JPH11344616A - Polarizer - Google Patents

Polarizer

Info

Publication number
JPH11344616A
JPH11344616A JP15038498A JP15038498A JPH11344616A JP H11344616 A JPH11344616 A JP H11344616A JP 15038498 A JP15038498 A JP 15038498A JP 15038498 A JP15038498 A JP 15038498A JP H11344616 A JPH11344616 A JP H11344616A
Authority
JP
Japan
Prior art keywords
polarizer
glass
dielectric
layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15038498A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP15038498A priority Critical patent/JPH11344616A/en
Publication of JPH11344616A publication Critical patent/JPH11344616A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polarizer which is reduced in optical anisotropy by double refraction, high in extinction ratio, is low in insertion loss, and excellent in reliability. SOLUTION: Dielectric layers 5, in which metallic particles 4a having optical absorption anisotropy are dispersed are disposed in >=1 layers on at least one main surface of a dielectric substrate 2 having translucency. The dielectric substrate 2 and the dielectric layers 5 are formed of material of <=3.1×10<-8> cm<2> /N in optical elasticity constant to the light wavelength to be transmitted. According to such polarizer, the setting of the material having an optimum modules of elasticity according to the magnitude of stresses is made possible, thereby, the optical anisotropy by the double refraction of the dielectric layers 5 is reduced and, therefore, the polarization characteristic of the element may be made better than heretofore even under severe environment conditions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透光性を有する誘
電体基板上に、光吸収異方性を有する金属粒子が分散さ
れた誘電体層を1層以上配設した偏光子に関し、特に光
アイソレータに好適な偏光子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer in which at least one dielectric layer in which metal particles having light absorption anisotropy are dispersed is provided on a light-transmitting dielectric substrate. The present invention relates to a polarizer suitable for an optical isolator.

【0002】[0002]

【発明の背景】偏光子は特定の方向に偏光した光を取り
出すために用いるもので、色々な構成の偏光子が研究さ
れている。例えば、複屈折性の結晶を組み合わせたグラ
ントムソンプリズムや複屈折性の大きいルチル結晶,二
色性を有する高分子材料を偏光方向に延伸して作られた
偏光フィルム、誘電体層と金属薄膜層とを交互に積層し
て形成された積層型偏光子(ラミポール)、ホウ珪酸ガ
ラス中に銀コロイドを析出させて偏光方向に延伸させた
金属分散型偏光子(ポーラコア)、島状金属粒子を誘電
体膜とを交互に積層し誘電体膜中に分散させ偏光方向に
延伸させた島状金属薄膜型偏光子などがあげられる。
BACKGROUND OF THE INVENTION Polarizers are used to extract light polarized in a particular direction, and various configurations of polarizers have been studied. For example, a Glan-Thompson prism combining birefringent crystals, a rutile crystal having a large birefringence, a polarizing film made by stretching a dichroic polymer material in the direction of polarization, a dielectric layer and a metal thin film layer Layered polarizer (Ramipole) formed by alternately laminating the metal, a metal-dispersed polarizer (polar core) in which silver colloid is precipitated in borosilicate glass and stretched in the polarization direction, and island-shaped metal particles are insulated. And an island-shaped metal thin-film polarizer which is alternately laminated with a body film, dispersed in a dielectric film, and stretched in the polarization direction.

【0003】これらの偏光子は、サングラス,液晶表示
用フィルター,写真用フィルター,スキー用ゴーグル,
自動車用ヘッドライトやディスプレ用防眩防止フィルタ
ーなどのほか、光ピックアップ,光センサー,光アイソ
レータに幅広く使用され、ここ数年では光記録および光
通信等の各分野において、小型で高性能且つ安価な偏光
子の必要性が高まっている。
These polarizers include sunglasses, liquid crystal display filters, photographic filters, ski goggles,
It is widely used in optical pickups, optical sensors, and optical isolators, in addition to automotive headlights and anti-glare filters for displays, etc. In recent years, it has been small, high-performance and inexpensive in various fields such as optical recording and optical communication. The need for polarizers is growing.

【0004】しかしながら、外部応力や熱応力下におい
ては光弾性効果に起因した複屈折による光学的異方性が
誘起される。その結果、この複屈折による光学的異方性
により光の偏光特性が変化してしまい偏光子が所望の性
能を得ることが難しくなる、という問題があった。
However, under external stress or thermal stress, optical anisotropy is induced by birefringence due to the photoelastic effect. As a result, there is a problem that the optical anisotropy due to the birefringence changes the polarization characteristics of light, making it difficult for the polarizer to obtain desired performance.

【0005】これら力学的外部応力や熱応力は、主に以
下の状況下で生じるものと考えられる。力学的外部応力
は、主に、ガラスの加工工程(切断、他の材料との接
合、表面への成膜など)や、ガラスを光学系に組み込む
操作(治具での保持、接着など)の後に生じる。また、
熱応力は、ガラス内部の発熱(光エネルギーの吸収な
ど)あるいは外部の発熱(周辺機器の発熱など)などに
より生じる。さらに、発熱の際に、ガラスと熱膨張率の
異なる材料を接触接合した場合にも応力が生じる。
It is considered that these mechanical external stresses and thermal stresses are mainly generated under the following conditions. Mechanical external stress is mainly caused by the glass processing process (cutting, bonding with other materials, film formation on the surface, etc.) and the operation of incorporating glass into the optical system (holding with a jig, bonding, etc.) Occurs later. Also,
Thermal stress is generated by heat generated inside the glass (such as absorption of light energy) or heat generated outside (such as heat generated by peripheral devices). Further, when heat is generated, stress is also generated when glass and a material having different coefficients of thermal expansion are contact-joined.

【0006】従って、偏光光学系を光学部品で構成する
場合、力学的外部応力や熱応力が作用することは実質、
複屈折による光学的異方性が誘起されることは避けられ
なかった。
Therefore, when a polarizing optical system is constituted by optical components, mechanical external stress or thermal stress acts substantially.
Inducing optical anisotropy due to birefringence was inevitable.

【0007】所望の偏光特性を得るためには、複屈折に
よる光学異方性により生じる位相差を9.5×10-5
ad以下にすることが必要である。偏光子の延伸方向と
平行な偏光成分を有する光線とこれに直交する偏光成分
を有する光線に対し、複屈折性を示す材料を透過する際
に、それぞれの光線が常光線とこれに直交する異常光線
に分かれる。
In order to obtain a desired polarization characteristic, a phase difference caused by optical anisotropy due to birefringence is reduced to 9.5 × 10 −5 r.
It must be less than or equal to ad. When a light beam having a polarization component parallel to the stretching direction of the polarizer and a light beam having a polarization component orthogonal thereto are transmitted through a material exhibiting birefringence, each light beam becomes an ordinary ray and an anomaly orthogonal to the ordinary ray. Divided into rays.

【0008】常光線の偏光方向は偏光子の延伸方向とは
一致するとは限らず、材料に入射した光線の偏光方向は
常光線の偏光方向に固定されるため、消光比が劣化し、
挿入損失が増大することになる。同様に異常光線の偏光
方向は偏光子の延伸方向と直交する方向に一致するとは
限らず、材料に入射した光線の偏光方向は異常光線の偏
光方向に固定されるため、消光比が劣化し、挿入損失が
増大することになる。偏光子に2N/cm2 の応力が加
わった場合に、位相差を9.5×10-5rad以下にす
るため、光弾性定数は3.1×10-8cm2 /N以下と
なる。
The polarization direction of the ordinary ray does not always coincide with the stretching direction of the polarizer, and the polarization direction of the ray incident on the material is fixed to the polarization direction of the ordinary ray.
Insertion loss will increase. Similarly, the polarization direction of the extraordinary ray does not necessarily coincide with the direction orthogonal to the stretching direction of the polarizer, and the polarization direction of the ray incident on the material is fixed to the polarization direction of the extraordinary ray, so the extinction ratio deteriorates, Insertion loss will increase. When a stress of 2 N / cm 2 is applied to the polarizer, the photoelastic constant is 3.1 × 10 −8 cm 2 / N or less in order to reduce the phase difference to 9.5 × 10 −5 rad or less.

【0009】ここで、光弾性定数が3.1×10-8cm
2 /Nより大きい場合には、複屈折による光学異方性が
生じ所望の特性が得られずにいた。従って、このような
製造方法によって得られた偏光子においては、光通信デ
バイス用の偏光子としても、より満足できるの品質、及
び信頼性が得られていなかった。
Here, the photoelastic constant is 3.1 × 10 −8 cm.
If it is larger than 2 / N, optical anisotropy occurs due to birefringence, and desired characteristics cannot be obtained. Therefore, in the polarizer obtained by such a manufacturing method, more satisfactory quality and reliability have not been obtained even as a polarizer for an optical communication device.

【0010】そこで、本発明は複屈折による光学異方性
を軽減し消光比が高く、さらに挿入損失の低い、信頼性
に優れた偏光子を提供することを目的とする。
Accordingly, an object of the present invention is to provide a highly reliable polarizer which reduces optical anisotropy due to birefringence, has a high extinction ratio, and has a low insertion loss.

【0011】[0011]

【課題を解決するための手段】このような問題点を解決
するために、本発明の偏光子は、透光性を有する誘電体
基板の少なくとも一主面上に、光吸収異方性を有する金
属粒子が分散された誘電体層を1層以上配設し、誘電体
基板及び誘電体層は、透過させる光波長に対する光弾性
定数が3.1×10-8cm2 /N以下の材料で形成され
ていることを特徴とする。
In order to solve such problems, the polarizer of the present invention has a light-absorbing anisotropy on at least one principal surface of a light-transmitting dielectric substrate. At least one dielectric layer in which metal particles are dispersed is provided, and the dielectric substrate and the dielectric layer are made of a material having a photoelastic constant of 3.1 × 10 −8 cm 2 / N or less with respect to a light wavelength to be transmitted. It is characterized by being formed.

【0012】具体的は、ガラス等の誘電体基板上に島状
金属薄膜層を真空蒸着にて設け、ガラス等の誘電体層を
スパッタリング法等でその上に積層する。そして、島状
金属薄膜層と誘電体層を交互に数層形成し、次に加熱下
で基板を引き延ばし、島状金属薄膜層の金属粒子に異方
性を持たせる。島状金属薄膜層での各金属粒子は引き延
ばし方向に引き延ばされて回転楕円体状になり偏光性能
を有することになる。この時に誘電体基板および誘電体
層に光弾性定数が3.1×10-8cm2 /N以下の誘電
体を採用する。好ましくは、1.0×10-8cm2 /N
〜3.0×10-8cm2 /Nの範囲の誘電体とする。
Specifically, an island-like metal thin film layer is provided on a dielectric substrate such as glass by vacuum evaporation, and a dielectric layer such as glass is laminated thereon by a sputtering method or the like. Then, several island-like metal thin film layers and dielectric layers are alternately formed, and then the substrate is stretched under heating, so that the metal particles of the island-like metal thin film layer have anisotropy. Each metal particle in the island-shaped metal thin film layer is stretched in the stretching direction, becomes a spheroid, and has polarization performance. At this time, a dielectric having a photoelastic constant of 3.1 × 10 −8 cm 2 / N or less is used for the dielectric substrate and the dielectric layer. Preferably, 1.0 × 10 −8 cm 2 / N
The dielectric is in the range of up to 3.0 × 10 −8 cm 2 / N.

【0013】図2は光の波長1.3μmにおける1〜1
0N/cm2 の各応力についての光弾性定数と消光比の
関係を示したものである。光弾性定数が3×10-8cm
2 /Nの場合は、応力が7N/cm2 以下で消光比35
dB以上、応力が2N/cm 2 以下では消光比40dB
以上となり、光弾性定数が1×10-8cm2 /Nの場合
には、応力が6N/cm2 以下で消光比40dB以上と
なる。
FIG. 2 is a graph showing the relationship between 1 and 1 at a light wavelength of 1.3 μm.
0N / cmTwoOf photoelastic constant and extinction ratio for each stress of
It shows the relationship. Photoelastic constant is 3 × 10-8cm
Two/ N, the stress is 7 N / cmTwoExtinction ratio 35 below
dB or more, stress is 2N / cm TwoBelow, the extinction ratio is 40 dB
As described above, the photoelastic constant is 1 × 10-8cmTwo/ N
Has a stress of 6 N / cmTwoWith an extinction ratio of 40 dB or more below
Become.

【0014】したがって、少なくとも応力2N/cm2
以下で消光比40dB以上、応力6N/cm2 以下で消
光比35dB以上の範囲が好ましい。また、層間の光弾
性定数の差は小さいほどよい。なお、上記関係は透過光
の波長が0.9〜1.6μmにおいても同様であると思
われる。
Therefore, at least a stress of 2 N / cm 2
It is preferable that the extinction ratio is 40 dB or more, the stress is 6 N / cm 2 or less, and the extinction ratio is 35 dB or more. The smaller the difference in the photoelastic constant between the layers, the better. The above relationship seems to be the same when the wavelength of the transmitted light is 0.9 to 1.6 μm.

【0015】ここで、特に透光性を有する誘電体基板は
ガラス基板が最適であり、光弾性定数が3.1×10-8
cm2 /N以下にすることで複屈折による光学異方性の
度合いを軽減させ、消光比を向上させることができる。
Here, a glass substrate is most suitable as the dielectric substrate having a light transmitting property, and the photoelastic constant is 3.1 × 10 -8.
When the density is not more than cm 2 / N, the degree of optical anisotropy due to birefringence can be reduced, and the extinction ratio can be improved.

【0016】また、誘電体基板及び誘電体層は、例え
ば、硼珪酸ガラス,石英ガラス等からなるものとすると
良い。また、金属粒子はAu,Ag,Pt等の貴金属元
素やCu,Fe,Ni,Cr,AlおよびWのうち少な
くとも一種からなるものとすると良い。
Further, the dielectric substrate and the dielectric layer are preferably made of, for example, borosilicate glass, quartz glass or the like. The metal particles are preferably made of a noble metal element such as Au, Ag, or Pt, or at least one of Cu, Fe, Ni, Cr, Al, and W.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態について
図面に基づいて説明する。図1に示すように、偏光子1
は透光性を有する誘電体基板2の少なくとも一方の主面
上に偏光層3を設けたものであり、この偏光層3は誘電
体基板2上に形状異方性を有する金属粒子4aが多数分
散された島状金属薄膜層4と透光性を有する誘電体層5
とが交互に複数積層されてなるものである。なお,透光
性を有するとは使用波長に対して透明という意味であ
る。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG.
Is provided with a polarizing layer 3 on at least one main surface of a dielectric substrate 2 having a light-transmitting property. Dispersed island-shaped metal thin film layer 4 and dielectric layer 5 having translucency
Are alternately laminated. In addition, having translucency means being transparent with respect to the used wavelength.

【0018】また、金属粒子の個数密度は基板面S方向
における密度であって、少なくとも1個の金属粒子4a
の長軸を含み、且つ基板面Sに平行な面で切断した時に
計測した密度である。
The number density of the metal particles is a density in the direction of the substrate surface S, and is at least one of the metal particles 4a.
Is a density measured when cut along a plane including the major axis and parallel to the substrate surface S.

【0019】基板2は例えば光弾性定数2.78×10
-8cm2 /NのBKガラス(BKとは、ホーヤ−ショッ
ト社の商標)やパイレックスガラス(パイレックスとは
コーニング・ガラス・インダストリーの商標)等のホウ
珪酸ガラスを用い、これ以外にシリカガラス等の高融点
の珪酸塩ガラスを用いても良い。また、このようなガラ
ス材料に代えて他の透明材料を用いてもよいが、ガラス
材料は安価で延伸が容易であるので好適に使用される。
The substrate 2 has, for example, a photoelastic constant of 2.78 × 10
Borosilicate glass such as -8 cm 2 / N BK glass (BK is a trademark of Hoya-Shot Co., Ltd.) and Pyrex glass (Pyrex is a trademark of Corning Glass Industry) are used. May be used. Further, other transparent materials may be used in place of such a glass material, but a glass material is preferably used because it is inexpensive and easy to stretch.

【0020】誘電体層5は基板2と同種の材料が好まし
く、例えば基板2にBKガラスを用いる場合には、誘電
体層5にもBKガラスを用い、熱膨張係数や光弾性定数
等の特性を一致させることが好ましい。
The dielectric layer 5 is preferably made of the same material as the substrate 2. For example, when BK glass is used for the substrate 2, BK glass is also used for the dielectric layer 5, and characteristics such as thermal expansion coefficient and photoelastic constant are used. Are preferably matched.

【0021】金属粒子4aにはAu,Ag,Pt,R
h,Ir等の貴金属元素やCu,Fe,Ni,Cr,A
lおよびW等の遷移金属から選択される一種以上の金属
であることが好ましく、基板2や誘電体層5との濡れ性
が悪く凝集しやすい金属でしかも酸化され難く、誘電体
層5中で金属粒子4aとして存在し得るものが好まし
い。これらの内、特に好ましいものは、低融点なため凝
集が容易でガラスとの濡れが悪く、しかも酸化され難い
Auと安価でガラスとの濡れ性が悪いCuである。な
お、金属粒子4aは金属単体に限定されるものではなく
合金でもよい。金属粒子4aは回転楕円体状で異方性が
あり、図1(但し,光の進行方向をZ方向とし,これに
直交する平面をX−Y平面とする)では、金属粒子4a
の長軸方向がY方向で,短軸方向がX方向である。
Au, Ag, Pt, R
h, Ir and other noble metal elements, Cu, Fe, Ni, Cr, A
It is preferably at least one metal selected from transition metals such as l and W, and is a metal that has poor wettability with the substrate 2 and the dielectric layer 5 and is easy to aggregate, and is hardly oxidized. What can exist as metal particles 4a is preferred. Among them, particularly preferred are Au, which has a low melting point and thus easily aggregates and has poor wettability with glass, and is hardly oxidized and Cu is inexpensive and has poor wettability with glass. The metal particles 4a are not limited to a single metal, but may be an alloy. The metal particles 4a are spheroidal and anisotropic. In FIG. 1 (however, the traveling direction of light is defined as the Z direction, and a plane orthogonal to the Z direction is defined as the XY plane), the metal particles 4a are formed.
The major axis direction is the Y direction, and the minor axis direction is the X direction.

【0022】また、金属粒子4aの長軸方向の長さと短
軸方向の長さの比をアスペクト比とし、ここでは多数の
金属粒子4aのアスペクト比の平均値を単にアスペクト
比と呼ぶものとする。
The ratio of the length in the major axis direction to the length in the minor axis direction of the metal particles 4a is defined as an aspect ratio. Here, the average value of the aspect ratios of a large number of metal particles 4a is simply referred to as the aspect ratio. .

【0023】金属粒子4aが回転楕円体状になるのは、
基板2上に偏光層3の成膜後の延伸時に、基板2ととも
に金属粒子4aが延伸方向に引き延ばされるからであ
る。
The reason why the metal particles 4a have a spheroidal shape is as follows.
This is because the metal particles 4a are stretched in the stretching direction together with the substrate 2 during stretching after the polarizing layer 3 is formed on the substrate 2.

【0024】そして、アスペクト比が大きいほど消光比
が増加するが、それと同時に基板2の延伸率が増加して
延伸が困難になり、しかも消光比の増加率がアスペクト
比の大きい領域で減少するため、偏光層3中の金属粒子
4aのアスペクト比(長軸方向の長さ/短軸方向の長
さ)は3〜30が適当であり、特に好ましくは15〜2
5である。
The extinction ratio increases as the aspect ratio increases, but at the same time, the stretching rate of the substrate 2 increases, making stretching difficult, and the rate of increase of the extinction ratio decreases in a region having a large aspect ratio. The aspect ratio (length in the major axis direction / length in the minor axis direction) of the metal particles 4a in the polarizing layer 3 is suitably from 3 to 30, and particularly preferably from 15 to 2.
5

【0025】なお、消光比は所定波長において偏光して
いない入射光を用いた場合に、X方向の透過光とY方向
の透過光のエネルギーの比をデシベル単位で示したもの
とし、エネルギーの比が10の時に10dBとする。一
方、挿入損失は、所定波長において偏光していない入射
光を用いた場合に、入射光の全エネルギーとY方向の透
過光のエネルギーの比をデシベル単位で示したものと
し、エネルギーの比が0.1の時に0.1dBとする。
The extinction ratio is defined as the energy ratio between the transmitted light in the X direction and the transmitted light in the Y direction in decibels when unpolarized incident light at a predetermined wavelength is used. Is 10 dB when is 10. On the other hand, the insertion loss is defined as the ratio of the total energy of incident light to the energy of transmitted light in the Y direction in decibels when incident light that is not polarized at a predetermined wavelength is used. 0.1 at 0.1 dB.

【0026】また、島状金属薄膜層4中の金属粒子4a
の個数密度は基板面方向に2〜37個/μm 2 とする。
この理由は、個数密度が2個/μm 2 より下回ると偏光
子としての特性が出にくくなり、例えば消光比が20d
Bより低くなるからであり、また、37個/μm 2 より
上回ると金属粒子での吸収が大きく挿入損失が1dBよ
り増大するからである。
The metal particles 4a in the island-shaped metal thin film layer 4
Is 2 to 37 / μm 2 in the substrate surface direction.
The reason for this is that if the number density is less than 2 / μm 2 , it becomes difficult to obtain the characteristics as a polarizer.
This is because it is lower than B, and when it exceeds 37 / μm 2 , the absorption by the metal particles is large and the insertion loss increases more than 1 dB.

【0027】また、金属粒子同士が近づき過ぎて挿入損
失が増大したり、離れすぎて消光比が得られなかったり
していた。各層に対して、ある層の延伸後の金属粒子が
同一の異方性を有し、かつ金属粒子の間隔が短いと粒子
間相互作用により生じる吸収ピーク波長は間隔が長い場
合より短波長側に生じる。また、金属粒子4aの短軸方
向の長さが増加すると、透過すべきX方向の偏光に対す
る挿入損失が増加し,このことからもアスペクト比が3
以上、より好ましくは15以上で短軸方向の長さが短く
挿入損失を小さくすることが好ましい。
Further, the insertion loss is increased due to the metal particles getting too close to each other, or the extinction ratio is not obtained because the metal particles are too far from each other. For each layer, the metal particles after stretching a certain layer have the same anisotropy, and when the spacing between the metal particles is short, the absorption peak wavelength caused by the interaction between the particles is on the shorter wavelength side than when the spacing is long. Occurs. When the length of the metal particles 4a in the minor axis direction increases, the insertion loss with respect to the polarized light in the X direction to be transmitted increases.
As described above, more preferably 15 or more, the length in the short axis direction is short and the insertion loss is preferably reduced.

【0028】金属粒子4aの長軸方向の平均長さが増加
すると、Y方向の吸収ピーク波長が増加し、光通信で用
いる波長(1.3μm 程度)に接近する。しかしなが
ら、金属粒子4aのアスペクト比に製造上の制限があ
り、短軸方向の長さの増加が挿入損失をもたらすことを
加味すると、長軸方向の長さにも制限が生じる。そこ
で、金属粒子4aについての好ましい条件は、アスペク
ト比が3〜30、長軸方向の長さの平均値が100〜3
00nm、短軸方向の長さの平均値が10〜50nmで
あり、より好ましくはアスペクト比が10〜30、最も
好ましくはアスペクト比が15〜25である。図1の場
合、Z方向に入射した入射光L1は、Y方向の偏光成分
が金属粒子4aの自由電子との共鳴で吸収され、X方向
の偏光成分は透過率が高く、偏光した出射光L2とな
る。また、X方向とY方向とでは吸収のピーク波長に差
があり、Y方向ではX方向よりも長波長側に吸収のピー
クがある。そして、特に指摘しない場合、消光比はX方
向の吸収のピークが生じる波長で定める。
As the average length of the metal particles 4a in the major axis direction increases, the absorption peak wavelength in the Y direction increases, approaching the wavelength (about 1.3 μm) used in optical communication. However, there is a limitation in manufacturing the aspect ratio of the metal particles 4a, and taking into account that an increase in the length in the short axis direction causes insertion loss, the length in the long axis direction is also limited. Therefore, preferable conditions for the metal particles 4a are that the aspect ratio is 3 to 30, and the average value of the length in the long axis direction is 100 to 3
00 nm, the average value of the length in the minor axis direction is 10 to 50 nm, more preferably the aspect ratio is 10 to 30, and most preferably the aspect ratio is 15 to 25. In the case of FIG. 1, in the incident light L1 incident in the Z direction, the polarized component in the Y direction is absorbed by resonance with the free electrons of the metal particles 4a, the polarized component in the X direction has a high transmittance, and the polarized outgoing light L2 Becomes Further, there is a difference in absorption peak wavelength between the X direction and the Y direction, and there is an absorption peak on the longer wavelength side than the X direction in the Y direction. Unless otherwise specified, the extinction ratio is determined by the wavelength at which the absorption peak in the X direction occurs.

【0029】[0029]

【実施例】以下発明の好ましい実施例についての詳細な
説明を行うことにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the present invention will be described in detail below.

【0030】実施例1 支持体として光弾性定数2.78×10-8cm2 /Nの
BK7ガラス基板を用い、基板上に誘電体層として光弾
性定数2.78×10-8cm2 /NのBK7ガラス薄膜
層を、金属層として銅(Cu)薄膜層を交互に積層する
ことでCu−BK7ガラスの積層体を構成した。
[0030] Example 1 a BK7 glass substrate of the optical elastic constant 2.78 × 10 -8 cm 2 / N used as a support, the photoelastic constant as a dielectric layer on a substrate 2.78 × 10 -8 cm 2 / A laminate of Cu-BK7 glass was formed by alternately laminating copper (Cu) thin film layers as metal layers with N BK7 glass thin film layers.

【0031】まず、BK7ガラス基板上にマグネトロン
スパッタ成膜法により、真空度2.0×10-3Tor
r、成膜速度10.6nm/secで、膜厚30nmの
第一層目の金属薄膜層であるCu薄膜層を形成し、その
Cu層の上部に真空度2.0×10-3Torr、成膜速
度0.2nm/secで膜厚150nmの第一層目の誘
電体薄膜層であるBK7ガラス薄膜層を形成した。
First, a degree of vacuum of 2.0 × 10 −3 Torr was formed on a BK7 glass substrate by magnetron sputtering.
r, a Cu thin film layer as a first metal thin film layer having a thickness of 30 nm is formed at a film forming rate of 10.6 nm / sec, and a vacuum degree of 2.0 × 10 −3 Torr is formed on the Cu layer. A BK7 glass thin film layer as a first dielectric thin film layer having a thickness of 150 nm was formed at a film forming rate of 0.2 nm / sec.

【0032】その後、第二層目の金属薄膜層であるCu
薄膜層を形成し、そのCu層の上部に第二層目のBK7
ガラス薄膜層を形成した。この一連の工程を繰り返し、
Cu層とBK7ガラス層との交互層からなる積層体を作
製した。
Thereafter, the second metal thin film layer Cu
A thin film layer is formed, and a second layer BK7 is formed on the Cu layer.
A glass thin film layer was formed. Repeat this series of steps,
A laminate composed of alternate layers of a Cu layer and a BK7 glass layer was produced.

【0033】そして、BK7ガラス基板の軟化点近傍の
温度630℃で加熱し、延伸を行い、島状金属粒子の形
状に異方性を持たせ、同時に粒子の配向化も行わせた。
この結果、各Cu層の島粒子の異方性をもち、偏光特性
が1.3μm近傍の波長領域で得られた。また、偏光特
性を調べると、消光比が40dB、挿入損失0.1dB
がで十分な特性を有していた。
The BK7 glass substrate was heated at a temperature of 630 ° C. in the vicinity of the softening point and stretched to impart anisotropy to the shape of the island-shaped metal particles, and at the same time, to orient the particles.
As a result, each Cu layer had anisotropic island particles, and polarization characteristics were obtained in a wavelength region near 1.3 μm. When the polarization characteristics were examined, the extinction ratio was 40 dB and the insertion loss was 0.1 dB.
Had sufficient properties.

【0034】実施例2 支持体として光弾性定数が1.0×10-8cm2 /Nの
フッ素添加ガラス基板を用い、この基板上に誘電体層と
して光弾性定数が1.0×10-8cm2 /Nのフッ素添
加(0.001〜0.005重量%)ガラス薄膜層を用
い、金属層として銅(Cu)薄膜層を使用し、これらを
交互に積層することでCu−フッ素添加ガラス積層体を
構成した。
Example 2 A fluorine-containing glass substrate having a photoelastic constant of 1.0 × 10 −8 cm 2 / N was used as a support, and a photoelastic constant of 1.0 × 10 was formed as a dielectric layer on this substrate. An 8 cm 2 / N fluorine-added (0.001 to 0.005% by weight) glass thin film layer is used, a copper (Cu) thin film layer is used as a metal layer, and these layers are alternately laminated to add Cu-fluorine. A glass laminate was constructed.

【0035】まず、フッ素添加ガラス基板上にマグネト
ロンスパッタ成膜法により真空度2.0×10-3Tor
r、成膜速度7.6nm/secで膜厚30nmの第一
層目の金属薄膜層であるCu薄膜層を形成し、そのCu
層の上部に真空度2.0×10-3Torr、成膜速度
0.2nm/secで膜厚100nmの第一層目の誘電
体薄膜層であるフッ素添加ガラス薄膜層を形成した。こ
の一連の工程を10回繰り返し、Cu層とガラス薄膜層
との交互層からなる積層体を作製した。
First, a degree of vacuum of 2.0 × 10 −3 Torr was formed on a fluorine-added glass substrate by magnetron sputtering.
r, forming a Cu thin film layer as a first metal thin film layer having a film thickness of 30 nm at a film forming rate of 7.6 nm / sec.
At the top of the layer, a fluorine-added glass thin film layer as a first dielectric thin film layer having a thickness of 100 nm was formed at a degree of vacuum of 2.0 × 10 −3 Torr and a film formation rate of 0.2 nm / sec. This series of steps was repeated 10 times to produce a laminate composed of alternating layers of a Cu layer and a glass thin film layer.

【0036】これをガラス基板の軟化点近傍の温度80
0℃で加熱し、延伸を行い、島状金属粒子の形状に異方
性を持たせ、同時に粒子の配向化も行わせた。この結
果、各層の島粒子の形状が同一となり、偏光特性が赤外
域の特定波長において得られ、消光比40dB以上の性
能を有する高消光比の偏光子ができた。
The temperature is set at a temperature 80 near the softening point of the glass substrate.
The film was heated at 0 ° C. and stretched to give the anisotropic metal particles anisotropy and, at the same time, to orient the particles. As a result, the shape of the island particles in each layer became the same, polarization characteristics were obtained at a specific wavelength in the infrared region, and a polarizer having a high extinction ratio having an extinction ratio of 40 dB or more was obtained.

【0037】[0037]

【発明の効果】本発明の偏光子によれば、応力の大きさ
に応じて最適な光弾性率を有する材料を設定できること
ができ、これにより、誘電体層の複屈折による光学的異
方性が低減するため、厳しい環境条件下でも素子の偏光
特性を従来より向上させることが可能となる。
According to the polarizer of the present invention, it is possible to set a material having an optimum photoelastic modulus according to the magnitude of the stress, and thereby, the optical anisotropy due to the birefringence of the dielectric layer can be obtained. , The polarization characteristics of the element can be improved even under severe environmental conditions.

【0038】また、この偏光子は薄膜形成法を用いたも
のであるため、小型化が容易であり、設計の自由度が大
きく、より高精度で応用範囲の広い光学系が設計できる
優れた偏光子を提供できる。
Also, since this polarizer uses a thin film forming method, it is easy to miniaturize, has a high degree of freedom in design, and has excellent polarization which can design an optical system with higher accuracy and a wide range of application. Can provide children.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る偏光子の概略斜視図である。FIG. 1 is a schematic perspective view of a polarizer according to the present invention.

【図2】応力と消光比との関係を説明するグラフであ
る。
FIG. 2 is a graph illustrating a relationship between a stress and an extinction ratio.

【符号の説明】[Explanation of symbols]

1:偏光子 2:誘電体基板 3:偏光層 4:島状金属薄膜層 4a:金属粒子 5:誘電体層 L1:入射光 L2:出射光 1: Polarizer 2: Dielectric substrate 3: Polarizing layer 4: Island-like metal thin film layer 4a: Metal particle 5: Dielectric layer L1: Incident light L2: Outgoing light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透光性を有する誘電体基板の少なくとも
一主面上に、光吸収異方性を有する金属粒子が分散され
た誘電体層を1層以上配設した偏光子であって、前記誘
電体基板及び誘電体層は、透過させる光波長に対する光
弾性定数が3.1×10-8cm2 /N以下の材料で形成
されていることを特徴とする偏光子。
A polarizer comprising at least one dielectric layer in which metal particles having light absorption anisotropy are disposed on at least one principal surface of a light-transmitting dielectric substrate, A polarizer, wherein the dielectric substrate and the dielectric layer are formed of a material having a photoelastic constant of 3.1 × 10 −8 cm 2 / N or less with respect to a wavelength of light to be transmitted.
JP15038498A 1998-05-29 1998-05-29 Polarizer Pending JPH11344616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15038498A JPH11344616A (en) 1998-05-29 1998-05-29 Polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15038498A JPH11344616A (en) 1998-05-29 1998-05-29 Polarizer

Publications (1)

Publication Number Publication Date
JPH11344616A true JPH11344616A (en) 1999-12-14

Family

ID=15495826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15038498A Pending JPH11344616A (en) 1998-05-29 1998-05-29 Polarizer

Country Status (1)

Country Link
JP (1) JPH11344616A (en)

Similar Documents

Publication Publication Date Title
US5864427A (en) Polarizer and production method thereof
JP2834369B2 (en) Birefringent glass wave plate
JPH0756018A (en) Production of polarizer
JPH11344616A (en) Polarizer
JP3602913B2 (en) Polarizing element, optical isolator using the same, and method of manufacturing the same
JP3784198B2 (en) Optical isolator
JP2000171631A (en) Polarizer and optical isolator using the same
JP2002311402A (en) Faraday rotator
WO2014080716A1 (en) Flat plate type functional polarizer and glass polarizer type polarization beam splitter
JPH11248936A (en) High extinction ratio polarizer
JPH06273621A (en) Polarizer and its production
US6806990B2 (en) Optical device and method for producing optical device
JP3722603B2 (en) Manufacturing method of polarizer
JPH11248935A (en) Polarizer and its manufacture
JPH10274711A (en) Polarizing element and optical isolator using the same
JPH09265009A (en) Polarizer
JPH11133229A (en) Polarizer
JP2000193823A (en) Polarizer, and optical isolator using it
JP6440172B2 (en) Inorganic polarizing plate
JP2000171632A (en) Polarizer and waveguide type optical device using the same
JPH07301710A (en) Production of polarizer and apparatus for production
JPH1020116A (en) Polarizing element and its production
JPH1172618A (en) Polarizer
JPH09178939A (en) Polarizer and its production
JP2000137118A (en) Polarizer and optical isolator