JP3439829B2 - Manufacturing method of inductor - Google Patents

Manufacturing method of inductor

Info

Publication number
JP3439829B2
JP3439829B2 JP09667794A JP9667794A JP3439829B2 JP 3439829 B2 JP3439829 B2 JP 3439829B2 JP 09667794 A JP09667794 A JP 09667794A JP 9667794 A JP9667794 A JP 9667794A JP 3439829 B2 JP3439829 B2 JP 3439829B2
Authority
JP
Japan
Prior art keywords
epoxy resin
inductor
coil
magnetic
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09667794A
Other languages
Japanese (ja)
Other versions
JPH07307236A (en
Inventor
宏一 清水
一樹 津田
康貴 飯田
健一 長妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP09667794A priority Critical patent/JP3439829B2/en
Publication of JPH07307236A publication Critical patent/JPH07307236A/en
Application granted granted Critical
Publication of JP3439829B2 publication Critical patent/JP3439829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、絶縁被覆をしたコイル
状の導体とそれを包み込んで成形される磁性部とからな
るインダクタの製造方法に関する。 【0002】 【従来の技術】平滑チョークコイル、電源のノイズフィ
ルタ等のインダクタには、トロイダル状の磁芯に絶縁被
覆した導体を巻線したものが、その簡便さから多用され
ている。しかし、近年の電子機器の小型化とパーツの一
体化に伴い、インダクタは小型化及び表面実装化に適し
た外形、寸法が要求されるようになってきている。トロ
イダル状の磁芯に絶縁被覆した導体を巻線する構造は、
小型化を進めるに従って巻線を行うのが困難となり、ま
た、表面実装に適した外形、寸法比とすることが難しい
という問題がある。 【0003】そこで、従来使用されているトロイダル状
の磁芯に絶縁被覆した導体を巻線したものを、樹脂又は
磁性体を含む樹脂で封止したインダクタや、導体と磁性
体からなる薄板を導体の一部が接点を持つように交互に
積層し焼結したインダクタが用いられるようになった。
ところが、トロイダル状の磁芯に絶縁被覆した導体を巻
線したものを、樹脂又は磁性体を含む樹脂で封止したイ
ンダクタは、寸法に対するインダクタンスが大きくない
ので小型化の要請に十分に対応できない。一方、導体と
磁性体からなる薄板を導体の一部が接点を持つように交
互に積層し焼結したインダクタは、コイルで発生する磁
束が外部に漏れないため小型化しても効率が良く表面実
装に適する形状にすることができるが、導体に銀やパラ
ジウムという貴金属を使用する必要がある上、特殊な製
造装置を必要とし、製造工程が煩雑で製造コストが高
く、また、焼結工程で導体と磁性体とを構成する成分が
相互に拡散し、磁気特性の点でも使用材質の特性を10
0%発現できないという欠点がある。 【0004】これらのインダクタの欠点を克服するた
め、絶縁被覆した導体を巻線し、それを磁性粉末と結合
剤との体積比が6対4から9対1である混合物で包み込
むように加圧成形したインダクタが提案されている(特
願平5−291046号参照)。このインダクタは小型
化及び表面実装化の要求を満足することができる。 【0005】 【発明が解決しようとする課題】しかしながら、このよ
うな構造のインダクタは、加圧成形する際金型内での圧
力分布が不均一でコイルの位置ずれや、コイルの変形を
生じ易く、設計通りに製造できず不良率が高くなる。ま
た、性能を向上させるため樹脂に対する磁性粉末の混合
比率を高くすると、混合物が粘着性のボロボロの塊とな
って金型への混合物の装入が困難となり、コイルを正確
に目的の位置、形状で配置することができなくなる。更
に、コイルからのリード線が加圧成形時の操作性を阻害
する。 【0006】本発明は、インダクタにおける上記問題を
解決するものであって、高価な金属、特殊な製造装置、
或いは煩雑な製造工程を必要とせず、磁性体及び導体の
持つ本来の特性を100%発現させることができ、製造
コストが低廉であり、また、加圧成形工程を必要としな
いため、コイルの位置ずれや、コイルの変形を生ずるお
それがなく、コイルを正確に目的の位置、形状に配置可
能で設計通りの磁気特性を発揮でき、小型で表面実装に
適したインダクタを製造することのできるインダクタの
製造方法を提供することを目的とする。 【0007】 【課題を解決するための手段】本発明は、絶縁被覆した
導体をコイル状に巻線する工程と、磁性体とエポキシ系
樹脂とを混合し混練する工程と、混練された磁性体とエ
ポキシ系樹脂との混合物中に前記コイル状の導体を埋設
する工程と、混練された磁性体とエポキシ系樹脂との混
合物から過剰なエポキシ系樹脂を遠心力により除去した
後硬化させる工程とによってインダクタを製造すること
により上記課題を解決している。 【0008】 【作用】加圧成形は行わず、磁性体とエポキシ系樹脂と
の混合物中にコイル状導体を埋設してから過剰なエポキ
シ系樹脂を遠心力により除去し硬化させるようにしてい
るため、混合物の装入が容易でコイルの位置ずれやコイ
ルの変形を生ずるおそれがなく、コイルを正確に目的の
位置、形状に配置可能であり、磁性体とエポキシ系樹脂
の混合比率がいかなる場合でも一定の密度の成形物を安
定して製造することができる。 【0009】 【実施例】図1は本発明の一実施例であるインダクタの
製造方法により製造されたインダクタの斜視図、図2は
この製造方法により製造されたインダクタの縦断面図、
図3は混練された磁性体とエポキシ系樹脂との混合物中
にコイル状導体を埋設する工程の説明図、図4は混練さ
れた磁性体とエポキシ系樹脂との混合物から過剰なエポ
キシ系樹脂を遠心力により除去する工程の説明図であ
る。 【0010】この実施例のインダクタ1の製造方法で
は、まず、絶縁被覆した導体2をコイル状に巻線する。
導体2は、表面がエナメル被覆等で絶縁被覆されている
ものであれば、その断面形状、太さ等は特に限定はな
く、インダクタ1に必要とされる磁気、電気特性及び加
工性から最適の形状と太さを決定すればよい。また、巻
線するコイルの形状は、断面形状が円形や正方形である
ものに巻取り製作されるもの等が挙げられるが、これに
限定されるものではなく、他のコイル形状のものを用い
てもよい。 【0011】次に、磁性体とエポキシ系樹脂とを混合し
混練して混合物5を製造する。磁性体としては、軟磁気
特性を有するものであれば特に限定されない。しかし、
経済性と透磁率等の磁気特性から、金属磁性体では、例
えば鉄粉、鉄−珪素合金、鉄−珪素−アルミ系合金、鉄
−ニッケル系合金等が好ましい。また、これら磁性体の
粒子径も特に限定されないが、20−500μmの範囲
のものが好ましく、50−300μmの範囲のものが生
産性及びインダクタ1の密度を上げるうえでより好適で
ある。使用される磁性体の種類は、単一であっても二種
以上を混合したものであっても差支えない。 【0012】エポキシ系樹脂としては、一液型又は二液
型エポキシ系樹脂を原液のまま又は溶剤で希釈して粘度
を調節したものを用いる。エポキシ系樹脂は、ポットラ
イフの長いものの方が製造が容易であるが、成形後の指
接触時間の短い方が生産性が高い。また、室温硬化性の
ものも加熱硬化性のものも使用できるが、加熱硬化性の
ものは導体2の絶縁被覆を損なわない範囲の温度で硬化
可能なものでてければならない。エポキシ系樹脂の粘度
は低粘度の方が過剰な樹脂分を除去し易いが、混合物の
組成を長時間に亘り均一に保持するには高粘度の方がよ
いので適切な範囲の粘度を選択する。 【0013】磁性体とエポキシ系樹脂との比率は、混合
物5を容器6に自動定量供給可能な範囲で磁性体リッチ
にする方が成形時間を短縮でき、コストを低減できる。
それから、コイル状の導体2を容器6内に位置決めし、
容器6内に混合物5を計量カップ7で所定量供給して、
混練された磁性体とエポキシ系樹脂との混合物5中にコ
イル状の導体6を埋設する。このとき、磁性体とエポキ
シ系樹脂との混合物5は、自動定量供給を可能にするた
めに過剰にエポキシ系樹脂が添加されている。容器6は
オープンタイプとすることができるので、絶縁被覆され
た導体からなるコイルの正確な位置決めが可能であり、
コイルの外部電極3による操作性の低下も回避すること
ができる。加圧成形は行わないので、容器6は高耐圧性
は必要なく板厚を薄くすることができる。容器6の形状
は、図3の如き六面体の他、円筒形、ドーナツ形等、コ
イル状に巻線した導体2が内部に納まるものであれば適
宜選択することができる。 【0014】エポキシ系樹脂の主作用はインダクタ1の
形状を保持し磁性体の粉末の間を絶縁することであり、
インダクタ1中では少ない方が好ましい。そこで、混練
された磁性体とエポキシ系樹脂との混合物5中にコイル
状の導体2が埋設されている容器6を底面6Bが外側と
なるように支持具8で回転軸9に取付けて回転を与え
る。容器6の底面6Bには細孔10が多数穿設されてお
り、容器6に回転が与えられると、自動定量供給を可能
にするために過剰に添加されたエポキシ系樹脂11が細
孔10から遠心力で排除される。過剰のエポキシ系樹脂
11が排除され、磁性体が濃密化されて所定の磁性部4
が形成されると、容器6を回転軸9から取外し硬化させ
る。 【0015】上記工程により、絶縁被覆をしたコイル状
の導体2とそれを包み込んで成形される磁性部4とから
なるインダクタ1が形成される。 (実施例1)水アトマイズ法により製造された9.5重
量%珪素、5.5重量%アルミ、残部が鉄からなる合金
粉末を篩分して粒子径63−106μmの粉末のみを回
収し、これを1000°C、2時間、アルゴン雰囲気中
で熱処理を行った磁性粉末22gと、二液型エポキシ樹
脂(混合時の粘度650cps、比重1.2)11gと
を、計量カップ内で混合、混練し混合物を作製した。 【0016】直径0.3mmのエナメル被覆銅線を、外
径18mmの円柱に巻取り、高さ6mm、40巻のコイ
ルとし、このコイルを、予め底面が30×30mmの金
型に、中心軸が重なるように配置し、この金型に混合物
を充填し、遠心力10Gをかけて過剰のエポキシ樹脂を
金型底部の細孔から排除し、磁性粉末の濃縮化を行なっ
た後、室温で一晩放置してエポキシ樹脂を硬化させ、こ
れを金型から抜取ってインダクタとした。 【0017】得られたインダクタは、底面が30×30
mm、高さが10mmの六面体で、樹脂中に磁性粉末は
均一に分布しており、外力に対して十分な強度を有して
いた。インダクタンスをLCRメータにより測定した結
果、1kHzの周波数において、210μHであった。 (実施例2)電気分解法により製造された純鉄(純度9
9.9%以上)を窒素雰囲気中で粉砕し、篩分して粒子
径63−150μmの粉末を回収し、これを1000°
C、2時間、アルゴン雰囲気中で熱処理を行った磁性粉
末16gと、二液型エポキシ樹脂(混合時の粘度650
cps、比重1.2)8gとを、計量カップ内で混合、
混練し混合物を作製した。 【0018】直径0.3mmのエナメル被覆銅線を、外
径18mmの円柱に巻取り、高さ6mm、40巻のコイ
ルとし、このコイルを、予め底面の内径が30mmの円
筒形の金型に、中心軸が重なるように配置し、この金型
に混合物を充填し、遠心力10Gをかけて過剰のエポキ
シ樹脂を金型底部の細孔から排除し、磁性粉末の濃縮化
を行なった後、室温で一晩放置してエポキシ樹脂を硬化
させ、これを金型から抜取ってインダクタとした。 【0019】得られたインダクタは、底面が直径30m
mの円、高さが10.2mmの円筒形で、樹脂中に磁性
粉末は均一に分布しており、外力に対して十分な強度を
有していた。インダクタンスをLCRメータにより測定
した結果、1kHzの周波数において、190μHであ
った。 (実施例3)水アトマイズ法により製造された9.5重
量%珪素、5.5重量%アルミ、残部が鉄からなる合金
粉末を篩分して粒子径63−106μmの粉末のみを回
収し、これを1000°C、2時間、アルゴン雰囲気中
で熱処理を行った磁性粉末4.5gと、二液型エポキシ
樹脂(混合時の粘度650cps、比重1.2)2.3
gとを計量カップ内で混合、混練し混合物を作製した。 【0020】直径0.3mmのエナメル被覆銅線を、外
径7mmの円柱に巻取り、高さ5mm、40巻のコイル
とし、このコイルを、予め底面が10×20mmの金型
に、中心軸が重なるように配置し、この金型に混合物を
充填し、遠心力10Gをかけて過剰のエポキシ樹脂を金
型底部の細孔から排除し、磁性粉末の濃縮化を行なった
後、室温で一晩放置してエポキシ樹脂を硬化させ、これ
を金型から抜取ってインダクタとした。 【0021】得られたインダクタは、底面が10×20
mm、高さが10mmの六面体で、樹脂中に磁性粉末は
均一に分布しており、外力に対して十分な強度を有して
いた。インダクタンスをLCRメータにより測定した結
果、1kHzの周波数において、35μHであった。 【0022】 【発明の効果】以上説明したように、本発明のインダク
タの製造方法によれば、高価な金属、特殊な製造装置、
或いは煩雑な製造工程を必要とせず、磁性体及び導体の
持つ本来の特性を100%発現させることができるイン
ダクタを、低廉なコストで製造することができる。ま
た、加圧成形工程を必要としないため、コイルの位置ず
れや、コイルの変形を生ずるおそれがなく、コイルを正
確に目的の位置、形状に配置可能で設計通りの磁気特性
を発揮できる、小型で表面実装に適したインダクタを製
造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an inductor comprising a coil-shaped conductor covered with an insulating coating and a magnetic part formed by enclosing the coil-shaped conductor. 2. Description of the Related Art Inductors such as a smoothing choke coil and a noise filter of a power supply, which are formed by winding a conductor insulated and coated on a toroidal magnetic core, are often used because of its simplicity. However, with the recent downsizing of electronic devices and integration of parts, inductors have been required to have an outer shape and dimensions suitable for downsizing and surface mounting. The structure of winding a conductor coated with insulation on a toroidal magnetic core,
As the miniaturization progresses, it becomes difficult to perform winding, and it is difficult to obtain an outer shape and a dimensional ratio suitable for surface mounting. Therefore, an inductor in which a conventionally used toroidal magnetic core wound with a conductor covered with an insulating material is sealed with a resin or a resin containing a magnetic material, or a thin plate composed of a conductor and a magnetic material is used as a conductor. Inductors which are alternately laminated and sintered so that a part of them has a contact have come to be used.
However, an inductor in which a conductor insulated and coated on a toroidal magnetic core is sealed with a resin or a resin containing a magnetic material does not have a large inductance with respect to dimensions, and thus cannot sufficiently meet the demand for miniaturization. On the other hand, inductors made by laminating and sintering thin plates composed of conductors and magnetic materials alternately so that some of the conductors have contacts make it possible to efficiently surface mount even if the size is reduced because the magnetic flux generated by the coil does not leak outside However, it is necessary to use a noble metal such as silver or palladium for the conductor, and it requires special manufacturing equipment, the manufacturing process is complicated and the manufacturing cost is high, The constituents of the material and the magnetic material are mutually diffused, and the characteristics of the material to be used are also reduced in terms of magnetic characteristics by 10
There is a disadvantage that 0% cannot be expressed. To overcome the disadvantages of these inductors, an insulated conductor is wound and pressed to enclose it in a mixture of magnetic powder and binder in a volume ratio of 6: 4 to 9: 1. A molded inductor has been proposed (see Japanese Patent Application No. 5-291046). This inductor can satisfy the requirements of miniaturization and surface mounting. [0005] However, the inductor having such a structure has a non-uniform pressure distribution in a metal mold at the time of press molding, and is liable to cause displacement of the coil and deformation of the coil. As a result, it cannot be manufactured as designed and the defect rate increases. In addition, if the mixing ratio of the magnetic powder to the resin is increased to improve the performance, the mixture becomes a sticky and lumpy lump, and it is difficult to insert the mixture into the mold. Can not be arranged. Further, the lead wire from the coil impairs the operability during pressure molding. [0006] The present invention solves the above-mentioned problems in inductors, and comprises expensive metal, special manufacturing equipment,
Alternatively, a complicated manufacturing process is not required, the original characteristics of the magnetic material and the conductor can be expressed 100%, the manufacturing cost is low, and the pressure molding process is not required. There is no risk of displacement or deformation of the coil, the coil can be precisely placed at the desired position and shape, and the magnetic characteristics as designed can be exhibited.The inductor can be manufactured in a small size and suitable for surface mounting. It is intended to provide a manufacturing method. SUMMARY OF THE INVENTION The present invention provides a step of winding a conductor coated with insulation in the form of a coil, a step of mixing and kneading a magnetic substance and an epoxy resin, and a step of mixing and kneading the magnetic substance. By embedding the coil-shaped conductor in a mixture of the epoxy resin and a kneaded magnetic material and removing the excess epoxy resin from the mixture of the epoxy resin by centrifugal force and then curing. The above problem is solved by manufacturing an inductor. [0008] Since the coil-shaped conductor is buried in a mixture of a magnetic substance and an epoxy resin without excessive pressure molding, excess epoxy resin is removed by centrifugal force and hardened. , The mixture can be easily charged, there is no risk of coil displacement or coil deformation, and the coil can be precisely positioned at the desired position and shape, regardless of the mixing ratio of the magnetic substance and epoxy resin. A molded article having a constant density can be stably manufactured. FIG. 1 is a perspective view of an inductor manufactured by a method of manufacturing an inductor according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of an inductor manufactured by the manufacturing method,
FIG. 3 is an explanatory view of a step of embedding a coil-shaped conductor in a mixture of a kneaded magnetic substance and an epoxy resin, and FIG. 4 is a diagram showing an excessive epoxy resin from a mixture of a kneaded magnetic substance and an epoxy resin. It is explanatory drawing of the process of removing by centrifugal force. In the method of manufacturing the inductor 1 of this embodiment, first, the conductor 2 covered with the insulation is wound in a coil shape.
The conductor 2 is not particularly limited in its cross-sectional shape, thickness, etc. as long as its surface is insulated and coated with an enamel coating or the like, and is optimal in view of magnetism, electric characteristics and workability required for the inductor 1. The shape and thickness may be determined. In addition, the shape of the coil to be wound includes, for example, a coil having a cross-sectional shape of a circle or a square, which is manufactured by winding, but is not limited thereto. Is also good. Next, the magnetic material and the epoxy resin are mixed and kneaded to produce a mixture 5. The magnetic material is not particularly limited as long as it has soft magnetic characteristics. But,
From the viewpoint of economy and magnetic properties such as magnetic permeability, the metal magnetic material is preferably, for example, iron powder, iron-silicon alloy, iron-silicon-aluminum alloy, iron-nickel alloy, or the like. The particle diameter of the magnetic material is not particularly limited, but is preferably in the range of 20 to 500 μm, and more preferably in the range of 50 to 300 μm in terms of increasing the productivity and the density of the inductor 1. The kind of the magnetic substance to be used may be a single kind or a mixture of two or more kinds. As the epoxy resin, a one-pack type or two-pack type epoxy resin which is used as it is or diluted with a solvent to adjust the viscosity is used. Epoxy resins having a longer pot life are easier to produce, but shorter finger contact times after molding are more productive. Also, a thermosetting resin or a thermosetting resin can be used, but the thermosetting resin must be curable at a temperature within a range that does not impair the insulating coating of the conductor 2. As for the viscosity of the epoxy resin, a low viscosity makes it easier to remove excess resin, but a high viscosity is better to keep the composition of the mixture uniform over a long period of time, so select an appropriate range of viscosity. . The ratio of the magnetic substance to the epoxy resin is made richer in a range in which the mixture 5 can be automatically and quantitatively supplied to the container 6, so that the molding time can be shortened and the cost can be reduced.
Then, the coiled conductor 2 is positioned in the container 6,
A predetermined amount of the mixture 5 is supplied into the container 6 with the measuring cup 7,
A coil-shaped conductor 6 is embedded in a mixture 5 of a kneaded magnetic substance and an epoxy resin. At this time, the mixture 5 of the magnetic substance and the epoxy resin contains an excessive amount of the epoxy resin in order to enable automatic quantitative supply. Since the container 6 can be an open type, accurate positioning of the coil made of the conductor coated with insulation is possible,
Deterioration of operability due to the external electrode 3 of the coil can be avoided. Since pressure molding is not performed, the container 6 does not need to have high pressure resistance and can be made thinner. The shape of the container 6 can be appropriately selected as long as the conductor 2 wound in a coil shape, such as a cylindrical shape or a donut shape, can be accommodated therein, in addition to the hexahedron as shown in FIG. The main function of the epoxy resin is to maintain the shape of the inductor 1 and to insulate between the magnetic powders.
It is preferable that the number is small in the inductor 1. Then, the container 6 in which the coil-shaped conductor 2 is embedded in the mixture 5 of the kneaded magnetic substance and the epoxy resin is attached to the rotating shaft 9 with the support 8 so that the bottom surface 6B is on the outside, and the rotation is performed. give. A large number of pores 10 are formed in the bottom surface 6B of the container 6, and when the container 6 is rotated, the epoxy resin 11 excessively added to enable automatic quantitative supply is removed from the pores 10. Removed by centrifugal force. Excessive epoxy resin 11 is eliminated, and the magnetic material is densified and the predetermined magnetic portion 4 is removed.
Is formed, the container 6 is removed from the rotating shaft 9 and hardened. Through the above steps, the inductor 1 including the coil-shaped conductor 2 covered with the insulating coating and the magnetic part 4 formed by enclosing the coil-shaped conductor 2 is formed. (Example 1) An alloy powder composed of 9.5% by weight silicon, 5.5% by weight aluminum, and the balance of iron produced by a water atomization method was sieved to collect only a powder having a particle diameter of 63 to 106 µm. This was heat-treated at 1000 ° C. for 2 hours in an argon atmosphere, and 22 g of magnetic powder and 11 g of a two-part epoxy resin (viscosity at mixing 650 cps, specific gravity 1.2) were mixed and kneaded in a measuring cup. Then, a mixture was prepared. An enamel-coated copper wire having a diameter of 0.3 mm is wound on a cylinder having an outer diameter of 18 mm to form a coil having a height of 6 mm and a volume of 40 turns. The mixture is filled in this mold, the excess epoxy resin is removed from the pores at the bottom of the mold by applying a centrifugal force of 10 G, and the magnetic powder is concentrated. The epoxy resin was cured by leaving it to stand overnight, and this was removed from the mold to form an inductor. The obtained inductor has a bottom surface of 30 × 30.
It was a hexahedron having a height of 10 mm and a height of 10 mm. The magnetic powder was uniformly distributed in the resin, and had sufficient strength against external force. As a result of measuring the inductance with an LCR meter, the inductance was 210 μH at a frequency of 1 kHz. (Example 2) Pure iron (purity 9) produced by an electrolysis method
9.9% or more) in a nitrogen atmosphere, and sieved to collect a powder having a particle diameter of 63-150 μm,
C, 16 g of magnetic powder heat-treated in an argon atmosphere for 2 hours, and a two-part epoxy resin (viscosity of 650 when mixed)
cps, specific gravity 1.2) 8 g in a measuring cup,
The mixture was kneaded to prepare a mixture. An enamel-coated copper wire having a diameter of 0.3 mm is wound on a cylinder having an outer diameter of 18 mm to form a coil having a height of 6 mm and 40 turns. This coil is previously formed into a cylindrical mold having a bottom surface having an inner diameter of 30 mm. After the center axis is overlapped, the mixture is filled in the mold, and the excess epoxy resin is removed from the pores at the bottom of the mold by applying a centrifugal force of 10 G, and the magnetic powder is concentrated. The epoxy resin was cured by leaving it at room temperature overnight, and the epoxy resin was removed from the mold to obtain an inductor. The obtained inductor has a bottom surface of 30 m in diameter.
It had a circular shape of m and a cylindrical shape with a height of 10.2 mm. The magnetic powder was uniformly distributed in the resin, and had sufficient strength against external force. As a result of measuring the inductance with an LCR meter, the inductance was 190 μH at a frequency of 1 kHz. (Example 3) An alloy powder composed of 9.5% by weight of silicon, 5.5% by weight of aluminum and the balance of iron produced by a water atomization method was sieved to collect only a powder having a particle diameter of 63 to 106 µm. This was heat-treated at 1000 ° C. for 2 hours in an argon atmosphere, with 4.5 g of a magnetic powder and a two-part epoxy resin (viscosity at mixing 650 cps, specific gravity 1.2) 2.3.
g was mixed and kneaded in a measuring cup to prepare a mixture. An enamel-coated copper wire having a diameter of 0.3 mm is wound around a cylinder having an outer diameter of 7 mm to form a coil having a height of 5 mm and 40 turns. The mixture is filled in the mold, the excess epoxy resin is removed from the pores at the bottom of the mold by applying a centrifugal force of 10 G, and the magnetic powder is concentrated. The epoxy resin was cured by leaving it to stand overnight, and this was removed from the mold to form an inductor. The obtained inductor has a bottom surface of 10 × 20
It was a hexahedron having a height of 10 mm and a height of 10 mm. The magnetic powder was uniformly distributed in the resin, and had sufficient strength against external force. As a result of measuring the inductance with an LCR meter, it was 35 μH at a frequency of 1 kHz. As described above, according to the inductor manufacturing method of the present invention, expensive metal, special manufacturing equipment,
Alternatively, an inductor that does not require a complicated manufacturing process and can realize 100% of the original characteristics of the magnetic body and the conductor can be manufactured at low cost. In addition, since there is no need for a pressure molding process, there is no risk of coil displacement or coil deformation, and the coil can be accurately placed at the desired position and shape, and can exhibit magnetic characteristics as designed. Thus, an inductor suitable for surface mounting can be manufactured.

【図面の簡単な説明】 【図1】本発明の一実施例であるインダクタの製造方法
により製造されたインダクタの斜視図である。 【図2】この製造方法により製造されたインダクタの縦
断面図である。 【図3】混練された磁性体とエポキシ系樹脂との混合物
中にコイル状導体を埋設する工程の説明図である。 【図4】混練された磁性体とエポキシ系樹脂との混合物
から過剰なエポキシ系樹脂を遠心力により除去する工程
の説明図である。 【符号の説明】 1 インダクタ 2 導体 3 外部電極 4 磁性部 5 混合物 6 容器 6B 底面 7 計量カップ 8 支持具 9 回転軸 10 細孔 11 エポキシ系樹脂
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an inductor manufactured by a method for manufacturing an inductor according to an embodiment of the present invention. FIG. 2 is a longitudinal sectional view of an inductor manufactured by this manufacturing method. FIG. 3 is an explanatory view of a step of embedding a coiled conductor in a mixture of a kneaded magnetic substance and an epoxy resin. FIG. 4 is an explanatory view of a step of removing an excess epoxy resin from a mixture of a kneaded magnetic substance and an epoxy resin by centrifugal force. [Description of Signs] 1 Inductor 2 Conductor 3 External electrode 4 Magnetic part 5 Mixture 6 Container 6B Bottom 7 Measuring cup 8 Support 9 Rotating shaft 10 Pores 11 Epoxy resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長妻 健一 福島県いわき市好間町上好間字小館20 古河機械金属株式会社いわき工場内 (56)参考文献 特開 平5−114527(JP,A) 特開 平6−84648(JP,A) 特開 平1−147813(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 41/02 H01F 3/08 H01F 27/255 H01F 27/32 H01F 41/04 H01F 41/12 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Nagatsuma 20 Kamiyoshima Kodate, Yoshima-cho, Iwaki-shi, Fukushima Furukawa Machinery & Metal Co., Ltd. Iwaki Plant (56) References JP-A-5-114527 (JP, A JP-A-6-84648 (JP, A) JP-A-1-147813 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 41/02 H01F 3/08 H01F 27 / 255 H01F 27/32 H01F 41/04 H01F 41/12

Claims (1)

(57)【特許請求の範囲】 【請求項1】 絶縁被覆した導体をコイル状に巻線する
工程と、磁性体とエポキシ系樹脂とを混合し混練する工
程と、混練された磁性体とエポキシ系樹脂との混合物中
に前記コイル状の導体を埋設する工程と、混練された磁
性体とエポキシ系樹脂との混合物から過剰なエポキシ系
樹脂を遠心力により除去した後硬化させる工程とからな
るインダクタの製造方法。
(57) [Claim 1] A step of winding a conductor coated with insulation in the form of a coil, a step of mixing and kneading a magnetic substance and an epoxy resin, and a step of mixing and kneading the kneaded magnetic substance and epoxy. An inductor comprising: a step of embedding the coiled conductor in a mixture with a series resin; and a step of removing excess epoxy resin from the mixture of the kneaded magnetic substance and the epoxy resin by centrifugal force and then curing the mixture. Manufacturing method.
JP09667794A 1994-05-10 1994-05-10 Manufacturing method of inductor Expired - Fee Related JP3439829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09667794A JP3439829B2 (en) 1994-05-10 1994-05-10 Manufacturing method of inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09667794A JP3439829B2 (en) 1994-05-10 1994-05-10 Manufacturing method of inductor

Publications (2)

Publication Number Publication Date
JPH07307236A JPH07307236A (en) 1995-11-21
JP3439829B2 true JP3439829B2 (en) 2003-08-25

Family

ID=14171437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09667794A Expired - Fee Related JP3439829B2 (en) 1994-05-10 1994-05-10 Manufacturing method of inductor

Country Status (1)

Country Link
JP (1) JP3439829B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234214A (en) * 2002-02-08 2003-08-22 Toko Inc Electronic circuit module
JP2005136341A (en) * 2003-10-31 2005-05-26 Yonezawa Densen Kk Choke coil
US7362201B2 (en) 2005-09-07 2008-04-22 Yonezawa Electric Wire Co., Ltd. Inductance device and manufacturing method thereof
SE533657C2 (en) 2007-10-16 2010-11-23 Magnetic Components Sweden Ab Powder-based, soft magnetic, inductive component and method and apparatus for manufacturing thereof

Also Published As

Publication number Publication date
JPH07307236A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
CN1627457B (en) Magnetic component and its making method
US7415757B2 (en) Method for manufacturing inductor having coil embedded dust core
JP4768372B2 (en) Coil-enclosed magnetic component and method for manufacturing the same
JP2001185421A (en) Magnetic device and manufacuring method thereof
CN107799260B (en) Magnetic powder and inductor containing the same
JP2011097087A (en) Method of manufacturing high-current thin-type inductor
JP2003229311A (en) Coil-enclosed powder magnetic core, method of manufacturing the same, and coil and method of manufacturing the coil
JP4768373B2 (en) Coil-enclosed magnetic component and method for manufacturing the same
CN108806920B (en) Inductance element
JP2002313632A (en) Magnetic element and its manufacturing method
CN114141523A (en) Manufacturing method of high-performance power inductor
KR102098623B1 (en) Molded Inductor and manufacturing method thereof
JPH08255717A (en) Coil element and its manufacturing method
JP3439829B2 (en) Manufacturing method of inductor
JP2004281778A (en) Choke coil and its producing method
JP4922782B2 (en) Surface mount choke coil
TW202113883A (en) Inductor device and method of fabricating the same
JP2007123376A (en) Compound magnetic substance and magnetic device using same, and method of manufacturing same
JP2003272927A (en) Chip inductor and its manufacturing method
JP2020167304A (en) Method of manufacturing coil component
JPH0352204A (en) Inductance element and manufacture thereof
JP2004253434A (en) Coil component and power supply device using it
JP2004158570A (en) Choke coil and its manufacturing method
TW503408B (en) Method for fabricating surface mountable chip inductor
CN216119793U (en) Double-coil molded inductor with surface-mounted rectangular packaging structure

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees