JPH09265009A - Polarizer - Google Patents

Polarizer

Info

Publication number
JPH09265009A
JPH09265009A JP7290796A JP7290796A JPH09265009A JP H09265009 A JPH09265009 A JP H09265009A JP 7290796 A JP7290796 A JP 7290796A JP 7290796 A JP7290796 A JP 7290796A JP H09265009 A JPH09265009 A JP H09265009A
Authority
JP
Japan
Prior art keywords
film
dielectric
thin film
thin films
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7290796A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Toru Fukano
徹 深野
Yasushi Sato
恭史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7290796A priority Critical patent/JPH09265009A/en
Publication of JPH09265009A publication Critical patent/JPH09265009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Polarising Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a low-cost polarizer capable of easily increasing the area, not causing the peeling of thin films and excellent in durability by satisfying specified conditions between the wavelength of light incident on a multilayered film and the thickness of each metallic thin film and between the wavelength and the thickness of each dielectric thin film. SOLUTION: A mlultilayered film is formed on a plate-shaped dielectric substrate 2 by alternately laminating islanded metallic thin films 3 having a dielectric constant ε1 and dielectric thin films 4 having a dielectric constant ε2 to obtain the objective polarizer 1. The wavelength λ of light incident on the multilayered film and the thickness dm of each of the metallic thin films 3 satisfy the relation of λ/1,000<dm<λ/50 and the wavelength λ and the thickness dd of each of the dielectric thin films 4 satisfy the relation of λ/27<dd<λ/2. The dielectric substrate 2 is made of quartz glass, BK-7 glass, etc., the metallic thin films 3 are made of a metal such as Ag or Cu and the dielectric thin films 4 are preferably made of the same material as the substrate 2 so as not to produce difference in the coefft. of thermal expansion between the thin films 4 and the substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバ通信用も
しくは光ファイバセンサ用部品などに使用される偏光子
に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer used for optical fiber communication or optical fiber sensor parts.

【0002】[0002]

【従来の技術】従来の主たる偏光子として、(1)複屈
折性の大きな結晶で構成されたグラントムソンプリズム
に代表される偏光プリズム、(2)ブリュースター条件
を利用して偏光成分を分離するPBS(偏光ビームスプ
リッタ)、(3)高分子材料を一定方向に配向させて一
方向の偏光成分を吸収する偏光フィルム、(4)透明な
ガラスを透明固体媒体となし、この媒体中に楕円状の銀
粒子を一定方向に揃えながら分散させ、これによって異
方性をもたせるようにした偏光ガラス、(5)基板上に
多数の誘電体薄膜を積層し、その多層薄膜の干渉を利用
した素子などがある。
2. Description of the Related Art As a conventional main polarizer, (1) a polarizing prism represented by a Glan-Thompson prism composed of a crystal having a large birefringence, and (2) a polarized component is separated by utilizing Brewster conditions. PBS (polarizing beam splitter), (3) a polarizing film that orients a polymer material in a certain direction and absorbs polarized components in one direction, (4) uses transparent glass as a transparent solid medium, and has an elliptical shape in this medium. Polarized glass in which silver particles are dispersed while aligning in a certain direction to give anisotropy, and (5) a device in which a large number of dielectric thin films are laminated on a substrate and the interference of the multilayer thin films is used, etc. There is.

【0003】[0003]

【発明が解決しようとする課題】これら各種偏光子のう
ち、(1)の偏光プリズムにおいては、方解石などの天
然に存在する結晶を利用しているが、天然結晶では、そ
の大きさに限りがあり、大型のものが得られにくく、そ
のため偏光子の大面積化が難しく、その上、たいへん高
価である。(2)のPBSや(3)の偏光フィルムで
は、安価であるが、その反面、消光比が低く、耐久性に
劣っている。(4)の偏光ガラスでは、光学的に透明な
媒質に金属粒子を分散させ、所定の温度と圧力で押し出
し、金属粒子を伸長させて偏光特性をもたせているの
で、金属粒子の形状制御のための製造温度管理がたいへ
ん厳しく、特性の安定性が低いという問題点がある。
(5)の偏光子では、誘電体薄膜と複素誘電体薄膜とを
交互に積層化した構成であって、大面積化するには積層
数を増加させなければならないが、実際にはせいぜい2
00層程度までしか積層できず、そのために大面積化が
難しく、しかも、薄膜の剥離などの欠点もあって耐久性
に問題がある。
Among these various polarizers, the polarizing prism of (1) uses naturally occurring crystals such as calcite, but natural crystals are limited in size. However, it is difficult to obtain a large-sized one, and thus it is difficult to increase the area of the polarizer, and moreover, it is very expensive. The PBS of (2) and the polarizing film of (3) are inexpensive, but on the other hand, the extinction ratio is low and the durability is poor. In the polarizing glass of (4), the metal particles are dispersed in an optically transparent medium and extruded at a predetermined temperature and pressure to elongate the metal particles so that they have polarization characteristics. There is a problem that the manufacturing temperature control is extremely strict and the stability of the characteristics is low.
The polarizer of (5) has a structure in which dielectric thin films and complex dielectric thin films are alternately laminated. To increase the area, the number of laminated layers must be increased, but actually at most 2
Since only about 00 layers can be laminated, it is difficult to increase the area, and there is a defect in peeling of a thin film, which causes a problem in durability.

【0004】本発明者は上記事情に鑑みて鋭意研究に努
めた結果、(5)の偏光子と同様に異なる薄膜を交互に
積層するが、誘電体薄膜と複素誘電体薄膜の多層膜に代
えて、複数の島状化した不連続な金属薄膜と複数の誘電
体薄膜とを交互に積層して多層膜化した場合に、多層膜
に対する入射光の波長λと、金属薄膜の膜厚dm と、誘
電体薄膜の膜厚dd との間で、ある関係を満たすこと
で、偏光子の大面積化を容易に図ることができるととも
に、薄膜の剥離が生じないことを知見した。
As a result of earnest research in view of the above circumstances, the inventor of the present invention alternately stacks different thin films similarly to the polarizer of (5), but replaces with a multilayer film of a dielectric thin film and a complex dielectric thin film. When a plurality of island-shaped discontinuous metal thin films and a plurality of dielectric thin films are alternately laminated to form a multilayer film, the wavelength λ of incident light on the multilayer film and the thickness dm of the metal thin film It has been found that by satisfying a certain relationship with the film thickness dd of the dielectric thin film, it is possible to easily increase the area of the polarizer and to prevent peeling of the thin film.

【0005】したがって本発明は上記知見により完成さ
れたものであり、その目的は、多層膜を設けた偏光子に
おいて、大面積化が容易にでき、しかも、薄膜の剥離が
生じない低コストでかつ耐久性に優れた高性能な偏光子
を提供することにある。
Therefore, the present invention has been completed based on the above findings, and it is an object of the present invention to easily increase the area of a polarizer provided with a multilayer film, and at a low cost without peeling of the thin film. It is to provide a high-performance polarizer having excellent durability.

【0006】[0006]

【課題を解決するための手段】本発明の偏光子は、誘電
体基板上に複数の島状化した不連続な金属薄膜と、複数
の誘電体薄膜とを交互積層した多層膜を配するととも
に、その多層膜に対する入射光の波長λと、金属薄膜の
膜厚dm と、誘電体薄膜の膜厚dd とが、下記の関係に
設定されていることを特徴とする。
A polarizer of the present invention has a multilayer film in which a plurality of island-shaped discontinuous metal thin films and a plurality of dielectric thin films are alternately laminated on a dielectric substrate. The wavelength λ of incident light with respect to the multilayer film, the film thickness dm of the metal thin film, and the film thickness dd of the dielectric thin film are set in the following relationship.

【0007】λ/1000<dm <λ/50 λ/27<dd <λ/2Λ / 1000 <dm <λ / 50 λ / 27 <dd <λ / 2

【0008】[0008]

【発明の実施の形態】図1は本発明の偏光子1の斜視図
であり、図2は偏光子1の動作原理図である。偏光子1
は、石英ガラスなどからなるプレート型の誘電体基板2
上に誘電率ε1 の島状化した金属薄膜3、誘電率ε2 の
誘電体薄膜4をそれぞれ順次交互に積層して多層膜を配
した構成である。これらの図において、各層3、4は簡
略して数個の層を積層したものを表しているが、実際に
は多数の層を積層した構造であって、さらに金属薄膜3
が挟まれている場合には、黒い層として表示している。
1 is a perspective view of a polarizer 1 of the present invention, and FIG. 2 is an operation principle diagram of the polarizer 1. Polarizer 1
Is a plate-type dielectric substrate 2 made of quartz glass or the like.
In this structure, an island-shaped metal thin film 3 having a permittivity ε1 and a dielectric thin film 4 having a permittivity ε2 are alternately laminated in this order to form a multilayer film. In each of these figures, each of the layers 3 and 4 simply represents a stack of several layers, but in reality, it has a structure in which a large number of layers are stacked, and the metal thin film 3 is further included.
When the is sandwiched, it is displayed as a black layer.

【0009】この多層膜はスパッタリングや真空蒸着な
どの薄膜形成手段によって設けるが、その際、金属薄膜
3を非常に薄く成膜形成した場合には、成膜初期で膜が
不連続に島状化し、そのような金属薄膜は通常のバルク
時とは異なり、特定波長の光に対して光吸収が生じるこ
とを確認した。
This multi-layer film is provided by a thin film forming means such as sputtering or vacuum deposition. At this time, when the metal thin film 3 is formed to be a very thin film, the film is discontinuously formed into islands at the initial stage of film formation. , It was confirmed that such a metal thin film absorbs light of a specific wavelength, unlike the usual bulk.

【0010】そして、その光吸収の光波長は金属薄膜を
構成する金属粒子(本発明においては、多数の金属原子
から構成される粒子を金属粒子と呼ぶ)の形状に依存さ
れ、とくに金属粒子を積層方向に対して垂直な方向(成
膜面にわたって)に延伸させ、配向させると、金属粒子
の延伸方向の偏光成分が大きく吸収され、これによって
透過光は特定の偏光成分を有して、その結果、偏光子を
構成する。
The light wavelength of the light absorption depends on the shape of the metal particles (in the present invention, particles composed of a large number of metal atoms are referred to as metal particles) forming the metal thin film. When stretched and oriented in the direction perpendicular to the stacking direction (over the film formation surface), the polarized component in the stretching direction of the metal particles is largely absorbed, whereby the transmitted light has a specific polarized component and As a result, a polarizer is formed.

【0011】上記誘電体基板2は、石英ガラス、BK−
7ガラス、パイレックスガラスなどで構成し、金属薄膜
3はAg、Cu、Au、Fe、Ni、Crなどにより形
成する。さらに誘電体薄膜4には、誘電体基板2と同様
なBK−7ガラス、パイレックスガラスでもって形成す
るなどして、同じ材料を使用するのが望ましく、これに
よって誘電体薄膜4と誘電体基板2との間で熱膨張係数
に差が生じなくなり、そのため、誘電体薄膜4に応力が
発生しなくなって、膜剥離が生じなくなる。
The dielectric substrate 2 is made of quartz glass, BK-
The thin metal film 3 is made of Ag, Cu, Au, Fe, Ni, Cr, or the like. Furthermore, it is desirable to use the same material for the dielectric thin film 4 by forming it with BK-7 glass or Pyrex glass similar to that of the dielectric substrate 2, whereby the dielectric thin film 4 and the dielectric substrate 2 can be used. There is no difference in the coefficient of thermal expansion between the two, so that no stress is generated in the dielectric thin film 4 and film peeling does not occur.

【0012】本発明者は理論的考察を踏まえて、幾多の
実験を繰り返しおこなったところ、その多層膜に対する
入射光の波長λと、金属薄膜3の膜厚dm と、誘電体薄
膜4の膜厚dd とを、下記の関係に設定した場合、安定
して加熱延伸をおこなうことができ、それによって優れ
た偏光特性の偏光子1が得られることを知見した。 λ/1000<dm <λ/50 λ/27<dd <λ/2 つぎに本発明に係る理論的考察を述べる。金属薄膜3中
には伝導電子があって、この電子が多数の正イオンを互
いに結び付ける作用があるが、その電子は金属薄膜3を
なす金属粒子中を動きまわっている(金属薄膜3は連続
膜ではなく、島状金属薄膜と呼ばれる不連続膜であっ
て、そのために金属粒子が基板上に独立して敷き詰めら
れた膜となる)。そして、金属薄膜3に対して、電場が
作用していない場合、その金属粒子は、静止したイオン
の球ならびに静止した電子の球が重なり、電気的に中性
となる。
The present inventor repeatedly conducted a number of experiments based on theoretical considerations. As a result, the wavelength λ of incident light with respect to the multilayer film, the film thickness dm of the metal thin film 3, and the film thickness of the dielectric thin film 4 were obtained. It has been found that when dd is set to the following relationship, the heat stretching can be stably performed, and thereby the polarizer 1 having excellent polarization characteristics can be obtained. λ / 1000 <dm <λ / 50 λ / 27 <dd <λ / 2 Next, theoretical consideration according to the present invention will be described. There are conduction electrons in the metal thin film 3, and these electrons have a function of connecting a large number of positive ions to each other, but the electrons move around in the metal particles forming the metal thin film 3 (the metal thin film 3 is a continuous film). Rather, it is a discontinuous film called an island-shaped metal thin film, which results in a film in which metal particles are independently spread on a substrate). When the electric field is not acting on the metal thin film 3, the metal particles become electrically neutral because the stationary sphere of ions and the stationary sphere of electrons overlap.

【0013】他方、各金属粒子に大きさと向きが同じで
ある一様な電場が加わった場合には、イオン(金属粒子
を構成する種類によってAu+ 、Ag2+、Al3+、Cu
2+、Ni+ などがある)に対して、電子は電場の向きと
反対方向に動き出す。
On the other hand, when a uniform electric field having the same size and direction is applied to each metal particle, ions (Au + , Ag 2+ , Al 3+ , Cu depending on the type of the metal particle are used).
2+ , Ni +, etc.), the electrons start moving in the direction opposite to the direction of the electric field.

【0014】すなわち、かかる一様な電場のもとでは、
いずれの金属粒子も、それを構成する電子が同じ距離だ
け移動し、そのため、これらの電子は球形状を維持しな
がら、電場の方向と反対の向きに移動し、これにより、
イオンからなる球と、電子からなる球との双方の中心が
ずれ、その結果、電子のみが存在する部分と、取り残さ
れたイオンのみが存在する部分ができ、各金属粒子の表
面には、負に帯電した部分と正に帯電した部分が生じ、
誘導電荷ができる。
That is, under such a uniform electric field,
In any metal particle, the electrons that make up it move the same distance, so that these electrons move in a direction opposite to the direction of the electric field, while maintaining their spherical shape.
The centers of both the sphere consisting of ions and the sphere consisting of electrons are displaced, and as a result, there are portions where only electrons exist and portions where only left-over ions exist, and the surface of each metal particle is negative. There is a positively charged part and a positively charged part,
There is an induced charge.

【0015】ちなみに、上述したとおりに電場が加わっ
た場合に、その電場が毎秒1015回向きを変えると、電
子の球も毎秒1015回上下に動くことになる。
[0015] Incidentally, when an electric field is applied as described above, when the electric field is varied per second 10 15 times direction, so that electrons of the sphere also move up and down per 1015 times.

【0016】かくして、このような電場のもとで、入射
光が金属薄膜3の各金属粒子を通過すると、振動電場に
よって電子が揺さぶられ、そして、入射光が金属粒子に
当たり続けていると、電子は振動電場によって揺さぶら
れるが、その半面、電気抵抗によって阻止され、最終的
に平衡状態になる振幅でもって振動し続ける。
Thus, when the incident light passes through each metal particle of the metal thin film 3 under such an electric field, the electron is shaken by the oscillating electric field, and when the incident light continues to hit the metal particle, the electron Is swayed by an oscillating electric field, on the other hand, it continues to oscillate with an amplitude that is blocked by electrical resistance and finally reaches equilibrium.

【0017】すなわち、電気抵抗を受けながら振動する
電子は、ジュール損失によって熱を放出し、その振動が
衰えていくが、入射光の方から絶えず振動のエネルギー
が供給されるので、振動は存続し、その結果、金属粒子
を通過した光のエネルギーは、金属粒子に当たる前の入
射光のエネルギーと比べて減少し、その出射光は弱めら
れる。
That is, the electrons vibrating while receiving electric resistance release heat due to Joule loss, and the vibration decays. However, since the vibration energy is continuously supplied from the incident light, the vibration continues. As a result, the energy of the light that has passed through the metal particles is reduced as compared with the energy of the incident light before hitting the metal particles, and the emitted light is weakened.

【0018】ただし、すべての波長の入射光が同じ割合
で弱まるわけではなく、様々な波長の入射光(いろいろ
な振動数の入射光)が金属粒子に当たったとき、電子の
プラズマ振動数と等しい振動数の入射光がもっともエネ
ルギーを失って、減衰が激しくなり、プラズマ振動数に
厳密に等しくなくとも、振動数がそれに近い場合でも、
大きなエネルギーの減少が生じる。
However, incident light of all wavelengths is not weakened at the same rate, and when incident light of various wavelengths (incident light of various frequencies) hits a metal particle, it is equal to the plasma frequency of electrons. Incident light at a frequency loses most energy and becomes heavily attenuated, even if the frequency is not exactly equal to the plasma frequency,
A large energy loss occurs.

【0019】そこで、本発明者は上記理論的考察を踏ま
えて、さらに鋭意研究に努めた結果、上述した金属粒子
に生じる現象は、金属薄膜3を構成する金属粒子が特有
の形状(たとえば、楕円体形、円柱体形)をもつ場合に
顕著であって、金属粒子の形状により特有の分極が生じ
ることを知見した。
Therefore, as a result of further diligent research based on the above theoretical consideration, the present inventor has found that the above-described phenomenon occurring in the metal particles has a shape (for example, an ellipse) peculiar to the metal particles constituting the metal thin film 3. It has been found that the polarization is remarkable in the case of having a body shape and a cylindrical body shape, and that a specific polarization occurs depending on the shape of the metal particles.

【0020】さらに本発明者は、金属薄膜3および誘電
体薄膜4を、ある膜厚条件に設定して加熱延伸をおこな
うと、長軸半径RL と短軸半径RS を有する金属粒子が
形成され、これに伴って長軸方向と短軸方向で(それぞ
れ図2のY軸方向とX軸方向に対応する)、それぞれ異
なる特定の波長をもつ入射光に対して共鳴振動を起こさ
せ、これにより、各方向で光の共鳴吸収が生じ、その結
果、金属薄膜3中の金属粒子に対する入射光の長軸方向
の偏光成分と短軸方向の偏光成分の吸収量が異なること
に起因して偏光子としての機能を有することを知見し
た。
Further, the present inventor sets the metal thin film 3 and the dielectric thin film 4 under a certain film thickness condition and heat-stretches them to form metal particles having a major axis radius RL and a minor axis radius RS. Along with this, in the major axis direction and the minor axis direction (corresponding to the Y axis direction and the X axis direction in FIG. 2, respectively), resonance vibrations are caused for incident lights having different specific wavelengths, respectively, and thereby, Resonant absorption of light occurs in each direction, and as a result, the absorption amount of the polarized component in the major axis direction and the polarized component in the minor axis direction of the incident light with respect to the metal particles in the metal thin film 3 is different. It was found that it has the function of.

【0021】したがって、かかる知見にもとづいて、つ
ぎの関係を導出するにいたった。 λ/1000<dm <λ/50 λ/27<dd <λ/2 金属薄膜3の膜厚dm がλ/10000以下である場合
には、金属薄膜中の金属粒子が成長しなくなって、金属
粒子に異方性が与えられなくなり、それがλ/50以上
の場合には、金属薄膜が不連続な島状薄膜とならない
で、連続薄膜となって、反射膜となす。
Therefore, based on such knowledge, the following relationship has been derived. λ / 1000 <dm <λ / 50 λ / 27 <dd <λ / 2 When the film thickness dm of the metal thin film 3 is λ / 10000 or less, the metal particles in the metal thin film do not grow and the metal particles When the anisotropy is not given and the thickness is λ / 50 or more, the metal thin film does not become a discontinuous island-shaped thin film but becomes a continuous thin film and serves as a reflective film.

【0022】誘電体薄膜4の膜厚dd がλ/27以下で
ある場合には、金属粒子を埋め込むことができないで、
金属粒子を異方性となすことができず、それがλ/2以
上の場合には、膜厚が厚いために膜内に応力が生じて剥
離し、そのために損失増加となる。
When the film thickness dd of the dielectric thin film 4 is λ / 27 or less, metal particles cannot be embedded,
When the metal particles cannot be anisotropic and have a thickness of λ / 2 or more, the film thickness is large, so that stress is generated in the film and peeling occurs, resulting in an increase in loss.

【0023】[0023]

【実施例】【Example】

(例1)本例の偏光子1においては、BK−7ガラス
(屈折率1.51)からなるプレート型の誘電体基板2
上に金属薄膜3としてAg層(屈折率0.392−j
8.06)を、誘電体薄膜4としてBK−7ガラス層
(屈折率1.51)をそれぞれ順次交互に積層して多層
膜を配した構成である。
(Example 1) In the polarizer 1 of this example, a plate-type dielectric substrate 2 made of BK-7 glass (refractive index 1.51) is used.
An Ag layer (having a refractive index of 0.392-j
8.06) as a dielectric thin film 4 and BK-7 glass layers (refractive index 1.51) are alternately laminated in this order to form a multilayer film.

【0024】この構成の偏光子1を作製するには、まず
誘電体基板2上に真空蒸着によって真空度1.0×10
-3Torr、蒸着速度0.02nm/secの条件下で
膜厚5nmのAg層を形成し、その蒸着後にAg層に対
して輻射熱加熱法により400℃前後で加熱し、これに
より、島状のAg粒子形状を球状(この球状の径はたと
えば100nm〜500nm)に整える。ついで、その
Ag層の上部にスパッタリングによって真空度1.0×
10-3Torr、蒸着速度0.2nm/secで膜厚1
00nmのBK−7ガラス層を成膜形成する。
In order to manufacture the polarizer 1 having this structure, first, a vacuum degree of 1.0 × 10 is formed on the dielectric substrate 2 by vacuum vapor deposition.
-3 Torr, an Ag layer having a film thickness of 5 nm is formed under the conditions of a vapor deposition rate of 0.02 nm / sec, and after the vapor deposition, the Ag layer is heated at about 400 ° C. by a radiant heat heating method, thereby forming an island shape. The Ag particle shape is adjusted to be spherical (the diameter of this spherical is, for example, 100 nm to 500 nm). Then, a vacuum degree of 1.0 × is formed on the Ag layer by sputtering.
Film thickness 1 at 10 -3 Torr and deposition rate 0.2 nm / sec
A BK-7 glass layer of 00 nm is formed.

【0025】以上の一連の工程を数回繰り返し、Ag層
とBK−7ガラス層との交互に積層して、多層膜をな
す。この多層膜に対して、BK−7ガラス基板の軟化点
近傍の温度(600℃)で加熱しながら、延伸をおこな
って、島状金属粒子の形状に異方性をもたせ、同時に粒
子を配向させる。
The above series of steps are repeated several times to alternately stack Ag layers and BK-7 glass layers to form a multilayer film. The multilayer film is stretched while being heated at a temperature (600 ° C.) near the softening point of the BK-7 glass substrate so that the island-shaped metal particles have anisotropy and the particles are oriented at the same time. .

【0026】そして、この構成の偏光子1によれば、波
長λが1310nmである場合、λ/1000〜λ/5
0に対応する1.31nm〜26.2nmの範囲内に、
dm(5nm)がある。また、λ/27〜λ/2に対応
する48.5nm〜655nmの範囲内に、dd (10
0nm)がある。
According to the polarizer 1 having this structure, when the wavelength λ is 1310 nm, λ / 1000 to λ / 5.
Within the range of 1.31 nm to 26.2 nm corresponding to 0,
There is dm (5 nm). Further, within the range of 48.5 nm to 655 nm corresponding to λ / 27 to λ / 2, dd (10
0 nm).

【0027】かくして得られた偏光子1によれば、大面
積化を容易に達成することができ、さらに金属薄膜3お
よび誘電体薄膜4の膜厚dm 、dd が本発明の条件を満
たすので、金属粒子の形状がきわめて良好に揃い、しか
も、消光比45dB以上で、偏光特性が所望の波長にお
いて安定して得られた。その上、薄膜の剥離もなく、耐
久性が著しく向上した。
According to the thus-obtained polarizer 1, a large area can be easily achieved, and the film thicknesses dm and dd of the metal thin film 3 and the dielectric thin film 4 satisfy the conditions of the present invention. The shapes of the metal particles were extremely well aligned, the extinction ratio was 45 dB or more, and the polarization characteristics were stably obtained at the desired wavelength. Moreover, the thin film was not peeled off, and the durability was remarkably improved.

【0028】(例2)(例1)の偏光子1においては、
金属薄膜3としてAg層を形成しているが、本例におい
ては、それに代えてAu層を配して、そのほかは同じ構
成である。
(Example 2) In the polarizer 1 of (Example 1),
Although the Ag layer is formed as the metal thin film 3, in this example, an Au layer is arranged instead of the Ag layer, and the other configurations are the same.

【0029】このAu層は、真空蒸着によって真空度
1.0×10-3Torr、蒸着速度0.015nm/s
ecの成膜条件でもって、膜厚5nmで形成する。ま
た、Ag膜と同様に蒸着後の膜を輻射熱加熱法により3
00℃前後に加熱し、これによって島状のAu粒子形状
を球状に整える。ついで、そのAg層の上部にスパッタ
リングによって真空度1.0×10-3Torr、蒸着速
度0.2nm/secで膜厚100nmのBK−7ガラ
ス層を成膜形成する。そして、同様に一連の工程を数回
繰り返して、Au層とBK−7ガラス層とを交互に積層
して、多層膜をなし、さらにこの多層膜に対して、BK
−7ガラス基板の軟化点近傍の温度(600℃)で加熱
しながら、延伸をおこなって、島状金属粒子の形状に異
方性をもたせ、同時に粒子を配向させる。
The Au layer is vacuum-deposited at a vacuum degree of 1.0 × 10 −3 Torr and a deposition rate of 0.015 nm / s.
The film thickness is 5 nm under the film forming conditions of ec. In addition, as with the Ag film, the film after vapor deposition is subjected to radiant heat
It is heated to around 00 ° C., and thereby the island-shaped Au particle shape is made spherical. Then, a BK-7 glass layer having a film thickness of 100 nm is formed on the Ag layer by sputtering at a vacuum degree of 1.0 × 10 −3 Torr and a deposition rate of 0.2 nm / sec. Then, similarly, a series of steps are repeated several times to alternately stack Au layers and BK-7 glass layers to form a multilayer film.
-7 While heating at a temperature (600 ° C.) near the softening point of the glass substrate, stretching is performed so that the shape of the island-shaped metal particles has anisotropy and the particles are simultaneously oriented.

【0030】かくして得られた偏光子1によれば、(例
1)と同様に金属薄膜3および誘電体薄膜4の膜厚が本
発明の条件を満たしており、そのため、大面積化を容易
に達成することができ、さらに金属粒子の形状がきわめ
て良く揃い、消光比45dB以上で、偏光特性が所望の
波長において安定して得られた。さらに薄膜の剥離もな
くなるために耐久性も向上した。
According to the thus obtained polarizer 1, the film thicknesses of the metal thin film 3 and the dielectric thin film 4 satisfy the conditions of the present invention as in the case of (Example 1). Therefore, it is easy to increase the area. In addition, the shapes of the metal particles were extremely well aligned, the extinction ratio was 45 dB or more, and the polarization characteristics were stably obtained at the desired wavelength. Further, since the peeling of the thin film is eliminated, the durability is also improved.

【0031】なお、本発明は上記実施形態および実施例
に限定されるものではなく、本発明の要旨を逸脱しない
範囲内で、種々の変更や改良などを何ら差し支えない。
The present invention is not limited to the above-described embodiments and examples, and various modifications and improvements may be made without departing from the gist of the present invention.

【0032】[0032]

【発明の効果】以上のとおり、本発明によれば、複数の
島状化した不連続な金属薄膜と複数の誘電体薄膜とを交
互に積層して多層膜化するとともに、その多層膜に対す
る入射光の波長と、金属薄膜の膜厚と、誘電体薄膜の膜
厚との間で、所要の条件を満たすことで、偏光子の大面
積化を容易に図ることができるとともに、薄膜の剥離が
生じなくなり、その結果、低コストでかつ耐久性に優れ
た高性能かつ高信頼性の偏光子が提供できる。
As described above, according to the present invention, a plurality of island-shaped discontinuous metal thin films and a plurality of dielectric thin films are alternately laminated to form a multilayer film, and the incident light is applied to the multilayer film. By satisfying the required conditions among the wavelength of light, the film thickness of the metal thin film, and the film thickness of the dielectric thin film, it is possible to easily increase the area of the polarizer and remove the thin film. As a result, it is possible to provide a high-performance and highly-reliable polarizer that is low in cost and excellent in durability.

【0033】さらに本発明によれば、その所要の条件の
もとで、誘電体材の種類、ならびに誘電体薄膜の膜厚、
延伸率の制御などによって様々な特性のものを容易に設
計することができるので、低コストで、かつ耐久性に優
れた高性能な偏光子を、用途に応じて所望とおりに容易
に提供できる。
Further, according to the present invention, under the required conditions, the kind of the dielectric material and the film thickness of the dielectric thin film,
Since various properties can be easily designed by controlling the stretching ratio and the like, a high-performance polarizer with low cost and excellent durability can be easily provided as desired depending on the application.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の偏光子の概略斜視図である。FIG. 1 is a schematic perspective view of a polarizer of the present invention.

【図2】本発明の偏光子の動作原理を示す概略斜視図で
ある。
FIG. 2 is a schematic perspective view showing the operating principle of the polarizer of the present invention.

【符号の説明】[Explanation of symbols]

1 偏光子 2 誘電体基板 3 金属薄膜 4 誘電体薄膜 1 Polarizer 2 Dielectric Substrate 3 Metal Thin Film 4 Dielectric Thin Film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】誘電体基板上に複数の島状化した不連続な
金属薄膜と、複数の誘電体薄膜とを交互積層した多層膜
を配するとともに、該多層膜に対する入射光の波長λ
と、金属薄膜の膜厚dm と、誘電体薄膜の膜厚dd と
が、下記の関係に設定されていることを特徴とする偏光
子。 λ/1000<dm <λ/50 λ/27<dd <λ/2
1. A multilayer film in which a plurality of island-shaped discontinuous metal thin films and a plurality of dielectric thin films are alternately laminated on a dielectric substrate, and a wavelength λ of incident light to the multilayer film is provided.
And a film thickness dm of the metal thin film and a film thickness dd of the dielectric thin film are set in the following relationship. λ / 1000 <dm <λ / 50 λ / 27 <dd <λ / 2
JP7290796A 1996-03-27 1996-03-27 Polarizer Pending JPH09265009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7290796A JPH09265009A (en) 1996-03-27 1996-03-27 Polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7290796A JPH09265009A (en) 1996-03-27 1996-03-27 Polarizer

Publications (1)

Publication Number Publication Date
JPH09265009A true JPH09265009A (en) 1997-10-07

Family

ID=13502903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7290796A Pending JPH09265009A (en) 1996-03-27 1996-03-27 Polarizer

Country Status (1)

Country Link
JP (1) JPH09265009A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187835A (en) * 2006-01-12 2007-07-26 Ricoh Co Ltd Optical processing element and optical processor
WO2009110595A1 (en) * 2008-03-07 2009-09-11 Hoya株式会社 Polarizing element
JP2010186164A (en) * 2009-01-13 2010-08-26 Canon Inc Optical element
JP2016122214A (en) * 2006-07-07 2016-07-07 ソニー株式会社 Projection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187835A (en) * 2006-01-12 2007-07-26 Ricoh Co Ltd Optical processing element and optical processor
JP2016122214A (en) * 2006-07-07 2016-07-07 ソニー株式会社 Projection method
WO2009110595A1 (en) * 2008-03-07 2009-09-11 Hoya株式会社 Polarizing element
JP2009216745A (en) * 2008-03-07 2009-09-24 Hoya Corp Polarizing element
US8064135B2 (en) 2008-03-07 2011-11-22 Hoya Corporation Polarization element
JP2010186164A (en) * 2009-01-13 2010-08-26 Canon Inc Optical element

Similar Documents

Publication Publication Date Title
US5122907A (en) Light polarizer and method of manufacture
WO2019131966A1 (en) Optical element, light guiding element and image display device
JPH0769536B2 (en) Liquid crystal cell
US20050146720A1 (en) Method and apparatus for correcting a visible light beam using a wire-grid polarizer
KR20070032672A (en) Multilayer optical compensation film
JP2007004120A5 (en)
JP2003315552A (en) Integrated optical element
JP3791905B2 (en) Liquid crystal display including O-type polarizer and E-type polarizer
JP3402122B2 (en) Filter that polarizes light in a specific wavelength range
JPH09265009A (en) Polarizer
JPH02504434A (en) Optical device with externally controllable polarization state
JP3359394B2 (en) Polarizing element
JPH07294738A (en) Polarizing element
JP2000171632A (en) Polarizer and waveguide type optical device using the same
JPH06273621A (en) Polarizer and its production
JPH1123840A (en) Double refractive plate
JP2000131522A (en) Polarizer and its production and waveguide type optical device using the same
JPH1048419A (en) Polarizing element and its production
JPH10239519A (en) Phase difference plate, and polarizing element using it
JP3472338B2 (en) Polarizing element
JPH1020116A (en) Polarizing element and its production
JP4149731B2 (en) Condensing element, surface light source using the same, and liquid crystal display device
JPH09178939A (en) Polarizer and its production
JPH08304625A (en) Polarizing element and its production
JP2004145268A (en) Phase difference optical element, its manufacturing method, and polarizing element and liquid crystal display equipped with the phase difference optical element