for example, a gel casting method is employed.

【0008】[0008]

【作用】以上の方法により、金属コイル線はセラミック
体の空洞部に挿入されて保持されるため、セラミック材
を空洞部に充填する際に金属コイル線の位置ずれが発生
せず、金属コイル線が精度良く位置決めされる。さら
に、密巻きコイル部と直線状の引出し部を有する構造の
金属コイル線も採用でき、この方法は金属コイル線の構
造等の製造上の制約が少ない。
According to the above method, the metal coil wire is inserted into and held in the cavity of the ceramic body, so that when the ceramic material is filled in the cavity, no displacement of the metal coil wire occurs, and the metal coil wire is not displaced. Are accurately positioned. Further, a metal coil wire having a structure having a close-wound coil portion and a linear lead portion can also be adopted, and this method has less restrictions on manufacturing such as the structure of the metal coil wire.

【0009】[0009]

【発明の実施の形態】以下、本発明に係るインダクタの
製造方法の実施形態について添付図面を参照して説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing an inductor according to the present invention will be described below with reference to the accompanying drawings.

【0010】図1に示すように、金属コイル線22は、
螺旋状に巻回されているコイル部22aと、このコイル
部22aの両端に設けられた直線状の引出し部22b,
22bとからなる。金属コイル線22の材料としては、
例えばAg,Ag−Pd,Pt,Au,Cuのうちのい
ずれかを一種類以上含む金属又は合金が用いられる。本
実施形態の場合、金属コイル線22の材料として線径が
200μmのAg線を用い、このAg線を螺旋状に巻回
してコイル径が1.5mm、長さが約2.4mm、巻き
数が6ターンのコイル部22aを形成すると共に、長さ
がそれぞれ約0.8mmの引出し部22b,22bを形
成した。
As shown in FIG. 1, the metal coil wire 22 is
A coil portion 22a wound spirally, and linear extraction portions 22b provided at both ends of the coil portion 22a,
22b. As a material of the metal coil wire 22,
For example, a metal or alloy containing one or more of Ag, Ag-Pd, Pt, Au, and Cu is used. In the case of the present embodiment, an Ag wire having a wire diameter of 200 μm is used as a material of the metal coil wire 22, and the Ag wire is spirally wound to have a coil diameter of 1.5 mm, a length of about 2.4 mm, and the number of turns. Formed a coil part 22a having six turns, and formed lead parts 22b, 22b each having a length of about 0.8 mm.

【0011】セラミック体23は横断面矩形の直方体で
あり、その長手方向に平行な軸を有する横断面円形の貫
通穴23aが中央部に設けられてる。このセラミック体
23は、以下に詳述するゲルキャスト法により成形され
る。
The ceramic body 23 is a rectangular parallelepiped having a rectangular cross section, and a through hole 23a having a circular cross section having an axis parallel to the longitudinal direction is provided at the center. The ceramic body 23 is formed by a gel casting method described in detail below.

【0012】まず、原料粉末として平均粒径が2.2μ
mのNiCuZnフェライトセラミック粉末と、硬化性
樹脂として水溶性エポキシ樹脂(ポリエチレングリコー
ルジグリシジルエーテル)と、相容性液体として水及び
エタノールと、分散剤としてポリオキシアルキレングリ
コールと、消泡剤としてポリアルキレングリコールと
を、表1に示す割合でポットミルに投入した後、20時
間湿式調合してスラリー状とした。
First, the raw material powder has an average particle size of 2.2 μm.
m, a CuCu ferrite ceramic powder, a water-soluble epoxy resin (polyethylene glycol diglycidyl ether) as a curable resin, water and ethanol as compatible liquids, a polyoxyalkylene glycol as a dispersant, and a polyalkylene as a defoamer. Glycol was charged into a pot mill at the ratio shown in Table 1, and then wet-mixed for 20 hours to form a slurry.

【0013】[0013]

【表1】 [Table 1]

【0014】次に、このスラリー状のセラミック原料
に、硬化剤としてジアミンアダクト変成物を0.3重量
%の割合で混入した後、5分間攪拌する。次に、このス
ラリー状のセラミック原料を30分間脱泡し、ポリエチ
レン製の型枠に60cmHgの減圧条件の下で流し込ん
だ。次に、この型枠を90℃に保持されたオーブンの中
に約30分間入れてスラリー状のセラミック原料を固化
させる。次に、固化されたセラミック原料を型枠から取
り出し、さらに30分間乾燥させて、縦が3.0mm、
横が3.0mm、高さが3.84mmの直方体のセラミ
ック体23を得た。このときの固化時における体積収縮
率は約1%であった。
Next, a modified diamine adduct as a curing agent is mixed into the slurry-like ceramic raw material at a ratio of 0.3% by weight, and the mixture is stirred for 5 minutes. Next, the slurry-like ceramic raw material was defoamed for 30 minutes, and poured into a polyethylene mold under a reduced pressure of 60 cmHg. Next, the mold is placed in an oven maintained at 90 ° C. for about 30 minutes to solidify the slurry-like ceramic raw material. Next, the solidified ceramic raw material was taken out of the mold and dried for another 30 minutes.
A rectangular parallelepiped ceramic body 23 having a width of 3.0 mm and a height of 3.84 mm was obtained. The volume shrinkage at the time of solidification at this time was about 1%.

【0015】次に、この直方体のセラミック体23に、
その長手方向に平行な軸を有する横断面円形(直径が
1.5mm)の貫通穴23aをドリルによる切削加工法
によって形成する。ただし、この貫通穴23aは、成型
時に抜き型の型枠を用いる等の方法によって形成しても
よい。この貫通穴23aは、金属コイル線22を収容す
るための空洞部となる。
Next, the rectangular parallelepiped ceramic body 23
A through hole 23a having a circular cross section (1.5 mm in diameter) having an axis parallel to the longitudinal direction is formed by a cutting method using a drill. However, this through-hole 23a may be formed by a method such as using a die frame during molding. The through hole 23a becomes a cavity for accommodating the metal coil wire 22.

【0016】次に、セラミック体23の貫通穴23a
に、金属コイル線22を挿入した後、60cmHgの減
圧条件の下で、この貫通穴23aにスラリー状のセラミ
ック原料を流し込んだ。このとき、金属コイル線22は
貫通穴23aの内壁面に保持されているので、スラリー
状のセラミック原料を流し込んでも金属コイル線22の
位置が動くことがない。従って、金属コイル線22の位
置決め精度が高く、得られるインダクタの電気特性のバ
ラツキを抑えることができる。流し込んだスラリー状の
セラミック原料は、原料粉末として平均粒径が2.2μ
mのNiCuZnフェライトセラミック粉末と、硬化性
樹脂として水溶性エポキシ樹脂(ポリエチレングリコー
ルジグリシジルエーテル)と、相容性液体として水及び
エタノールと、分散剤としてポリアルキレングリコール
と、消泡剤としてポリアルキレングリコールとを、表1
に示す割合でポットミルに投入した後、20時間湿式調
合し、次に、硬化剤としてジアミンアダクト変成物を
0.3重量%の割合で混入した後、5分間攪拌して30
分間脱泡したものである。
Next, the through hole 23a of the ceramic body 23
After inserting the metal coil wire 22, a slurry-like ceramic raw material was poured into the through-hole 23a under a reduced pressure condition of 60 cmHg. At this time, since the metal coil wire 22 is held on the inner wall surface of the through hole 23a, the position of the metal coil wire 22 does not move even when the slurry-like ceramic material is poured. Therefore, the positioning accuracy of the metal coil wire 22 is high, and variations in the electrical characteristics of the obtained inductor can be suppressed. The poured slurry-like ceramic raw material has an average particle size of 2.2 μm as raw material powder.
m, a water-soluble epoxy resin (polyethylene glycol diglycidyl ether) as a curable resin, water and ethanol as compatible liquids, a polyalkylene glycol as a dispersant, and a polyalkylene glycol as a defoamer. And Table 1
, And wet-mixed for 20 hours. Then, 0.3% by weight of a modified diamine adduct as a curing agent was mixed in the mixture, and the mixture was stirred for 5 minutes and stirred for 30 minutes.
For a minute.

【0017】次に、このセラミック体23を90℃に保
持されたオーブンの中に約30分間入れて、貫通穴23
aの中のスラリー状のセラミック原料を固化させる。こ
うして、図2に示すように、貫通穴23aに充填されか
つ金属コイル線22を内部に埋設した円柱状のセラミッ
ク体24を、ゲルキャスト法により成形した。次に、セ
ラミック体23を焼成炉に入れ、昇温時間が9時間、4
50℃の温度で3時間保持して脱脂した後、昇温時間が
9時間、900℃の温度で2時間保持して焼成した。こ
うして得られたセラミック体23,24は十分に緻密化
しており、その焼結密度は5.25であった。そして、
焼成後のセラミック体23は、縦が2.5mm、横2.
5mm、高さが3.2mmの直方体となり、焼成収縮率
は1.20%であった。
Next, the ceramic body 23 is placed in an oven maintained at 90 ° C. for about 30 minutes, so that
The slurry-like ceramic raw material in a is solidified. In this way, as shown in FIG. 2, a cylindrical ceramic body 24 filled in the through hole 23a and having the metal coil wire 22 embedded therein was formed by a gel casting method. Next, the ceramic body 23 was placed in a firing furnace, and the temperature was raised for 9 hours.
After degreasing by holding at a temperature of 50 ° C. for 3 hours, baking was performed at a temperature rising time of 9 hours and a temperature of 900 ° C. for 2 hours. The ceramic bodies 23 and 24 thus obtained were sufficiently densified and had a sintered density of 5.25. And
The ceramic body 23 after firing has a length of 2.5 mm and a width of 2.
The rectangular parallelepiped was 5 mm in height and 3.2 mm in height, and the firing shrinkage was 1.20%.

【0018】次に、図3に示すように、セラミック体2
3の上下両端部に外部電極26,26を形成する。外部
電極26,26は、それぞれセラミック体23の上下両
端面に露出している金属コイル線22の引出し部22
b,22bに電気的に接続している。外部電極26の材
料としては、例えば、Cu,Ni,Ag,Ag−Pd等
のうちいずれか一種類以上含む金属又は合金が用いられ
る。
Next, as shown in FIG.
External electrodes 26, 26 are formed on both upper and lower ends of the third electrode. The external electrodes 26, 26 are respectively connected to the lead portions 22 of the metal coil wires 22 exposed on both upper and lower end surfaces of the ceramic body 23.
b, 22b. As a material of the external electrode 26, for example, a metal or an alloy containing at least one of Cu, Ni, Ag, Ag-Pd and the like is used.

【0019】こうして得られたインダクタ30の電気抵
抗値及びインダクタンス値を測定した結果を表2に示す
(実施例参照)。比較のため、特開平8−181021
号公報記載の方法で製造したインダクタの電気抵抗値及
びインダクタンス値(比較例1参照)と、従来のゲルキ
ャスト法で製造したインダクタの電気抵抗値及びインダ
クタンス値(比較例2参照)とを併せて表2に載せてい
る。なお、インダスタンス値の設計値はいずれの場合
も、4.0μHであった。表2より、本実施形態の方法
によって製造されたインダクタ30の電気抵抗値は低
く、また、インダクタンス値のバラツキが小さいことが
わかる。
Table 2 shows the measurement results of the electric resistance value and the inductance value of the inductor 30 thus obtained (see Examples). For comparison, see JP-A-8-181021.
The electrical resistance value and the inductance value of the inductor manufactured by the method described in Japanese Patent Application Laid-Open Publication No. H10 (1995) (see Comparative Example 1) and the electrical resistance value and the inductance value of the inductor manufactured by the conventional gel casting method (see Comparative Example 2) are combined. It is listed in Table 2. The design value of the inductance value was 4.0 μH in each case. From Table 2, it can be seen that the electrical resistance value of the inductor 30 manufactured by the method of the present embodiment is low, and that the variation of the inductance value is small.

【0020】[0020]

【表2】 [Table 2]

【0021】なお、本発明に係るインダクタの製造方法
は前記実施形態に限定するものではなく、その要旨の範
囲内で種々に変更することができる。例えば、セラミッ
ク体は横断面矩形の他に、横断面円形等のものであって
もよく、また、セラミック体に設ける貫通穴の横断面形
状も全面コイル線の形状に合わせて種々に変更される。
The method of manufacturing the inductor according to the present invention is not limited to the above embodiment, but can be variously modified within the scope of the invention. For example, the ceramic body may be not only rectangular in cross section but also circular in cross section, and the cross sectional shape of the through hole provided in the ceramic body is variously changed in accordance with the shape of the entire coil wire. .

【0022】[0022]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、金属コイル線をセラミック体に設けた空洞部に
挿入して保持するので、金属コイル線の位置ずれが発生
せず、金属コイル線を精度良く位置決めすることができ
る。さらに、金属コイル線の構造等に制約されることも
なく、製造上の制約を少なくすることができる。この結
果、金属コイル線が所定の位置に精度良く保持されると
共に、製造上の制約が少なく、電気特性が優れたインダ
クタを製造することができる。
As is apparent from the above description, according to the present invention, since the metal coil wire is inserted and held in the hollow portion provided in the ceramic body, no displacement of the metal coil wire occurs. The metal coil wire can be accurately positioned. Further, the manufacturing restrictions can be reduced without being restricted by the structure of the metal coil wire. As a result, the metal coil wire can be accurately held at a predetermined position, and there can be manufactured an inductor excellent in electric characteristics with few restrictions on manufacturing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るインダクタの製造方法の一実施形
態を示す斜視図。
FIG. 1 is a perspective view showing one embodiment of a method for manufacturing an inductor according to the present invention.

【図2】図1に続く製造工程を示す斜視図。FIG. 2 is a perspective view showing a manufacturing process following FIG. 1;

【図3】図2に続く製造工程を示す斜視図。FIG. 3 is a perspective view showing a manufacturing step following FIG. 2;

【符号の説明】[Explanation of symbols]

22…金属コイル線 23…セラミック体 23a…貫通穴(空洞部) 24…セラミック体 30…インダクタ 22: Metal coil wire 23: Ceramic body 23a: Through hole (hollow part) 24: Ceramic body 30: Inductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属コイル線を収容するための空洞部を
有するセラミック体を成形する工程と、 前記セラミック体の空洞部に金属コイル線を挿入した
後、前記空洞部にセラミック材を充填し成形する工程
と、 を備えたことを特徴とするインダクタの製造方法。
1. A step of forming a ceramic body having a cavity for accommodating a metal coil wire, and after inserting a metal coil wire into the cavity of the ceramic body, filling the cavity with a ceramic material and molding. A method for manufacturing an inductor, comprising:
【請求項2】 前記セラミック体の空洞部にゲルキャス
ト法でセラミック材を充填し成形することを特徴とする
請求項1記載のインダクタの製造方法。
2. The method for manufacturing an inductor according to claim 1, wherein the cavity of the ceramic body is filled with a ceramic material by a gel casting method and molded.
JP15305798A 1998-06-02 1998-06-02 Manufacture for inductor Pending JPH11345731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15305798A JPH11345731A (en) 1998-06-02 1998-06-02 Manufacture for inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15305798A JPH11345731A (en) 1998-06-02 1998-06-02 Manufacture for inductor

Publications (1)

Publication Number Publication Date
JPH11345731A true JPH11345731A (en) 1999-12-14

Family

ID=15554048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15305798A Pending JPH11345731A (en) 1998-06-02 1998-06-02 Manufacture for inductor

Country Status (1)

Country Link
JP (1) JPH11345731A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016531A (en) * 2008-07-02 2010-01-21 Ngk Insulators Ltd Antenna apparatus and method of manufacturing antenna apparatus
EP2194029A1 (en) 2008-10-29 2010-06-09 NGK Insulators, Ltd. Ferrite powder and its production method
JP2010245505A (en) * 2009-01-22 2010-10-28 Ngk Insulators Ltd Method for manufacturing fired ceramic body including metallic wire inside
EP2368865A1 (en) 2010-03-18 2011-09-28 NGK Insulators, Ltd. Powders used for producing Ni-Cu-Zn system ferrite ceramics sintered body and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016531A (en) * 2008-07-02 2010-01-21 Ngk Insulators Ltd Antenna apparatus and method of manufacturing antenna apparatus
EP2194029A1 (en) 2008-10-29 2010-06-09 NGK Insulators, Ltd. Ferrite powder and its production method
JP2010132539A (en) * 2008-10-29 2010-06-17 Ngk Insulators Ltd Ferrite powder and its production method
US8343375B2 (en) 2008-10-29 2013-01-01 Ngk Insulators, Ltd. Ferrite powder and its production method
JP2010245505A (en) * 2009-01-22 2010-10-28 Ngk Insulators Ltd Method for manufacturing fired ceramic body including metallic wire inside
US8512628B2 (en) 2009-01-22 2013-08-20 Ngk Insulators, Ltd. Method for manufacturing a fired ceramic body including a metallic wire inside
EP2368865A1 (en) 2010-03-18 2011-09-28 NGK Insulators, Ltd. Powders used for producing Ni-Cu-Zn system ferrite ceramics sintered body and method for manufacturing the same
US8617414B2 (en) 2010-03-18 2013-12-31 Ngk Insulators, Ltd. Powders used for producing Ni-Cu-Zn system ferrite ceramics sintered body and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4099340B2 (en) Manufacturing method of coil-embedded dust core
CN1627457B (en) Magnetic component and its making method
KR101259388B1 (en) Coil component and method for manufacturing coil component
JP5281592B2 (en) Method for manufacturing ceramic fired body having metal coil inside
JP2018182209A (en) Coil component
US6804876B1 (en) Method of producing chip inductor
JP5398676B2 (en) Coil buried type inductor and manufacturing method thereof
CN107452466B (en) Electronic component
US20180322998A1 (en) Inductor element
JPH11121234A (en) Inductor and manufacture thereof
US6918173B2 (en) Method for fabricating surface mountable chip inductor
JPH11345731A (en) Manufacture for inductor
JPH06310334A (en) Inductor and manufacture thereof
US10886056B2 (en) Inductor element
CN211670091U (en) Easily-formed manufacturing structure of surface-mounted inductor
JPH06120039A (en) Inductor and its manufacturing method
KR100433188B1 (en) A surface mounted power inductor and manufacturing method therefof
JP3439829B2 (en) Manufacturing method of inductor
JPH05291066A (en) Inductor and manufacture thereof
JPH11135329A (en) Inductor and manufacture thereof
CN217485249U (en) Magnetic powder injection molding inductor with prefabricated magnetic core
JP2011216866A (en) Method of manufacturing coil embedded type inductor
JP2000036429A (en) Chip inductor
JPS58132907A (en) Manufacture of inductor
JPH11329873A (en) Inductor and manufacture thereof