JPH1020116A - Polarizing element and its production - Google Patents

Polarizing element and its production

Info

Publication number
JPH1020116A
JPH1020116A JP8170305A JP17030596A JPH1020116A JP H1020116 A JPH1020116 A JP H1020116A JP 8170305 A JP8170305 A JP 8170305A JP 17030596 A JP17030596 A JP 17030596A JP H1020116 A JPH1020116 A JP H1020116A
Authority
JP
Japan
Prior art keywords
layer
dielectric
dielectric substance
polarizing element
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8170305A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8170305A priority Critical patent/JPH1020116A/en
Publication of JPH1020116A publication Critical patent/JPH1020116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the adjustment of the wavelengths of light of a polarizing element constituted by laminating many dielectric substance layers dispersed with metallic particles having anisotropy in a dielectric substance on one main surface of a dielectric substrate having translucency and to miniaturize the element by forming the dielectric substance layers in such a manner that the respective layers thereof vary in thickness from each other. SOLUTION: A laminate P is a laminate before the polarizing element is formed by laminating the many dielectric substance layers dispersed with the metallic particles having the anisotropy in the dielectric substance on the one main surface of the dielectric substrate 1. Namely, a stage for depositing and forming metallic fine particulates on the dielectric substance film forming surface including the dielectric substance substrate 1 consisting of glass, a stage for flocculating the metallic fine particulates and forming the metallic particles on the dielectric substance film forming surface by heating to a temp. lower than the glass softening point and a stage for forming the dielectric substance layers in the form of the films are executed. The metallic layer 2(1) consisting of the metallic fine particulates, the dielectric substance layers 3(1)..., the metallic layer 2(n-1), the dielectric substance layer 3(n-1), the metallic layer 2(n) and the dielectric substance layer 3(n) are laminated on the substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透光性を有する誘
電体基板の少なくとも一主面上に、例えば、金属層と誘
電体層とを交互に被着形成させた多層体を、前記誘電体
基板の主面方向に引き延ばして得られる偏光素子に関す
るものである。
[0001] The present invention relates to a multi-layered structure in which, for example, a metal layer and a dielectric layer are alternately formed on at least one principal surface of a light-transmitting dielectric substrate. The present invention relates to a polarizing element obtained by stretching in the direction of the main surface of a body substrate.

【0002】[0002]

【従来技術とその問題点】従来より、複屈折性の大きな
結晶で構成されたグラントムソンプリズムに代表される
偏光プリズム、ブリュースター条件を利用して偏光成分
を分離するPBS(偏光ビームスプリッタ)、及び高分
子を一方向に配向させた偏光フィルム等が偏光素子の主
流を占めており、このような偏光素子は特定の振動方向
の光だけを透過し、他の光は吸収または反射する機能を
有している。
2. Description of the Related Art Conventionally, a polarizing prism represented by a Glan-Thompson prism composed of a crystal having a large birefringence, a PBS (polarizing beam splitter) for separating a polarized light component using Brewster conditions, In addition, a polarizing film or the like in which a polymer is oriented in one direction occupies the mainstream of the polarizing element, and such a polarizing element has a function of transmitting only light in a specific vibration direction and absorbing or reflecting other light. Have.

【0003】これまでに、様々な構成の偏光素子が検討
され、その一部が実用化されており、例えば光センサー
や光アイソレータ等に広く使用されている。特に、最近
では光通信および光ディスク等の分野を中心に、小型で
高性能であるとともに安価な偏光素子の必要性が高まり
つつあり開発が盛んに行われている。
Hitherto, various configurations of polarizing elements have been studied, and some of them have been put to practical use, and are widely used in, for example, optical sensors and optical isolators. In particular, recently, the necessity of a small-sized, high-performance, and inexpensive polarizing element has been increasing in fields such as optical communication and an optical disk, and development has been actively carried out.

【0004】このような高性能偏光素子には、(1)挿
入損失が少なく、透過率が高いこと、(2)消光比が高
いこと、(3)小型化が可能であること、(4)大量生
産が可能で安価であること、などが主として要求されて
いるが、従来の偏光素子ではそれら要求項目の全てを満
足できるものはなかった。
[0004] Such high-performance polarizing elements include (1) low insertion loss and high transmittance, (2) high extinction ratio, (3) miniaturization is possible, (4). Although it is mainly required that mass production is possible and that it is inexpensive, none of the conventional polarizing elements can satisfy all of the required items.

【0005】そこで、このような要求を満足するため
に、島状の金属薄膜層と透明なガラス層とを交互に積層
して積層体を形成した後、引き延ばし処理を行い、異方
性が付与された島状金属薄膜を形成する方法が提案され
ている(例えば、1990年電子情報通信学会秋期全国
大会,講演予稿集,C−212を参照)。
[0005] In order to satisfy such a demand, an island-shaped metal thin film layer and a transparent glass layer are alternately laminated to form a laminate, which is then stretched to impart anisotropy. A method of forming an insulated metal thin film has been proposed (see, for example, the 1990 IEICE Fall National Convention, Proceedings, C-212).

【0006】この提案によれば、島状構造の金属薄膜層
とガラス層を繰り返し交互に重ねて積層体を形成し、積
層方向に直角な方向に引き延ばすことによって、金属の
島の形状や分布状態に構造的な異方性を与え、共鳴吸収
特性に偏光依存性を持たせることができる。そして、積
層面に垂直に光を入射して使うため、入射方向の偏光素
子の長さ(厚さ)が短くてすむので、大口径の素子を容
易に作製できるという利点がある。さらに、金属薄膜層
とガラス層とを積層することによって、偏光特性を大幅
に向上させている。
According to this proposal, a metal thin film layer and a glass layer having an island-like structure are repeatedly and alternately stacked to form a laminate, and the laminate is stretched in a direction perpendicular to the laminating direction, so that the shape and distribution of the metal islands are improved. Can be given structural anisotropy, and the resonance absorption characteristics can have polarization dependence. Further, since light is incident perpendicularly to the lamination surface and used, the length (thickness) of the polarizing element in the incident direction can be short, so that there is an advantage that a large-diameter element can be easily manufactured. Further, by laminating the metal thin film layer and the glass layer, the polarization characteristics are greatly improved.

【0007】ここで、金属薄膜層に用いる金属材料の要
件は、導電性が高く、かつ物理蒸着が容易であることで
ある。一方、ガラス層に用いる材料としては、以下の理
由から、軟化点が金属薄膜材料の融点以下であることが
必要である。すなわち、引き延ばし処理においては、ガ
ラス層のアニール点以上で、かつ軟化点以下の温度に加
熱して、ガラス層に平行な方向に引き延ばす。
Here, the requirements for the metal material used for the metal thin film layer are to have high conductivity and to facilitate physical vapor deposition. On the other hand, the material used for the glass layer needs to have a softening point equal to or lower than the melting point of the metal thin film material for the following reasons. That is, in the stretching process, the glass layer is heated to a temperature equal to or higher than the annealing point and equal to or lower than the softening point, and is elongated in a direction parallel to the glass layer.

【0008】しかしながら、上記の異方性が付与された
島状構造の金属薄膜を形成し、共鳴吸収特性に偏光依存
性を持たせた偏光素子では、特定波長の光に対してのみ
偏光するので、使用波長に制限があるなど汎用性の乏し
いものしか得られなかったのである。また、偏光させる
光の波長の調整も容易でなかったのである。
However, in the case of a polarizing element in which a metal thin film having an anisotropic structure having the above-mentioned anisotropy is formed and the resonance absorption characteristic has polarization dependency, only a light of a specific wavelength is polarized. However, only those having poor versatility, such as limitations on the wavelength used, could be obtained. Also, it was not easy to adjust the wavelength of the light to be polarized.

【0009】そこで、本発明では光の使用波長の制限が
ないか、偏光させる(吸収させる)光の波長の調整が容
易で小型化が可能な、非常に優れた偏光素子及びその製
造方法を提供することを目的とする。
Therefore, the present invention provides a very excellent polarizing element which does not limit the wavelength of light used, easily adjusts the wavelength of light to be polarized (absorbed), and can be miniaturized, and a method of manufacturing the same. The purpose is to do.

【0010】[0010]

【課題を解決するための手段】上記目的を達成させるた
めの本発明の偏光素子は、透光性を有する誘電体基板の
少なくとも一主面上に、誘電体中に異方性を有する金属
粒子を分散させた誘電体層を多数積層して成る偏光素子
であって、誘電体層の各層はその厚さが相互に異なるこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a polarizing element comprising metal particles having anisotropy in a dielectric on at least one main surface of a dielectric substrate having a light transmitting property. A polarizing element comprising a large number of dielectric layers in which is dispersed, wherein the thickness of each of the dielectric layers is different from each other.

【0011】また、誘電体層の最上層を除く各層の厚み
が、誘電体基板側に位置する層より順次厚くなるよう
に、もしくは順次薄くなるように形成されていることを
特徴とする。
The thickness of each layer except the uppermost layer of the dielectric layer is formed so as to be gradually thicker or thinner than the layer located on the dielectric substrate side.

【0012】ここで、最上層のみは、後記する熱塑性変
形後の表面研磨加工や延伸以外の熱塑性変形に対応でき
るように、熱塑性変形前の最上層の誘電体層を他の誘電
体層より厚くすることがある。このように最上層を厚く
することにより、熱塑性変形後の研磨等の加工に耐える
ことができたり、熱塑性変形の選択においても延伸以外
の簡便性、量産性の高い方法を選択することも可能にな
る。なお、最上層の膜厚を厚くするためには、薄膜成膜
時に成膜時間を延ばしそのまま厚く成膜する方法や、通
常に多層膜を積層した後にディップコーティングやスピ
ンコート法などの厚膜法を含む、いわゆるゾルゲル法と
呼ばれる方法で新たに誘電体薄膜と同一組成の厚膜を形
成してもよい。
Here, only the uppermost layer is formed so that the uppermost dielectric layer before the thermoplastic deformation is thicker than the other dielectric layers so as to cope with surface polishing after thermoplastic deformation and thermoplastic deformation other than stretching. May be. By thickening the top layer in this way, it is possible to withstand processing such as polishing after thermoplastic deformation, and it is also possible to select a method other than stretching, which is simple and high in mass productivity, in selecting thermoplastic deformation. Become. In order to increase the thickness of the uppermost layer, a method of extending the film formation time when forming a thin film and forming a thick film as it is, or a thick film method such as a dip coating or a spin coating method after laminating a multilayer film is usually performed. , A thick film having the same composition as the dielectric thin film may be newly formed by a method called a sol-gel method.

【0013】また、本発明の偏光素子の製造方法は、透
光性を有する誘電体基板上に、誘電体中に異方性を有す
る金属粒子を分散させた誘電体層を多数積層して成る偏
光素子の製造方法であって、誘電体基板の少なくとも一
主面上に、金属層と誘電体層とを交互に、かつ誘電体層
の各層の厚さを相互に変えるようにして多数積層させて
多層体を得、次に誘電体基板を加熱して軟化させるとと
もに引き延ばし、誘電体中に異方性を有する金属粒子を
分散させたことを特徴とする。
Further, the method of manufacturing a polarizing element of the present invention comprises laminating a plurality of dielectric layers in which metal particles having anisotropy are dispersed in a dielectric, on a dielectric substrate having a light transmitting property. A method for manufacturing a polarizing element, comprising: laminating a plurality of metal layers and dielectric layers alternately on at least one main surface of a dielectric substrate, and changing the thickness of each of the dielectric layers to each other. A multilayer body, and then heating and softening and stretching the dielectric substrate to disperse anisotropic metal particles in the dielectric.

【0014】このようにして、基板上に積層される誘電
体層の各層の厚さを相互に変えることにより各層での共
鳴吸収特性の差異を利用し、波長特性を調整することが
可能となる。また、誘電体層の厚さを積層体の第一層か
ら最上層になるに従い徐々に厚くしたり、第一層から最
上層になるに従い徐々に薄くすることで、各層の吸収波
長を異なるようにさせて、全体としての波長特性をブロ
ードにすることが可能になる。
In this manner, by changing the thickness of each of the dielectric layers laminated on the substrate, the wavelength characteristic can be adjusted by utilizing the difference in the resonance absorption characteristics of each layer. . Also, by gradually increasing the thickness of the dielectric layer from the first layer to the uppermost layer of the laminate, or by gradually decreasing the thickness from the first layer to the uppermost layer, the absorption wavelength of each layer is different. , It is possible to broaden the wavelength characteristics as a whole.

【0015】以下に、この理由について説明する。共鳴
吸収特性に偏光依存性を持たせた偏光素子において、金
属粒子中の伝導電子は、どこでも同じ大きさと向きをも
つ一様な電場が加わると、伝導電子は電場から力を受け
て、金属粒子の形状に制限されながら移動する。
Hereinafter, the reason will be described. In a polarization element with resonance-dependent absorption characteristics, the conduction electrons in a metal particle receive a force from the electric field when a uniform electric field with the same magnitude and direction is applied everywhere. Move while being restricted to the shape of.

【0016】その結果、入射光が金属粒子のところを通
過するとその振動電場によって伝導電子が揺さぶられ
る。入射光が金属粒子にあたり続けているとき、伝導電
子は一方で振動電場によって揺さぶられ、他方では電気
抵抗によって止められようとして、最終的に平衡の成り
立つ振幅で振動し続ける。
As a result, when the incident light passes through the metal particles, the conduction electrons are shaken by the oscillating electric field. As the incident light continues to impinge on the metal particles, the conduction electrons, on the one hand, are shaken by the oscillating electric field and, on the other hand, try to be stopped by the electrical resistance, and continue to oscillate at an amplitude that finally reaches equilibrium.

【0017】このとき、電気抵抗を受けながら振動する
電子は、ジュール損失によって熱を放出している。その
ままでは振動のエネルギーは熱に変わり振動が衰えてい
くが、入射光の方から絶えず振動のエネルギーが供給さ
れているため振動は続く。
At this time, the electrons oscillating while receiving the electric resistance emit heat by Joule loss. The energy of the vibration is changed to heat and the vibration is attenuated as it is, but the vibration continues because the energy of the vibration is constantly supplied from the incident light.

【0018】入射光のエネルギーは、一部が伝導電子の
振動エネルギーに変わり、それは次にジュール熱として
放出される。入射光のエネルギーが伝導電子に伝えられ
る結果、金属粒子を通過した後の入射光のエネルギー
は、金属粒子に当たる前と比べて減少している。したが
って、金属粒子のところを通過することにより入射光は
弱くなる。
The energy of the incident light is partially converted to the vibrational energy of conduction electrons, which are then released as Joule heat. As a result of transmitting the energy of the incident light to the conduction electrons, the energy of the incident light after passing through the metal particles is reduced as compared with before the light hits the metal particles. Therefore, passing through the metal particles weakens the incident light.

【0019】しかし、全ての波長の入射光が同じ割合で
弱まるわけではないため、全ての波長で同じ強さをもつ
入射光が金属粒子に当たった場合、伝導電子の振幅を大
きくする波長の入射光ほど多くのエネルギーを失う。つ
まり、伝導電子のフ゜ラス゛マ振動と共振を起こす波長をもつ
入射光がいちばんエネルギーを失う。
However, since the incident light of all wavelengths does not decrease at the same rate, when the incident light having the same intensity at all wavelengths hits the metal particles, the incident light of the wavelength that increases the amplitude of the conduction electrons is applied. Light loses as much energy as light. That is, incident light having a wavelength that causes resonance with the plasma oscillation of the conduction electrons loses the most energy.

【0020】すなわち、いろいろな波長の入射光、言い
換えるといろいろな振動数の入射光が金属粒子に当たっ
たとき、フ゜ラス゛マ振動数と等しい振動数の入射光がいちば
んエネルギーを失い、減衰が激しくなる。また、フ゜ラス゛マ
振動数に厳密に等しくなくとも、振動数がそれに近いと
きは、大きなエネルギーの減少が起こる。
That is, when the incident light of various wavelengths, in other words, the incident light of various frequencies hits the metal particles, the incident light of the frequency equal to the plasma frequency loses the most energy, and the attenuation becomes severe. Even if the frequency is not exactly equal to the frequency of the plasma, a large energy reduction occurs when the frequency is close to it.

【0021】上述の金属粒子に生じる現象は、金属粒子
が異方性をもつ特有の形状(例えば、楕円体形、円柱体
形)を持つ場合でも同様に起こる。そのとき金属粒子の
形状により独特の分極が生じるため、たとえば、長軸長
さと短軸長さを有する金属粒子では長軸方向と短軸方向
(誘電体膜積層体のY軸方向とX軸方向にそれぞれ対応
している)でそれぞれ異なる特定の波長を持つ入射光に
対して共鳴振動を起こし、各方向で光の共鳴吸収が生じ
る。このとき、金属粒子に対し入射する入射光の長軸方
向の偏光成分と短軸方向の偏光成分の吸収量が異なるこ
とに起因して偏光素子としての機能を有することができ
る。
The above-described phenomenon that occurs in the metal particles occurs similarly even when the metal particles have a specific shape having anisotropy (for example, an ellipsoidal shape or a cylindrical shape). At that time, a unique polarization occurs due to the shape of the metal particle. For example, in the case of a metal particle having a long axis length and a short axis length, for example, the long axis direction and the short axis direction (the Y axis direction and the X axis direction of the dielectric film laminate) Respectively), and resonance vibration is caused for incident light having different specific wavelengths, and resonance absorption of light occurs in each direction. At this time, it is possible to have a function as a polarizing element due to the difference in the amount of absorption between the polarization component in the major axis direction and the polarization component in the minor axis direction of the incident light incident on the metal particles.

【0022】したがって、誘電体層の各層の膜厚を変化
させることで、熱塑性変形により金属粒子に各層で異な
る異方性を付与し、波長特性を調整制御することが容易
になる上、各層の吸収波長を異なるようにさせて、全体
としての波長特性をブロードにすることが可能になり、
波長依存性のない優れた偏光素子を提供することができ
る。
Therefore, by changing the film thickness of each layer of the dielectric layer, different anisotropy is given to the metal particles in each layer by thermoplastic deformation, and it becomes easy to adjust and control the wavelength characteristic, and furthermore, to control the wavelength characteristics. By making the absorption wavelength different, it becomes possible to broaden the wavelength characteristics as a whole,
An excellent polarizing element having no wavelength dependency can be provided.

【0023】[0023]

【発明の実施の形態】本発明の実施の形態について図面
に基づき説明する。図1に示す積層体Pは、例えば透光
性を有するガラスから成る誘電体基板1の一主面上もし
くは両主面上に、異方性を有する金属粒子が分散された
誘電体層を相互に厚みを変えながら多数積層させた偏光
素子を形成する前の積層体である。すなわち、例えば、
以下のA〜Cの工程(A:ガラスから成る誘電体基板1
を含む誘電体成膜面に金属微粒子をスパッタ法により被
着形成させる工程,B:誘電体成膜面に該誘電体のガラ
ス軟化点より低い温度で加熱して、金属微粒子を凝集さ
せて金属粒子を形成させる工程,C:スパッタ法により
誘電体層を膜状に形成させる工程)を複数回繰り返し行
い、誘電体基板1上に金属微粒子からなる金属層2
(1),誘電体層3(1)・・・金属層2(n−1),
誘電体層3(n−1),金属層2(n),誘電体層3
(n)を多数積層させたものである。
Embodiments of the present invention will be described with reference to the drawings. In the laminate P shown in FIG. 1, a dielectric layer in which metal particles having anisotropy are dispersed on one main surface or both main surfaces of a dielectric substrate 1 made of, for example, translucent glass is formed. This is a laminate before forming a large number of laminated polarizing elements while changing the thickness. That is, for example,
Steps A to C (A: Dielectric substrate 1 made of glass)
A step of depositing and forming metal fine particles on a dielectric film-forming surface containing a metal by sputtering, and B: heating the dielectric film-forming surface at a temperature lower than the glass softening point of the dielectric to aggregate the metal fine particles. The step of forming particles, C: the step of forming a dielectric layer into a film by sputtering) is repeated a plurality of times to form a metal layer 2 made of metal fine particles on a dielectric substrate 1.
(1), dielectric layer 3 (1)... Metal layer 2 (n-1),
Dielectric layer 3 (n-1), metal layer 2 (n), dielectric layer 3
(N) are stacked in large numbers.

【0024】そして、この積層体Pを所定温度で加熱し
ながら、一定方向(誘電体基板1の主面方向)A−A’
に応力を加えることで延伸等の塑性加工を施し、図2及
び図3に示すように、誘電体基板1上に異方性を有する
金属粒子4(4(1),・・・4(n−1),4
(n))が分散された誘電体層5(5(1),・・・5
(n−1),5(n))が積層されたものが得られる。
そして、しかる後に誘電体基板1の最上層5(n)に対
して研磨を行って所望の偏光素子P1やP2を作製する
のである。ここで、誘電体層の各層の厚さが相互に異な
るように形成されている偏光素子を作製する場合には、
誘電体層の最上層を除く層が順次厚くなるように、もし
くは順次薄くなるように形成する。
Then, while heating the laminated body P at a predetermined temperature, a predetermined direction (direction of the main surface of the dielectric substrate 1) AA '
Are subjected to plastic processing such as stretching by applying stress to the metal particles 4 (4 (1),... 4 (n) having anisotropy on the dielectric substrate 1 as shown in FIGS. -1), 4
(N)) is dispersed in the dielectric layer 5 (5 (1),... 5)
(N-1), 5 (n)) are obtained.
After that, the uppermost layer 5 (n) of the dielectric substrate 1 is polished to produce desired polarizing elements P1 and P2. Here, when manufacturing a polarizing element in which the thickness of each layer of the dielectric layer is different from each other,
The layers other than the uppermost layer of the dielectric layer are formed so as to be sequentially thicker or sequentially thinner.

【0025】なお、加熱温度が金属の融点以上である場
合、誘電体層と共に引き延ばされた金属粒子は、表面張
力により再球体化してしまい、形状の異方性を失って偏
光特性を示さなくなるので、金属の融点より低い温度に
設定される。
When the heating temperature is equal to or higher than the melting point of the metal, the metal particles stretched together with the dielectric layer are re-sphered due to surface tension, lose their shape anisotropy and exhibit polarization characteristics. The temperature is set lower than the melting point of the metal.

【0026】また、誘電体基板1や誘電体層5には、ホ
ウ珪酸ガラスであるBK−7ガラス(SiO2 が約69
wt%,B2 3 が約10wt%),パイレックスガラス
(#7740,SiO2 が約81wt%,B2 3 が約1
3wt%)、石英ガラス等が好適である。また、誘電体層
3は誘電体基板1と同一材料とすることで熱膨張率を等
しくし、相互の密着性を良好とさせる。
The dielectric substrate 1 and the dielectric layer 5 are made of borosilicate glass BK-7 glass (about 69% SiO 2).
wt%, B 2 O 3 is about 10 wt%), Pyrex glass (# 7740, SiO 2 is about 81wt%, B 2 O 3 is about 1
3 wt%), quartz glass and the like are suitable. The dielectric layer 3 is made of the same material as the dielectric substrate 1 so that the coefficient of thermal expansion is equal, and the mutual adhesion is improved.

【0027】また、金属粒子4はAg,Cu,Au,F
e,Ni,Cr等がこれら誘電体層5の材質に対して好
適に使用される。
The metal particles 4 are made of Ag, Cu, Au, F
e, Ni, Cr and the like are suitably used for the material of these dielectric layers 5.

【0028】[0028]

【実施例】以下に、本発明の好ましい実施例について詳
細に説明する。 〔例1〕図2に示すように、積層型偏光素子P1は、誘
電体層5の厚さを積層体(多層体)の第1層から最上層
になるに従い徐々に厚くすることを特徴とするものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. [Example 1] As shown in FIG. 2, the laminated polarizing element P1 is characterized in that the thickness of the dielectric layer 5 is gradually increased from the first layer to the uppermost layer of the multilayer body (multilayer body). Is what you do.

【0029】誘電体基板1はBK7ガラスであり、ま
ず、基板1上に金属微粒子層として銅(Cu)薄膜層
を、誘電体層としてBK7ガラスの薄膜層を交互に積層
することで、CuーBK7積層体を作製する。
The dielectric substrate 1 is made of BK7 glass. First, a copper (Cu) thin film layer as a metal fine particle layer and a BK7 glass thin film layer as a dielectric layer are alternately laminated on the substrate 1 to obtain a Cu-based material. A BK7 laminate is produced.

【0030】すなわち、BK7ガラスの基板1上に、マ
グネトロンスパッタ成膜法により真空度2.0×10-3
Torr、成膜速度7.6nm/secで、膜厚約30
nmの第1層目のCu薄膜層を形成し、そのCu薄膜層
の上に、真空度2.0×10-3Torr、成膜速度0.
2nm/secで膜厚約100nmの第1層目の誘電体
薄膜層であるBK7薄膜層を形成する。
That is, the degree of vacuum was 2.0 × 10 −3 on the BK7 glass substrate 1 by magnetron sputtering.
Torr, film formation speed of 7.6 nm / sec, film thickness of about 30
A first Cu thin film layer having a thickness of 2.0 nm is formed, and a vacuum degree of 2.0.times.10@-3 Torr and a film forming rate of 0.1 nm are formed on the Cu thin film layer.
A BK7 thin film layer as a first dielectric thin film layer having a thickness of about 100 nm at 2 nm / sec is formed.

【0031】この一連の工程を10回繰り返すが、Cu
薄膜層とBK7薄膜層との交互層からなる積層体を作製
する際に、BK7薄膜の膜厚を第2層目から最上層目に
積層数が増加するにつれ、膜厚20nmずつ厚くする。
This series of steps is repeated 10 times.
When manufacturing a laminated body composed of alternating layers of the thin film layer and the BK7 thin film layer, the thickness of the BK7 thin film is increased by 20 nm as the number of stacked layers increases from the second layer to the uppermost layer.

【0032】その後、この積層体をBK7ガラスの軟化
点近傍の温度625℃で加熱し、延伸を行い、図2に示
すように、島状の金属粒子4の形状に異方性を持たせ、
同時に粒子の配向化も行わせる。
Thereafter, the laminate is heated at a temperature of 625 ° C. near the softening point of BK7 glass and stretched, as shown in FIG. 2, to make the shape of the island-shaped metal particles 4 have anisotropy.
At the same time, the particles are oriented.

【0033】ここで、延伸後の金属粒子4のアスペクト
比(長軸長さ/短軸長さ)は、第1層で約5(約25n
m/約5nm)であり、第2層〜最上層は徐々に増加し
て最上層では約10(約400nm/約40nm)であ
った。また、延伸後の第1層の誘電体層は約40nmで
あり、第2層〜最上層は徐々に増加して最上層では約1
43nmであり、全体として延伸により、約1900n
mから約665nmになった。
Here, the aspect ratio (major axis length / minor axis length) of the metal particles 4 after stretching is about 5 (about 25 n) in the first layer.
m / about 5 nm), and gradually increased from the second layer to the top layer, and was about 10 (about 400 nm / about 40 nm) in the top layer. The thickness of the first dielectric layer after stretching is about 40 nm, and the thickness of the second to uppermost layers is gradually increased to about 1 nm in the uppermost layer.
43 nm, and about 1900 n
m to about 665 nm.

【0034】この結果、各層の金属粒子の形状が異な
り、偏光特性が可視光域から赤外域にかけての広い波長
帯域において得られ、波長依存性のない非常に優れた偏
光素子が可能となった。
As a result, the shape of the metal particles in each layer is different, the polarization characteristics are obtained in a wide wavelength band from the visible light region to the infrared light region, and a very excellent polarization element having no wavelength dependence has been made possible.

【0035】〔例2〕図3に示すように、積層型偏光素
子P2は、誘電体層5の厚さを積層体(多層体)の第一
層から最上層になるに従い徐々に薄くすることを特徴と
するものである。
Example 2 As shown in FIG. 3, in the laminated polarizing element P2, the thickness of the dielectric layer 5 is gradually reduced from the first layer to the uppermost layer of the multilayer body (multilayer body). It is characterized by the following.

【0036】すなわち、BK7ガラスの基板1上に、マ
グネトロンスパッタ成膜法により真空度2.0×10-3
Torr、成膜速度7.6nm/secで、膜厚約30
nmの第1層目のCu薄膜層を形成し、そのCu薄膜層
の上に、真空度2.0×10-3Torr、成膜速度0.
2nm/secで、膜厚約30nmの第1層目の金属薄
膜層であるCu薄膜層を形成し、そのCu薄膜層の上
に、真空度2.0×10-3Torr、成膜速度0.2n
m/secで膜厚300nmの第1層目の誘電体薄膜層
であるBK7薄膜層を形成する。
That is, the degree of vacuum was 2.0 × 10 −3 on the BK7 glass substrate 1 by magnetron sputtering film formation.
Torr, film formation speed of 7.6 nm / sec, film thickness of about 30
A first Cu thin film layer having a thickness of 2.0 nm is formed, and a vacuum degree of 2.0.times.10@-3 Torr and a film forming rate of 0.1 nm are formed on the Cu thin film layer.
A Cu thin film layer as a first metal thin film layer having a thickness of about 30 nm is formed at 2 nm / sec, and a vacuum degree of 2.0.times.10@-3 Torr and a film forming speed of 0.1 mm are formed on the Cu thin film layer. 2n
A BK7 thin film layer as a first dielectric thin film layer having a thickness of 300 nm is formed at m / sec.

【0037】この一連の工程を10回繰り返すが、Cu
薄膜層とBK7薄膜層との交互層からなる積層体を作製
する際に、BK7薄膜の膜厚を第2層目から最上層目に
積層数が増加するにつれ、膜厚20nmずつ薄くする。
This series of steps is repeated 10 times.
When manufacturing a laminated body composed of alternating layers of the thin film layer and the BK7 thin film layer, the thickness of the BK7 thin film is reduced by 20 nm as the number of stacked layers increases from the second layer to the uppermost layer.

【0038】その後、この積層体をBK7ガラスの軟化
点近傍の温度625℃で加熱し、延伸を行い、図3に示
すように、島状の金属粒子4の形状に異方性を持たせ、
同時に粒子の配向化も行わせる。
Thereafter, the laminate is heated at a temperature of 625 ° C. in the vicinity of the softening point of BK7 glass and stretched to give anisotropic metal particles 4 as shown in FIG.
At the same time, the particles are oriented.

【0039】ここで、延伸後の金属粒子4のアスペクト
比(長軸長さ/短軸長さ)は、第1層で約10(約30
0nm/約30nm)であり、第2層〜最上層は徐々に
減少して最上層では約5(約50nm/約10nm)で
あった。また、延伸後の第1層の誘電体層は約110n
mであり、第2層〜最上層は徐々に減少して最上層では
約42nmであり、全体として延伸により、約2100
nmから約735nmになった。
Here, the aspect ratio (major axis length / minor axis length) of the metal particles 4 after stretching is about 10 (about 30) in the first layer.
0 nm / about 30 nm), and gradually decreased from the second layer to the top layer, and was about 5 (about 50 nm / about 10 nm) in the top layer. The first dielectric layer after stretching is about 110 n.
m, the thickness of the second layer to the uppermost layer gradually decreases to about 42 nm in the uppermost layer.
nm to about 735 nm.

【0040】この結果、各層の金属粒子の形状が異な
り、偏光特性が可視光域から赤外域にかけての広い波長
帯域において得られ、波長依存性のない非常に優れた偏
光素子が可能となった。
As a result, the shape of the metal particles in each layer is different, the polarization characteristics are obtained in a wide wavelength band from the visible light region to the infrared region, and a very excellent polarization element having no wavelength dependence has been made possible.

【0041】[0041]

【発明の効果】本発明の偏光素子及びその製造方法によ
れば、光の使用波長の制限がない波長特性の非常に優れ
た高性能な偏光素子を提供できる。特に、伝送距離の短
い光アイソレータ、光センサ、及び磁気センサ等に好適
に適用が可能である。
According to the polarizing element and the method of manufacturing the same of the present invention, a high-performance polarizing element having extremely excellent wavelength characteristics without any limitation on the wavelength of light used can be provided. In particular, it can be suitably applied to an optical isolator, an optical sensor, a magnetic sensor, and the like having a short transmission distance.

【0042】また、誘電体基板上に積層させる誘電体層
の膜厚を変化させることにより、延伸等の熱塑性変形に
よる金属粒子の異方性付与の制御が精度良くかつ簡便に
行え、偏光させる(吸収させる)光の波長の調整を容易
とすることができる。
Further, by changing the thickness of the dielectric layer laminated on the dielectric substrate, it is possible to control the anisotropy of the metal particles by thermoplastic deformation such as stretching accurately and easily, and to polarize ( Adjustment of the wavelength of light to be absorbed) can be facilitated.

【図面の簡単な説明】[Brief description of the drawings]

図1:本発明に係る多層体の一例を説明する斜視図。 図2:本発明に係る偏光素子の一例を説明する一部断面
図。 図3:本発明に係る他の偏光素子を説明する一部断面
図。
FIG. 1 is a perspective view illustrating an example of a multilayer body according to the present invention. FIG. 2 is a partial cross-sectional view illustrating an example of a polarizing element according to the present invention. FIG. 3 is a partial cross-sectional view illustrating another polarizing element according to the present invention.

【符号の説明】[Explanation of symbols]

1:誘電体基板、 2:金属層、 3:誘電体層、4:
金属粒子、 5:誘電体層、P:積層体(多層体)、P
1,P2:偏光素子
1: dielectric substrate, 2: metal layer, 3: dielectric layer, 4:
Metal particles, 5: dielectric layer, P: laminate (multilayer), P
1, P2: polarizing element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透光性を有する誘電体基板の少なくとも
一主面上に、誘電体中に異方性を有する金属粒子を分散
させた誘電体層を多数積層して成る偏光素子であって、
前記誘電体層の各層はその厚さが相互に異なることを特
徴とする偏光素子。
1. A polarizing element comprising a plurality of dielectric layers in which metal particles having anisotropy are dispersed in a dielectric on at least one principal surface of a dielectric substrate having a light-transmitting property. ,
A polarizing element, wherein the thickness of each of the dielectric layers is different from each other.
【請求項2】 前記誘電体層の最上層を除く各層の厚み
が、誘電体基板側に位置する層より順次厚くなるよう
に、もしくは順次薄くなるように形成されていることを
特徴とする請求項1に記載の偏光素子。
2. The semiconductor device according to claim 1, wherein the thickness of each of the dielectric layers except for the uppermost layer is formed so as to be gradually thicker or thinner than the layer located on the dielectric substrate side. Item 2. The polarizing element according to Item 1.
【請求項3】 透光性を有する誘電体基板上に、誘電体
中に異方性を有する金属粒子を分散させた誘電体層を多
数積層して成る偏光素子の製造方法であって、前記誘電
体基板の少なくとも一主面上に、金属層と誘電体層とを
交互に、かつ誘電体層の各層の厚さを相互に変えるよう
にして多数積層させて多層体を得、次に前記誘電体基板
を加熱して軟化させるとともに引き延ばし、誘電体中に
異方性を有する金属粒子を分散させたことを特徴とする
偏光素子の製造方法。
3. A method for manufacturing a polarizing element, comprising: laminating a plurality of dielectric layers in which metal particles having anisotropy are dispersed in a dielectric, on a dielectric substrate having a light-transmitting property. On at least one principal surface of the dielectric substrate, a plurality of metal layers and dielectric layers are alternately stacked, and the thickness of each layer of the dielectric layers is alternately changed to obtain a multilayer body. A method for manufacturing a polarizing element, comprising heating and softening and stretching a dielectric substrate to disperse anisotropic metal particles in a dielectric.
JP8170305A 1996-06-28 1996-06-28 Polarizing element and its production Pending JPH1020116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8170305A JPH1020116A (en) 1996-06-28 1996-06-28 Polarizing element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8170305A JPH1020116A (en) 1996-06-28 1996-06-28 Polarizing element and its production

Publications (1)

Publication Number Publication Date
JPH1020116A true JPH1020116A (en) 1998-01-23

Family

ID=15902516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8170305A Pending JPH1020116A (en) 1996-06-28 1996-06-28 Polarizing element and its production

Country Status (1)

Country Link
JP (1) JPH1020116A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011825A (en) * 2011-06-30 2013-01-17 Seiko Epson Corp Polarizing element, liquid crystal device, and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011825A (en) * 2011-06-30 2013-01-17 Seiko Epson Corp Polarizing element, liquid crystal device, and electronic apparatus

Similar Documents

Publication Publication Date Title
US5122907A (en) Light polarizer and method of manufacture
JP4294264B2 (en) Integrated optical element
WO2000008496A1 (en) Polarizer
JPH0756018A (en) Production of polarizer
JPH1020116A (en) Polarizing element and its production
JPH1048419A (en) Polarizing element and its production
JPH09265009A (en) Polarizer
JP2002311402A (en) Faraday rotator
JPH06273621A (en) Polarizer and its production
JPH07294738A (en) Polarizing element
JP3359394B2 (en) Polarizing element
JPH09178939A (en) Polarizer and its production
JP2000171632A (en) Polarizer and waveguide type optical device using the same
JPH04256904A (en) Polarizing element
JP2001083321A (en) Polarizer and method for its production
JP3616349B2 (en) Magneto-optic crystal plate with polarizing element
JPH10274711A (en) Polarizing element and optical isolator using the same
JPH07301710A (en) Production of polarizer and apparatus for production
JP3784198B2 (en) Optical isolator
JPH11248935A (en) Polarizer and its manufacture
JPH11344616A (en) Polarizer
JPH08278422A (en) Reflection type optical wavelength plate and its production
JP3722603B2 (en) Manufacturing method of polarizer
JP3914598B2 (en) Polarizing element
JPH07294729A (en) Thin-film spectral filter