JPH07294729A - Thin-film spectral filter - Google Patents

Thin-film spectral filter

Info

Publication number
JPH07294729A
JPH07294729A JP6090167A JP9016794A JPH07294729A JP H07294729 A JPH07294729 A JP H07294729A JP 6090167 A JP6090167 A JP 6090167A JP 9016794 A JP9016794 A JP 9016794A JP H07294729 A JPH07294729 A JP H07294729A
Authority
JP
Japan
Prior art keywords
thin
island
films
film
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090167A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Yukiko Furukata
由紀子 古堅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6090167A priority Critical patent/JPH07294729A/en
Publication of JPH07294729A publication Critical patent/JPH07294729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To form a thin-film filter which is inexpensive and has excellent environmental resistance and high performance by constituting this filter of multilayered films formed by alternately laminating discontinuous metallic thin films formed as island shapes and dielectric thin films. CONSTITUTION:This thin-film spectral filter is composed of the multilayered laminates formed by alternately laminating the dielectric thin films 1 which have a dielectric constant epsilon1 and the metallic thin films 2 which have a dielectric constant epsilon2 and are formed as the island shapes on a dielectric substrate 7 of a prism type or plate type which is a base. As a more specific example, the filter is obtd. by forming the Ag thin film layers 2 by vacuum vapor deposition on the incident face of a prism (base) 7 of glass and heating the films after the vapor deposition by a heating method with radiation heat and trimming the shapes of the island-shaped Ag particles to a spherical shape. The SiO2 thin-film layers 3 are formed by sputtering vapor deposition in the upper part of the Ag layers and further, the Cu thin-film layers 4 are formed by vacuum vapor deposition thereon. The films after the vapor deposition are heated to trim the shape of the island-shaped Cu particles to the spherical shape. At this time, the multilayered laminate formed in such a manner is functioned as the thin-film spectral filter for incident light of a wavelength 0.8mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学的吸収波長の選択
性を有する改良された薄膜分光フィルターに関する。
FIELD OF THE INVENTION The present invention relates to an improved thin film spectral filter having optical absorption wavelength selectivity.

【0002】[0002]

【従来技術】従来のフィルターには、ある種の溶液をセ
ル内に入れたものやプラスチックに着色剤を入れたもの
のように着色イオンを利用したフィルターや、基板上に
誘電体薄膜を多数積層して、多層薄膜の干渉を利用した
フィルター等がある。
2. Description of the Related Art A conventional filter is a filter that uses colored ions such as one in which a certain solution is put in a cell or one in which a coloring agent is put in plastic, or a large number of dielectric thin films are laminated on a substrate. For example, there is a filter utilizing interference of multilayer thin films.

【0003】[0003]

【発明が解決しようとする課題】従来のフィルターにお
いては、着色イオンを利用したものは環境の温度変化に
より性能が著しく低化したり、破損したりして環境性に
問題があった。また干渉を利用したものは薄膜の内部応
力によりフィルターの性能に限界があり高性能化が困難
であった。本発明は上記課題を解決するために、安価で
かつ耐環境性に優れた高性能な薄膜フィルターを提供す
る。
Among the conventional filters, those using colored ions have a problem in environmental performance because their performance is remarkably lowered or damaged due to environmental temperature change. Further, in the case of utilizing interference, the performance of the filter is limited due to the internal stress of the thin film, and it is difficult to achieve high performance. In order to solve the above problems, the present invention provides a high-performance thin film filter that is inexpensive and has excellent environment resistance.

【0004】[0004]

【課題を解決するための手段】本発明は、支持体である
プリズム型もしくはプレート型の誘電体基板上に誘電率
ε1 の誘電体薄膜1と誘電率ε2 の島状化した金属薄膜
2を交互に積層した多層体で構成される。金属薄膜2を
非常に薄く蒸着すると初期段階では膜が不連続である。
この時の金属の性質は通常のバルクの時と異なり、特定
波長の光に対して光吸収が生じる。さらに、吸収される
光の波長は金属薄膜物質の種類と島状粒子の粒径により
変化する。つまり薄膜物質と粒径を制御することで任意
の波長に対して薄膜分光フィルターとして機能させるこ
とができる。
SUMMARY OF THE INVENTION The present invention comprises a support and a prismatic or plate type dielectric on the substrate of the dielectric constant epsilon 1 dielectric thin film 1 and the thin metal film 2 were islands of dielectric constant epsilon 2 It is composed of a multilayer body in which the layers are alternately laminated. When the metal thin film 2 is deposited very thinly, the film is discontinuous in the initial stage.
The property of the metal at this time is different from that of the normal bulk, and light absorption occurs for light of a specific wavelength. Further, the wavelength of the absorbed light changes depending on the type of metal thin film material and the particle size of the island-shaped particles. That is, by controlling the thin film substance and the particle size, it is possible to function as a thin film spectral filter for an arbitrary wavelength.

【0005】[0005]

【作用】島状金属粒子中には、自由電子がありこの自由
電子が、多数の正イオンを互いに結び付ける役割をす
る。一つの自由電子を、隣り合う二個の正イオンがひっ
ぱって離さなければ間接的に二個の正イオンが結合した
ことになる。この電子は島状金属粒子中を動きまわって
いるが、移動した自由電子(自由電子)の位置には別の
自由電子が位置するので外から見れば静止状態である。
電場が作用していないときの島状金属粒子は、静止した
イオンの球と静止した自由電子の球が重なっていて電気
的に中性な混合物である。
In the island-shaped metal particles, there are free electrons, and these free electrons play the role of connecting many positive ions to each other. Unless two adjacent positive ions pull apart one free electron, two positive ions are indirectly bound. Although these electrons move around in the island-shaped metal particles, another free electron is located at the position of the moved free electron (free electron), so that it is in a stationary state when viewed from the outside.
When no electric field is applied, the island-shaped metal particles are an electrically neutral mixture of stationary ion spheres and stationary free electron spheres.

【0006】このような島状金属粒子に、どこでも同じ
大きさと向きをもつ一様な電場が加わると、これら静止
していた伝導電子は電場から力を受けて、電場の向きと
は反対向きに動き出す。イオンの方は静止したままと考
える。一様な電場のもとでは、島状金属粒子中どこにい
る電子も同じだけ移動するから、電子は球の形を保った
まま、電場と反対向きに移動する。その結果、イオンの
作っている球と自由電子の作っている球とは中心がず
れ、自由電子のみ存在する部分と、取り残されたイオン
のみ存在する部分ができる。そうして、球の表面には、
負に帯電した部分と正に帯電した部分が生じ、誘導電荷
が発生する。
When a uniform electric field having the same size and direction is applied to such island-shaped metal particles everywhere, these stationary conduction electrons receive a force from the electric field and become opposite to the direction of the electric field. Start moving. Ions are considered to remain stationary. Under a uniform electric field, the electrons moving anywhere in the island-shaped metal particles move the same amount, so the electrons move in the direction opposite to the electric field while maintaining the sphere shape. As a result, the sphere formed by the ions and the sphere formed by the free electrons are deviated from each other, and a portion where only free electrons exist and a portion where only the left-over ions exist are formed. Then, on the surface of the sphere,
Negatively charged portions and positively charged portions are generated, and induced charges are generated.

【0007】ここで今の場合電場は毎秒光の振動数に対
応して1015回も向きを変えるから、この電子の球も上
へ動いたり下へ動いたり、1015回も上下動する。この
ようして、入射光が島状金属粒子のところを通過すると
その振動電場によって自由電子が揺さぶられる。入射光
が島状金属粒子に当たり続けているとき、自由電子は一
方で振動電場によって揺さぶられ、他方では電気抵抗に
よって止められようとして、最終的に平衡の成り立つ振
幅で振動を続ける。
In this case, since the electric field changes its direction 10 15 times in response to the frequency of light per second, this electron sphere also moves up and down and moves up and down 10 15 times. Thus, when the incident light passes through the island-shaped metal particles, free electrons are shaken by the oscillating electric field. As the incident light continues to hit the island-shaped metal particles, the free electrons continue to oscillate with an amplitude that is in equilibrium, being shaken by the oscillating electric field on the one hand and stopped by electrical resistance on the other hand.

【0008】このとき、電気抵抗を受けながら振動する
電子は、ジュール損失によって熱を放出している。その
ままでは振動のエネルギーは熱に変わり振動が衰えてい
くが、入射光の方から絶えず振動のエネルギーが供給さ
れているため振動は続く。入射光のエネルギーは一部が
伝導電子の振動エネルギーに変わり、それは次にジュー
ル熱として放出される。入射光のエネルギーが自由電子
に伝えられる結果、島状金属粒子を通過した後の入射光
のエネルギーは、島状金属粒子に当たる前と比べて減少
している。島状金属粒子のところを通過することにより
入射光は弱くなる。しかし、全ての波長の入射光が同じ
割合で弱まるわけではないので全ての波長で同じ強さを
もつ入射光が島状金属粒子に当たった場合、自由電子の
振幅を大きくする波長の入射光ほど多く吸収されてエネ
ルギーを失う。つまり、自由電子のプラズマ振動と共振
を起こす波長をもつ入射光が最も多く吸収されてエネル
ギーを失う。
At this time, the electrons vibrating while receiving the electric resistance emit heat due to Joule loss. As it is, the energy of vibration changes to heat and the vibration declines, but the vibration continues because the energy of vibration is continuously supplied from the incident light. Part of the energy of the incident light is converted into vibrational energy of conduction electrons, which is then emitted as Joule heat. As a result of the energy of the incident light being transferred to the free electrons, the energy of the incident light after passing through the island-shaped metal particles is reduced as compared with that before hitting the island-shaped metal particles. The incident light is weakened by passing through the island-shaped metal particles. However, since incident light of all wavelengths does not weaken at the same rate, when incident light of the same intensity at all wavelengths hits the island-shaped metal particles, the incident light of a wavelength that increases the amplitude of free electrons is Much is absorbed and energy is lost. In other words, most incident light having a wavelength that causes resonance with plasma oscillation of free electrons is absorbed and energy is lost.

【0009】いろいろな波長の入射光、言い換えるとい
ろいろな振動数の入射光が島状金属粒子に当たったと
き、プラズマ振動数と等しい振動数の入射光が最も多く
吸収されてエネルギーを失い、減衰が激しくなる。ま
た、プラズマ振動数に厳密に等しくなくとも、振動数が
それに近いときは、大きなエネルギーの減少が起こる。
上述の島状金属粒子に生じる現象は島状粒子を有する不
連続な金属薄膜全体に対しても同様に起こる。その場
合、吸収される光の波長は、
When incident light of various wavelengths, in other words, incident light of various frequencies, hits the island-shaped metal particles, most of the incident light having a frequency equal to the plasma frequency is absorbed and loses energy to be attenuated. Becomes fierce. Also, even if the frequency is not exactly equal to the plasma frequency, when the frequency is close to it, a large energy reduction occurs.
The above-mentioned phenomenon occurring in the island-shaped metal particles similarly occurs in the whole discontinuous metal thin film having the island-shaped particles. In that case, the wavelength of the absorbed light is

【0010】[0010]

【数1】 [Equation 1]

【0011】の関係(Mieの理論)により求められ
る。これらのことから薄膜分光フィルターとして機能す
る。
It is obtained by the relationship (Mie's theory). From these things, it functions as a thin film spectral filter.

【0012】[0012]

【実施例】以下本発明の好ましい実施例について詳細に
説明する。支持体としてガラスのプリズム(屈折率1.
47)を用い、プリズムの入射面上にSiO2 層(屈折
率1.47)とAg層(屈折率0.065−j4.0)
とCu層(屈折率0.260−j5.26)を交互に積
層することでSiO2 −Ag−Cu積層体を構成する。
The preferred embodiments of the present invention will be described in detail below. A glass prism (refractive index 1.
47), a SiO 2 layer (refractive index 1.47) and an Ag layer (refractive index 0.065-j4.0) are formed on the incident surface of the prism.
Constituting the SiO 2 -Ag-Cu laminate by laminating Cu layer (refractive index 0.260-j5.26) alternately with.

【0013】まずプリズム上に真空度1.0×10-3
orr、蒸着速度0.2Å/secで真空蒸着により膜
厚50ÅのAg層を形成し、蒸着後の膜を輻射熱加熱法
により膜を300℃前後に加熱し島状のAg粒子の形状
を球状に整える。そのAg層の上部に真空度1.0×1
-3Torr、蒸着速度2.0Å/secで膜厚200
0ÅのSiO2 層をスパッタ蒸着を行って形成する。こ
の時は膜の加熱は行わない。さらに真空度1.0×10
-3Torr、蒸着速度0.15Å/secで真空蒸着に
より、そのSiO2 層の上部に膜厚50ÅのCu層を成
膜する。さらにCu膜と同様に蒸着後の膜を輻射熱加熱
法により膜を300℃前後に加熱し島状のCu粒子の形
状を球状に整える。この時、波長0.8μmの入射光に
対して薄膜分光フィルターとして機能させることができ
る。
First, a vacuum degree of 1.0 × 10 −3 T is set on the prism.
Orr, deposition rate of 0.2 Å / sec to form a 50 Å film thickness Ag layer by vacuum evaporation, the film after evaporation is heated to around 300 ℃ by radiant heat heating method to make the island-like Ag particles spherical. Arrange. The degree of vacuum is 1.0 × 1 above the Ag layer.
Film thickness of 200 at 0 -3 Torr and vapor deposition rate of 2.0Å / sec
A 0Å SiO 2 layer is formed by sputter deposition. At this time, the film is not heated. Vacuum degree 1.0 × 10
A Cu layer having a film thickness of 50 Å is formed on the SiO 2 layer by vacuum evaporation at -3 Torr and an evaporation rate of 0.15 Å / sec. Further, similarly to the Cu film, the film after vapor deposition is heated to about 300 ° C. by a radiant heating method to adjust the shape of the island-shaped Cu particles into a spherical shape. At this time, it can function as a thin film spectral filter for incident light having a wavelength of 0.8 μm.

【0014】さらにAg層とSiO2 層とCu層の交互
層からなる積層体をガラスプリズムの両面に形成するこ
とで波長選択性を向上させることができる。またビーム
スプリッタを利用して複数のビームに分割した後、薄膜
分光フィルターを用いてそれぞれ異なる波長の光にする
ことも可能である。なお、これらに用いられている材質
は全て安価で耐久性の高いものにより構成されいる。
Further, the wavelength selectivity can be improved by forming a laminated body composed of alternating layers of Ag layer, SiO 2 layer and Cu layer on both sides of the glass prism. It is also possible to split the light into a plurality of beams using a beam splitter and then use a thin-film spectral filter to make light of different wavelengths. The materials used for these are all inexpensive and highly durable.

【0015】[0015]

【発明の効果】比較的容易な作製法を用いて薄膜分光フ
ィルターの高耐久性化が図れ、また使用する誘電体およ
び金属薄膜の種類により様々な特性のものを設計するこ
とができる。その結果、安価でかつ耐環境性に優れた高
性能な薄膜分光フィルターを提供することができる。
The durability of the thin film spectral filter can be improved by using a relatively easy manufacturing method, and various characteristics can be designed depending on the types of the dielectric and metal thin film used. As a result, it is possible to provide a high-performance thin film spectral filter that is inexpensive and has excellent environment resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による薄膜分光フィルターの構造を示す
略図。
FIG. 1 is a schematic diagram showing the structure of a thin film spectral filter according to the present invention.

【図2】本発明による薄膜分光フィルターの動作原理を
説明する略図。
FIG. 2 is a schematic diagram illustrating the operating principle of a thin film spectral filter according to the present invention.

【図3】従来の薄膜分光フィルターの構成および動作原
理を示す略図。
FIG. 3 is a schematic diagram showing the configuration and operation principle of a conventional thin film spectral filter.

【符号の説明】[Explanation of symbols]

1:交互積層膜 6:出射光 2:Ag薄膜層 7:支持体 3:SiO2 薄膜層 8:低屈折率層 4:Cu薄膜層 9:高屈折率層1 5:入射光 10:高屈折率層21: Alternate layered film 6: Emitted light 2: Ag thin film layer 7: Support 3: SiO 2 thin film layer 8: Low refractive index layer 4: Cu thin film layer 9: High refractive index layer 1 5: Incident light 10: High refractive index Stratum 2

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】島状化した不連続な金属薄膜と誘電体薄膜
とを交互に積層した多層膜により構成されたことを特徴
とする薄膜分光フィルター。
1. A thin film spectral filter comprising a multi-layer film in which island-shaped discontinuous metal thin films and dielectric thin films are alternately laminated.
【請求項2】島状化した不連続なAg、Au、Cu等の
金属薄膜とSiO2 、MgO2 等の誘電体薄膜とを交互
に積層した多層膜により構成されたことを特徴とする薄
膜分光フィルター。
2. A thin film comprising a multi-layer film in which island-shaped discontinuous metal thin films such as Ag, Au and Cu and dielectric thin films such as SiO 2 and MgO 2 are alternately laminated. Spectral filter.
JP6090167A 1994-04-27 1994-04-27 Thin-film spectral filter Pending JPH07294729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090167A JPH07294729A (en) 1994-04-27 1994-04-27 Thin-film spectral filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090167A JPH07294729A (en) 1994-04-27 1994-04-27 Thin-film spectral filter

Publications (1)

Publication Number Publication Date
JPH07294729A true JPH07294729A (en) 1995-11-10

Family

ID=13990934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090167A Pending JPH07294729A (en) 1994-04-27 1994-04-27 Thin-film spectral filter

Country Status (1)

Country Link
JP (1) JPH07294729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501391A (en) * 2003-08-06 2007-01-25 ユニバーシティー オブ ピッツバーグ Nano-optical element for enhancing surface plasmon and method for manufacturing the same
JP2008089821A (en) * 2006-09-29 2008-04-17 Univ Of Tokyo Optical multilayer reflective film
JP2022177659A (en) * 2021-05-18 2022-12-01 株式会社豊田中央研究所 Structure, device and method for manufacturing structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501391A (en) * 2003-08-06 2007-01-25 ユニバーシティー オブ ピッツバーグ Nano-optical element for enhancing surface plasmon and method for manufacturing the same
JP2008089821A (en) * 2006-09-29 2008-04-17 Univ Of Tokyo Optical multilayer reflective film
JP2022177659A (en) * 2021-05-18 2022-12-01 株式会社豊田中央研究所 Structure, device and method for manufacturing structure

Similar Documents

Publication Publication Date Title
Gao et al. Template‐Free Growth of Well‐Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses
JP2000105313A (en) Dispersion compensator
KR930002932B1 (en) Liquid crystal light valve and associated bonding structure
US6034820A (en) Dielectric optical filter with absorptive metal layer
JPH07294729A (en) Thin-film spectral filter
JPS6027623A (en) Window glass shielding electromagnetic radiation
JP3359394B2 (en) Polarizing element
WO2018180128A1 (en) Laminated body, building material, window material, and radiation cooling device
JPH07294738A (en) Polarizing element
JPH03284705A (en) Polarized beam splitter
JPH06273621A (en) Polarizer and its production
JPH09265009A (en) Polarizer
JPH1048419A (en) Polarizing element and its production
JPH11337733A (en) Double refractive plate and its manufacture
JPH08304625A (en) Polarizing element and its production
JP3472338B2 (en) Polarizing element
JP2874439B2 (en) Optical wavelength tunable filter and method of manufacturing the same
JPH09258116A (en) Variable wavelength filter
JPH05142605A (en) Nonlinear optical material and its production
JP2783491B2 (en) Laminated light polarization control device for near infrared to visible light region
JP2001080974A (en) Composite base plate material and method for producing the same
CN220271588U (en) Total dielectric reflection film and laser radar rotating mirror comprising same
JPS5997105A (en) Interference type polarizer
JPH1020116A (en) Polarizing element and its production
JP2001194526A (en) Multilayer film reflective mirror