JPH11133229A - Polarizer - Google Patents

Polarizer

Info

Publication number
JPH11133229A
JPH11133229A JP29918897A JP29918897A JPH11133229A JP H11133229 A JPH11133229 A JP H11133229A JP 29918897 A JP29918897 A JP 29918897A JP 29918897 A JP29918897 A JP 29918897A JP H11133229 A JPH11133229 A JP H11133229A
Authority
JP
Japan
Prior art keywords
polarizer
substrate
layers
dielectric
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29918897A
Other languages
Japanese (ja)
Inventor
Masato Shintani
真人 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29918897A priority Critical patent/JPH11133229A/en
Publication of JPH11133229A publication Critical patent/JPH11133229A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a polarizer having high reliability and a broad absorption wavelength characteristic by laminating plural dielectric layers which are dispersed with metallic particles exhibiting light absorption anisotropy and very in refractive indices from each other on one main surface of a substrate having translucency. SOLUTION: The polarizer 1 is provided with polarizing layers 3 on at least one main surface of a dielectric substrate 2, such as glass having the translucency. The polarizing layers 3 are constituted by alternately laminating a plurality of metallic particle layers 4 also described as island-shaped metallic thin-film layers in which the many metallic particles 4a having the light absorption anisotropy are dispersed to a laminar form and the dielectric layers 5 having the translucency on the substrate 2. Unit laminates P are laminated in >=1 layer in such a manner that the compsns. and refractive indices of the dielectric layers 5 existing above and below vary. The refractive indices of the respective dielectric layers 5 of the case the unit laminates P to be cycled in particular are a tripolar structure are made to be at the optimized relation. As a result, the polarizer having the small insertion loss and excellent characteristics in the broad wavelength band of incident light is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体中に形状異
方性を有する金属粒子が分散された偏光子に関するもの
であり、特に光通信用に使用される光アイソレータに組
み込まれ、一つの偏光子で複数の光信号データ処理を行
うことが可能なものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizer in which metal particles having shape anisotropy are dispersed in a dielectric, and more particularly, to a polarizer incorporated in an optical isolator used for optical communication. The present invention relates to a polarizer capable of performing a plurality of optical signal data processes.

【0002】[0002]

【従来技術とその課題】偏光子は特定の方向に偏光した
光を取り出すために用いるものであり、これまでに様々
な構成の偏光子が研究されてきた。この種の偏光子に
は、例えば、複屈折性の結晶を組み合わせたグラントム
ソンプリズム,複屈折性の大きいルチル結晶,二色性を
有する高分子材料を偏光方向に延伸して作られた偏光フ
ィルム,誘電体層と金属薄膜層とを交互に積層して形成
された積層型偏光子(ラミポール),ホウ珪酸ガラス中
に銀コロイドを析出させて偏光方向に延伸させた金属分
散型偏光子(ポーラコア),島状金属粒子を誘電体膜と
を交互に積層し誘電体膜中に分散させ偏光方向に延伸さ
せた島状金属薄膜型偏光子などが知られている。
2. Description of the Related Art Polarizers are used to extract light polarized in a specific direction, and various structures of polarizers have been studied. Examples of this type of polarizer include a Glan-Thompson prism combining birefringent crystals, a rutile crystal having a large birefringence, and a polarizing film made by stretching a dichroic polymer material in the polarization direction. , A laminated polarizer (Ramipole) formed by alternately laminating dielectric layers and metal thin-film layers, and a metal-dispersed polarizer (Polar core) in which silver colloid is precipitated in borosilicate glass and stretched in the polarization direction. ), Island-shaped metal thin-film polarizers in which island-shaped metal particles are alternately laminated with a dielectric film, dispersed in the dielectric film, and stretched in the polarization direction are known.

【0003】これら偏光子は、サングラス,液晶表示用
フィルター,写真用フィルター,スキー用ゴーグル,自
動車用ヘッドライトやディスプレ用防眩フィルターなど
に使用される他に、例えば光ピックアップ,光センサ
ー,光アイソレータ等に幅広く使用され、ここ数年では
特に光記録及び光通信等の各分野において、小型で高性
能且つ安価な偏光子の必要性が高まっている。
[0003] These polarizers are used in sunglasses, filters for liquid crystal displays, filters for photographs, ski goggles, headlights for automobiles, anti-glare filters for displays, etc., as well as, for example, optical pickups, optical sensors, optical isolators. In recent years, especially in various fields such as optical recording and optical communication, the need for a small, high-performance and inexpensive polarizer has been increasing.

【0004】現在、ホウ珪酸ガラス中に銀コロイドを析
出させて偏光方向に延伸させた金属分散型偏光子のポー
ラコアが実用化されており、これは光通信分野で最も多
く利用されている偏光子として知られている。この偏光
子は、銀とハロゲンとを有するガラス素地を熱処理して
ハロゲン化銀の粒子を析出させ、ガラス素地を加熱下に
延伸してハロゲン化銀粒子を回転楕円体状に引き延ばす
ことにより、ハロゲン化銀粒子に異方性を付与させてい
る。そして、還元雰囲気下で加熱しハロゲン化銀を金属
銀へ還元するものである(例えば、特公平2―4061
9号公報、対応米国特許USP4,486,213、及
びUSP4,479,819を参照)。
At present, a polar core of a metal-dispersed polarizer obtained by depositing silver colloid in borosilicate glass and extending in the polarization direction has been put to practical use, and this polarizer is most often used in the field of optical communication. Also known as This polarizer heat-treats a glass base having silver and halogen to precipitate silver halide grains, stretches the glass base under heating, and stretches the silver halide grains into a spheroid to obtain a halogen. Silver oxide particles are given anisotropy. Then, it is heated in a reducing atmosphere to reduce silver halide to metallic silver (for example, Japanese Patent Publication No. 2-4061).
No. 9, US Pat. Nos. 4,486,213 and 4,479,819).

【0005】ところが、この偏光子では銀粒子のアスペ
クト比(粒子の異方性の度合いを示すものであり、通
常、粒子の長軸方向の長さ/短軸方向の長さで示す)が
不均一になりやすい。これは短軸方向や長軸方向の長さ
が均一な銀粒子を析出させることが困難なためである。
さらに、ガラス内部までハロゲン化銀を還元することは
困難なため不透明な未還元のハロゲン化銀が残留する。
また、ハロゲン化銀の還元の過程でガラスが収縮するこ
とに伴い、ガラス表面がポーラス状になりやすく長期安
定性が低下しやすい、といった問題が生じていた。
However, in this polarizer, the aspect ratio of the silver particles (which indicates the degree of anisotropy of the particles and is usually represented by the length in the major axis direction / the length in the minor axis direction) is not sufficient. It is easy to be uniform. This is because it is difficult to precipitate silver particles having a uniform length in the short axis direction and the long axis direction.
Further, since it is difficult to reduce silver halide to the inside of the glass, opaque unreduced silver halide remains.
Further, the glass surface shrinks in the course of the reduction of silver halide, so that the glass surface tends to be porous and the long-term stability tends to decrease.

【0006】このような問題点を解決するために、真空
蒸着やスパッタリング法等の薄膜形成プロセスを用いて
偏光子を製造することが提案されている(1990年電
子情報通信学会、秋期大会、講演予稿集C−212)。
この島状金属薄膜型偏光子の提案では、ガラス等の誘電
体基板上に島状金属薄膜層を真空蒸着にて設け、ガラス
等の誘電体層をスパッタリング法等でその上に積層す
る。そして、島状金属薄膜層と誘電体層を交互に数層形
成する。次に、加熱下で基板を引き延ばし、島状金属薄
膜層の金属粒子に異方性を持たせる。このようにして、
島状金属薄膜層での各金属粒子は、引き延ばし方向に延
ばされ回転楕円体状になり偏光性能を有することにな
る。
In order to solve such a problem, it has been proposed to manufacture a polarizer by using a thin film forming process such as a vacuum evaporation or sputtering method (1990 IEICE Autumn Meeting, lecture) Proceedings C-212).
In this proposal of an island-shaped metal thin film polarizer, an island-shaped metal thin film layer is provided on a dielectric substrate such as glass by vacuum evaporation, and a dielectric layer such as glass is laminated thereon by a sputtering method or the like. Then, several island-like metal thin film layers and dielectric layers are alternately formed. Next, the substrate is stretched under heating to give the metal particles of the island-shaped metal thin film layer anisotropy. In this way,
Each metal particle in the island-shaped metal thin film layer is extended in the elongating direction, becomes a spheroidal shape, and has polarization performance.

【0007】しかしながら、上記薄膜形成プロセスを用
いた偏光子は、各誘電体層の屈折率は同一であるので、
金属粒子の波長特性は狭く、共鳴吸収波長を広げて波長
特性を制御することはできず、一つの偏光子で複数の波
長を有する光信号を処理することはできなかった。ま
た、広い光波長に対する挿入損失は満足できるものでは
なく、しかも光通信デバイス用の偏光子として満足でき
る品質、及び信頼性を有するものではなかった。
However, in the polarizer using the above-mentioned thin film forming process, since the refractive index of each dielectric layer is the same,
The wavelength characteristics of the metal particles were narrow, the wavelength characteristics could not be controlled by broadening the resonance absorption wavelength, and an optical signal having a plurality of wavelengths could not be processed by one polarizer. Further, the insertion loss for a wide range of light wavelengths is not satisfactory, and furthermore, the polarizer for an optical communication device does not have satisfactory quality and reliability.

【0008】そこで、本発明は上述の諸問題に鑑み案出
されたものであり、信頼性が高く且つ広い吸収波長特性
を有する優れた偏光子を提供することを目的とする。
The present invention has been devised in view of the above-mentioned problems, and has as its object to provide an excellent polarizer having high reliability and wide absorption wavelength characteristics.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の偏光子は、透光性を有する基板の少なくと
も一主面上に、光吸収異方性を示す金属粒子が分散され
屈折率が互いに異なる誘電体層を複数積層したことを特
徴とする。
In order to solve the above-mentioned problems, a polarizer of the present invention has a structure in which metal particles exhibiting light absorption anisotropy are dispersed on at least one principal surface of a light-transmitting substrate. A plurality of dielectric layers having different refractive indexes are laminated.

【0010】また、前記基板の積層方向に対してk,k
+1,k+2番目の誘電体層の屈折率nk ,nk+1 ,n
k+2 が、下記式を満足している領域を有することを特徴
とする。
Further, k, k with respect to the laminating direction of the substrate.
+1, k + 2nd dielectric layer refractive index nk , nk + 1 , n
k + 2 has a region satisfying the following expression.

【0011】nk+2 < ns < nk < nk+1 (ただし、k =3h-2 ;h は自然数、ns は基板の屈折
率) また、各誘電体層は内部に分散されるアスペクト比が3
〜30の金属粒子の個数密度が2〜37個/μm2 であ
ることを特徴とする。
Nk + 2 <ns < nk < nk + 1 (where k = 3h-2; h is a natural number, ns is the refractive index of the substrate) Further, each dielectric layer has an aspect dispersed therein. The ratio is 3
It is characterized in that the number density of up to 30 metal particles is 2 to 37 particles / μm 2 .

【0012】ここで、金属粒子は平面状に分布してお
り、個数密度とは多数箇所で測定した平均の個数密度で
ある。また、特に透光性を有する基板はガラス基板が最
適であり、例えば、石英ガラス、ホウ珪酸ガラス、珪酸
塩ガラス等からなるものとする。また、金属粒子はA
u,Ag,Pt等の貴金属元素や他の金属元素であるC
u,Fe,Ni,Cr,Al及びWのうち少なくとも一
種を主成分とする。
Here, the metal particles are distributed in a plane, and the number density is an average number density measured at a large number of locations. In particular, a glass substrate is most suitable for the substrate having a light-transmitting property, and is made of, for example, quartz glass, borosilicate glass, silicate glass, or the like. The metal particles are A
Noble metal elements such as u, Ag, Pt, and other metal elements such as C
The main component is at least one of u, Fe, Ni, Cr, Al and W.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
図面に基づいて説明する図1に示すように、偏光子1は
透光性を有するガラス等の誘電体基板(以下、単に基板
という)2の少なくとも一方の主面上に偏光層3を設け
たものであり、この偏光層3は基板2上に、光吸収異方
性を有する(形状異方性を有する)金属粒子4aが多数
分散され層状をなす島状金属薄膜層ともいうべき金属粒
子層4と透光性を有する誘電体層5とが交互に複数積層
されてなるものである。また、図2に示すように、上下
に位置する誘電体層の組成及び屈折率を異なるようにし
た単位積層体Pを1層以上積層させている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1 which explains an embodiment of the present invention with reference to the drawings, a polarizer 1 is made of a dielectric substrate such as a light-transmitting glass (hereinafter simply referred to as a substrate). 2, a polarizing layer 3 is provided on at least one principal surface of the substrate 2, and the polarizing layer 3 has a large number of metal particles 4a having light absorption anisotropy (having shape anisotropy) dispersed on a substrate 2. A plurality of metal particle layers 4, which may be called layered island-like metal thin film layers, and dielectric layers 5 having translucency are alternately laminated. Further, as shown in FIG. 2, one or more unit laminates P in which the compositions and the refractive indices of the upper and lower dielectric layers are different are laminated.

【0014】なお、透光性を有するとは使用波長に対し
て透明という意味である。また、金属粒子の個数密度は
基板面S方向における密度であって、少なくとも1個の
金属粒子4aの長軸を含み、且つ基板面Sに平行な面で
切断した時に計測した密度である。
Note that having translucency means being transparent to the wavelength used. The number density of the metal particles is a density in the direction of the substrate surface S, and is a density including a major axis of at least one metal particle 4a and measured when cut along a plane parallel to the substrate surface S.

【0015】この偏光子1は例えば次のようにして作製
する。まず、下記Aの工程にB〜Dの一連の工程を繰り
返し行い、しかる後に下記Eの工程を行う。ただし、各
誘電体層の屈折率を変えるようにするために、例えば工
程Dにおいて誘電体層の組成を適宜変えるようにする。
The polarizer 1 is manufactured, for example, as follows. First, a series of steps B to D are repeatedly performed in the following step A, and then the following step E is performed. However, in order to change the refractive index of each dielectric layer, for example, the composition of the dielectric layer is appropriately changed in step D.

【0016】 A:ガラスから成る基板2を準備する工程、 B:基板2に対し、薄膜形成法により金属微粒子を被着
させる工程、 C:金属微粒子を基板2の軟化点より低い温度で加熱し
凝集せしめて、多数の金属粒子4aを形成する工程、 D:多数の金属粒子4a上に薄膜形成法によりガラスか
ら成る誘電体層5を被着させる工程、 E:基板2を所定方向に熱塑性変形させ、多数の金属粒
子4aに形状異方性を付与せしめ配向させる工程。
A: a step of preparing a substrate 2 made of glass; B: a step of applying metal fine particles to the substrate 2 by a thin film forming method; C: heating the metal fine particles at a temperature lower than the softening point of the substrate 2 A step of forming a large number of metal particles 4a by agglomeration; D: a step of applying a dielectric layer 5 made of glass on the many metal particles 4a by a thin film forming method; E: thermoplastic deformation of the substrate 2 in a predetermined direction. And giving a shape anisotropy to many metal particles 4a and orienting them.

【0017】上記偏光子1において、各誘電体層5中の
金属粒子4aの個数密度は2〜37個/μm2 であり、
かつ単位積層体を構成する各誘電体層の屈折率を互いに
異なるようにしたので、各誘電体層に対応した吸収波長
特性が複数存在することになり、非常に広い波長帯域の
光を吸収させることが可能になる。
In the polarizer 1, the number density of the metal particles 4a in each dielectric layer 5 is 2 to 37 / μm 2 ,
In addition, since the refractive index of each dielectric layer constituting the unit laminate is made different from each other, there are a plurality of absorption wavelength characteristics corresponding to each dielectric layer, and light in an extremely wide wavelength band is absorbed. It becomes possible.

【0018】基板2は例えばパイレックスガラス(パイ
レックスとはコーニング・ガラス・インダストリーの商
標名)やBKガラス(BKとは、ホーヤ社の商標名)等
のホウ珪酸ガラス、石英ガラス等の高融点の珪酸塩ガラ
スやソーダガラス等の低融点ガラスを用いることができ
る。また、このようなガラス材料に代えて他の透明材料
を用いてもよい。
The substrate 2 is made of, for example, borosilicate glass such as Pyrex glass (Pyrex is a trade name of Corning Glass Industry) or BK glass (BK is a trade name of Hoya Corporation), or high melting point silicate such as quartz glass. Low melting glass such as salt glass and soda glass can be used. Further, instead of such a glass material, another transparent material may be used.

【0019】金属粒子4aにはAu,Ag,Pt,R
h,Ir等の貴金属元素やCu,Fe,Ni,Cr,A
l及びW等の遷移金属から選択される一種以上の金属で
あることが好ましく、基板2や誘電体層5との濡れ性が
悪く凝集しやすい金属でしかも酸化され難く、誘電体層
5中で金属粒子4aとして存在し得るものが好ましい。
これらの内、特に好ましいものは、低融点なため凝集が
容易で、ガラスとの濡れが悪く、しかも酸化され難いA
uと、安価でガラスとの濡れ性が悪いCuである。な
お、金属粒子4aは金属単体に限定されるものではなく
合金でもよい。
Au, Ag, Pt, R
h, Ir and other noble metal elements, Cu, Fe, Ni, Cr, A
It is preferably at least one metal selected from transition metals such as l and W, and is a metal that has poor wettability with the substrate 2 and the dielectric layer 5 and is easy to aggregate, and is hardly oxidized. What can exist as metal particles 4a is preferred.
Of these, particularly preferred are those having a low melting point, which facilitates aggregation, has poor wettability with glass, and is hardly oxidized.
u and Cu are inexpensive and have poor wettability with glass. The metal particles 4a are not limited to a single metal, but may be an alloy.

【0020】金属粒子4aは回転楕円体状で異方性があ
り、図1(但し、光の進行方向をZ方向とし、これに直
交する平面をX−Y平面とする)では、金属粒子4aの
長軸方向がY方向で、短軸方向がX方向である。
The metal particles 4a are spheroidal and anisotropic, and in FIG. 1 (however, the traveling direction of light is the Z direction and the plane orthogonal to this is the XY plane), the metal particles 4a The major axis direction is the Y direction, and the minor axis direction is the X direction.

【0021】また、金属粒子4aの長軸方向の長さと短
軸方向の長さの比をアスペクト比とし、ここでは多数の
金属粒子4aのアスペクト比の平均値を単にアスペクト
比と呼ぶものとする。
The ratio of the length in the major axis direction to the length in the minor axis direction of the metal particles 4a is defined as an aspect ratio. Here, the average value of the aspect ratios of many metal particles 4a is simply referred to as the aspect ratio. .

【0022】金属粒子4aが回転楕円体状になるのは、
基板2上に偏光層3の成膜後の延伸時に、基板2ととも
に金属粒子4aが延伸方向に引き延ばされるからであ
る。そして、アスペクト比が大きいほど消光比が増加す
るが、それと同時に基板2の延伸率が増加して延伸が困
難になり、しかも消光比の増加率がアスペクト比の大き
い領域で減少するため、偏光層3中の金属粒子4aのア
スペクト比(長軸方向の長さ/短軸方向の長さ)は3〜
30が適当であり、特に好ましくは15〜25である。
なお、消光比は、所定波長において偏光していない入射
光を用いた場合に、X方向の透過光とY方向の透過光の
エネルギーの比をデシベル単位で示したものとし、エネ
ルギーの比が10の時に10dBとする。
The reason why the metal particles 4a become spheroidal is as follows.
This is because the metal particles 4a are stretched in the stretching direction together with the substrate 2 during stretching after the polarizing layer 3 is formed on the substrate 2. The extinction ratio increases as the aspect ratio increases, but at the same time, the stretching rate of the substrate 2 increases, making stretching difficult. In addition, the rate of increase in the extinction ratio decreases in a region having a large aspect ratio. The aspect ratio (length in the major axis direction / length in the minor axis direction) of the metal particles 4a in 3 is 3 to 3.
30 is suitable, and particularly preferably 15 to 25.
The extinction ratio is defined as the energy ratio between transmitted light in the X direction and transmitted light in the Y direction in decibels when incident light that is not polarized at a predetermined wavelength is used. At 10 dB.

【0023】一方、挿入損失は、所定波長において偏光
していない入射光を用いた場合に、入射光の全エネルギ
ーとY方向の透過光のエネルギーの比をデシベル単位で
示したものとし、エネルギーの比が0.1の時に0.1
dBとする。
On the other hand, the insertion loss is defined as the ratio of the total energy of incident light to the energy of transmitted light in the Y direction in decibels when incident light that is not polarized at a predetermined wavelength is used. 0.1 when the ratio is 0.1
dB.

【0024】また、金属粒子層4中の金属粒子4aの個
数密度は基板面方向に2〜37個/μm 2 とする。この
理由は、個数密度が2個/μm 2 より下回ると偏光子と
しての特性が出にくくなり、例えば消光比が20dBよ
り低くなるからであり、また、37個/μm 2 より上回
ると金属粒子での吸収が大きく挿入損失が1dBより増
大するからである。すなわち、上記範囲を外れると金属
粒子同士が近づき過ぎて挿入損失が増大したり、離れす
ぎて消光比が得られないのである。
The number density of the metal particles 4a in the metal particle layer 4 is 2 to 37 / μm 2 in the direction of the substrate surface. This is because the number density is less likely to appear the characteristics of the polarizer and falls below two / [mu] m 2, for example, because the extinction ratio is lower than 20 dB, also, in the metal particles exceeds than 37 / [mu] m 2 Is large, and the insertion loss increases more than 1 dB. That is, if the ratio is out of the above range, the metal particles are too close to each other to increase the insertion loss, or are too far from each other to obtain an extinction ratio.

【0025】各層に対して、ある層の延伸後の金属粒子
が同一の異方性を有し、かつ金属粒子の間隔が短いと粒
子間相互作用により生じる吸収ピーク波長は、間隔が長
い場合より短波長側に生じる。また、金属粒子4aの短
軸方向の長さが増加すると、透過すべきY方向の偏光に
対する挿入損失が増加し、このことからもアスペクト比
が3以上、より好ましくは15以上で短軸方向の長さが
短く挿入損失を小さくすることが好ましい。金属粒子4
aの長軸方向の平均長さが増加すると、X方向の吸収ピ
ーク波長が増加し、光通信で用いる波長に接近する。
For each layer, the metal particles after stretching a certain layer have the same anisotropy, and if the spacing between the metal particles is short, the absorption peak wavelength caused by the interaction between the particles will be smaller than that in the case where the spacing is long. It occurs on the short wavelength side. When the length of the metal particles 4a in the minor axis direction increases, the insertion loss with respect to the polarized light in the Y direction to be transmitted increases, which indicates that the aspect ratio is 3 or more, preferably 15 or more, and It is preferable that the length is short and the insertion loss is small. Metal particles 4
When the average length in the major axis direction of a increases, the absorption peak wavelength in the X direction increases and approaches the wavelength used in optical communication.

【0026】しかしながら、金属粒子4aのアスペクト
比に製造上の制限があり、短軸方向の長さの増加が挿入
損失をもたらすことを加味すると、長軸方向の長さにも
制限が生じる。
However, there is a limitation on the aspect ratio of the metal particles 4a in terms of manufacturing, and taking into account that an increase in the length in the short axis direction causes an insertion loss, the length in the long axis direction is also limited.

【0027】そこで、金属粒子4aについての好ましい
条件は、アスペクト比が3〜30、長軸方向の長さの平
均値が100〜300nm、短軸方向の長さの平均値が
10〜50nmであり、より好ましくはアスペクト比が
10〜30、最も好ましくはアスペクト比が15〜25
である。
The preferred conditions for the metal particles 4a are that the aspect ratio is 3 to 30, the average length in the long axis direction is 100 to 300 nm, and the average length in the short axis direction is 10 to 50 nm. , More preferably the aspect ratio is 10-30, most preferably the aspect ratio is 15-25.
It is.

【0028】図1の場合、Z方向に入射した入射光L1
は、X方向の偏光成分が金属粒子4aの自由電子との共
鳴で吸収され、Y方向の偏光成分は透過率が高く、偏光
した出射光L2となる。また、X方向とY方向とでは吸
収のピーク波長に差があり、X方向ではY方向よりも長
波長側に吸収のピークがある。そして、特に指摘しない
場合、消光比はX方向の吸収のピークが生じる波長で定
める。
In the case of FIG. 1, the incident light L1 incident in the Z direction
In, the polarized component in the X direction is absorbed by resonance with the free electrons of the metal particles 4a, and the polarized component in the Y direction has a high transmittance and becomes polarized outgoing light L2. Further, there is a difference in the absorption peak wavelength between the X direction and the Y direction, and there is an absorption peak on the longer wavelength side in the X direction than in the Y direction. Unless otherwise specified, the extinction ratio is determined by the wavelength at which the absorption peak in the X direction occurs.

【0029】本発明の偏光子は、基板2の積層方向に対
してk,k+1,k+2番目の誘電体層の屈折率nk
k+1 ,nk+2 が、下記式を満足している領域を有する
ことを特徴とする。
According to the polarizer of the present invention, the refractive indices n k , k k, k + 1 and k +
nk + 1 and nk + 2 have a region satisfying the following expression.

【0030】nk+2 < ns < nk < nk+1 (ただし、k =3h-2 ;h は自然数、ns は基板の屈折
率) 例えば、周期の単位構造となる単位積層体Pが3層の場
合、単位積層体Pが屈折率がn1 の誘電体層、屈折率が
n2 の誘電体層、及び屈折率がn3 の誘電体層を順次積
層して成るものとしたときに、各誘電体層の屈折率がn
3 < ns <n1 < n2 の関係を満足したときに、広
い光波長において挿入損失が低くなることが判明した。
Nk + 2 <ns < nk < nk + 1 (where k = 3h-2; h is a natural number, and ns is the refractive index of the substrate) For example, a unit laminate P having a periodic unit structure is In the case of three layers, when the unit laminate P is formed by sequentially laminating a dielectric layer having a refractive index of n1, a dielectric layer having a refractive index of n2, and a dielectric layer having a refractive index of n3, The refractive index of the dielectric layer is n
It was found that when the relationship of 3 <ns <n1 <n2 was satisfied, the insertion loss was reduced over a wide optical wavelength range.

【0031】すなわち、図3に示すように、誘電体層の
全てが同一屈折率の場合、n1 <ns < n2 < n
3 の場合、n2 < ns < n1 < n3 の場合、
及びその他の考えられる全ての組み合わせにおいて、1
200〜1700nmの広い波長帯域における挿入損失
を測定したところ、n3 < ns < n1 < n2の関
係を満足したときにだけ、1350〜1700nmの広
い波長帯域で0.1dB以下の非常に小さな挿入損失と
なることが判明した。なお、最上にくる積層体Pの上部
に適宜1層以上の反射防止膜を形成してもよい。また、
基板2の両主面に金属粒子4aが分散された誘電体層5
を積層するようにしてもよいが、この場合は、基板2に
対して積層させる方向へ上記関係式を満たすように誘電
体層5を積層させる。
That is, as shown in FIG. 3, when all the dielectric layers have the same refractive index, n1 <ns <n2 <n
In the case of 3, if n2 <ns <n1 <n3,
And in all other possible combinations, 1
When the insertion loss in a wide wavelength band of 200 to 1700 nm was measured, only when the relationship of n3 <ns <n1 <n2 was satisfied, a very small insertion loss of 0.1 dB or less was obtained in a wide wavelength band of 1350 to 1700 nm. It turned out to be. Note that one or more antireflection films may be appropriately formed on the uppermost stacked body P. Also,
Dielectric layer 5 in which metal particles 4a are dispersed on both main surfaces of substrate 2
May be stacked, but in this case, the dielectric layer 5 is stacked so as to satisfy the above relational expression in the direction of stacking on the substrate 2.

【0032】[0032]

【実施例】次に、より具体的で好適な実施例について説
明する。まず、図2における基板2として、厚さ約1m
m,面積約760mm2 の石英ガラス基板(軟化点:1
000〜1200℃、屈折率1.49)を用い、この基
板2上に誘電体層5としてMgO,ZnS,MgF2
薄膜層を、金属粒子層4として金(Au)の薄膜層を、
交互に積層することによりAu微粒子を含むMgO層
(屈折率1.7),Au微粒子を含むZnS層(屈折率
2.35),Au微粒子を含むMgF2 層(屈折率1.
7)の3層構造を周期単位とする単位積層体Pを3層積
層させた。
Next, more specific and preferred embodiments will be described. First, as the substrate 2 in FIG.
m, quartz glass substrate with an area of about 760 mm 2 (softening point: 1
000-1200 ° C., a refractive index of 1.49), a thin film layer of MgO, ZnS, and MgF 2 as a dielectric layer 5 and a thin film layer of gold (Au) as a metal particle layer 4 on the substrate 2.
The MgO layer containing Au fine particles (refractive index 1.7), the ZnS layer containing Au fine particles (refractive index 2.35), and the MgF 2 layer containing Au fine particles (refractive index 1.
Three unit laminates P having the three-layer structure of 7) as a periodic unit were laminated.

【0033】すなわち、基板上にマグネトロンスパッタ
成膜法により真空度2.0×10-3Toor 、成膜速度1
0.6nm/秒で膜厚30nmの第1層目の金属薄膜層
であるAu薄膜層を形成し、このAu薄膜層上に真空度
2.0×10-3Toor 、成膜速度0.2nm/秒で膜厚
982.5mの第1層目の誘電体薄膜層であるMgO薄
膜層を形成する。その後、上記と同様にして第2層目の
金属薄膜層であるAu薄膜層を形成し、このAu薄膜層
上に真空度2.0×10-3Toor 、成膜速度0.4nm
/秒で膜厚1965nmの第2層目の誘電体薄膜層であ
るZnS薄膜層を形成する。その後、上記と同様にして
第3層目の金属薄膜層であるAu薄膜層を形成し、この
Au薄膜層上に真空度2.0×10-3Toor 、成膜速度
0.3nm/秒で膜厚982.5nmの第3層目の誘電
体薄膜層であるMgF2 薄膜層を形成する。
That is, the degree of vacuum was 2.0 × 10 −3 Toor and the film formation rate was 1 on the substrate by magnetron sputtering film formation.
An Au thin film layer, which is a first metal thin film layer having a thickness of 30 nm and a thickness of 0.6 nm / sec, is formed, and a vacuum degree of 2.0 × 10 −3 Toor and a film forming rate of 0.2 nm are formed on the Au thin film layer. An MgO thin film layer, which is a first dielectric thin film layer having a thickness of 982.5 m, is formed at a thickness of 982.5 m / sec. Thereafter, an Au thin film layer, which is a second metal thin film layer, is formed in the same manner as described above, and a vacuum degree of 2.0 × 10 −3 Toor and a film formation rate of 0.4 nm are formed on the Au thin film layer.
A second dielectric thin film layer of ZnS having a thickness of 1965 nm is formed at a rate of 1 second / second. Thereafter, an Au thin film layer, which is a third metal thin film layer, is formed in the same manner as described above, and a vacuum degree of 2.0 × 10 −3 Toor and a film formation rate of 0.3 nm / sec are formed on the Au thin film layer. An MgF 2 thin film layer as a third dielectric thin film layer having a thickness of 982.5 nm is formed.

【0034】上記一連の工程を3回繰り返して、Au微
粒子を含む三種類の誘電体層から成る単位積層体を3層
積層させた基板体を得る。
The above series of steps is repeated three times to obtain a substrate in which three unit laminates each including three types of dielectric layers containing Au fine particles are laminated.

【0035】次いで、上記基板体の熱塑性変形を行う
が、石英ガラスの軟化点近傍の温度である1500℃に
おいて加熱、延伸を行い、加熱によりAu金属微粒子を
凝集させてAu金属粒子とし、このAu金属粒子を延伸
により形状異方性を持たせるとともに、Au金属粒子の
配向化も行わせる。
Next, the above-mentioned substrate body is subjected to thermoplastic deformation. Heating and stretching are performed at 1500 ° C., which is a temperature near the softening point of quartz glass, and Au metal fine particles are aggregated by heating to form Au metal particles. The metal particles are given shape anisotropy by stretching, and the Au metal particles are also oriented.

【0036】この結果、Au金属粒子はアスペクト比が
10〜30の略回転楕円体を成し、各誘電体層の厚みは
MgO層は327.5nm、ZnS層が655nm、M
gF2 層が327.5nmとなった。
As a result, the Au metal particles form a substantially spheroid having an aspect ratio of 10 to 30, and the thickness of each dielectric layer is 327.5 nm for the MgO layer, 655 nm for the ZnS layer, and
The gF 2 layer became 327.5 nm.

【0037】得られた偏光子について、波長1200〜
1700nmの光を用いて消光比及び挿入損失を測定し
たところ、1350〜1700nmの広い波長帯域で消
光比が40dB、挿入損失が0.1dB以下の優れた特
性を示した。
With respect to the obtained polarizer, a wavelength of 1200 to 1200
When the extinction ratio and the insertion loss were measured using light of 1700 nm, excellent characteristics with an extinction ratio of 40 dB and an insertion loss of 0.1 dB or less in a wide wavelength band of 1350 to 1700 nm were exhibited.

【0038】[0038]

【発明の効果】以上詳述したように、本発明の偏光子
は、上下に位置する誘電体層の屈折率及び組成が異なる
ようにし、特に周期させる単位積層体が3層構造である
場合の各誘電体層の屈折率を最適な関係としたので、入
射光の広波長帯域において挿入損失の小さな優れた特性
を有する偏光子を提供することができ、一つの偏光子で
複数の光信号データ処理を行える光通信用機器に好適に
使用可能な偏光子を提供できる。
As described above in detail, the polarizer of the present invention has a structure in which the refractive index and the composition of the upper and lower dielectric layers are different from each other, particularly when the unit laminate to be periodic has a three-layer structure. Since the refractive index of each dielectric layer is optimized, a polarizer having excellent characteristics with small insertion loss in a wide wavelength band of incident light can be provided. It is possible to provide a polarizer that can be suitably used for an optical communication device capable of performing processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る偏光子を説明するための模式的な
斜視図である。
FIG. 1 is a schematic perspective view for explaining a polarizer according to the present invention.

【図2】本発明に係る偏光子を説明するための断面図で
あり、図1におけるA−A線の断面図である。
FIG. 2 is a cross-sectional view for explaining a polarizer according to the present invention, and is a cross-sectional view taken along line AA in FIG.

【図3】光の吸収波長と挿入損失とを説明するグラフで
ある。
FIG. 3 is a graph illustrating light absorption wavelength and insertion loss.

【符号の説明】[Explanation of symbols]

1:偏光子 2:基板 3:偏光層 4:金属粒子層 4a:金属粒子 5:誘電体層 P:単位積層体 1: polarizer 2: substrate 3: polarizing layer 4: metal particle layer 4a: metal particle 5: dielectric layer P: unit laminate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 透光性を有する基板の少なくとも一主面
上に、光吸収異方性を示す金属粒子が分散され屈折率が
互いに異なる誘電体層を複数積層したことを特徴とする
偏光子。
1. A polarizer comprising a plurality of dielectric layers, each of which has metal particles exhibiting light absorption anisotropy dispersed therein and has a different refractive index, on at least one principal surface of a substrate having a light transmitting property. .
【請求項2】 前記基板の積層方向に対してk,k+
1,k+2番目の誘電体層の屈折率nk ,nk+1 ,n
k+2 が、下記式を満足している領域を有することを特徴
とする請求項1に記載の偏光子。 nk+2 < ns < nk < nk+1 (ただし、k =3h-2 ;h は自然数、ns は基板の屈折
率)
2. The method according to claim 1, wherein k, k +
Refractive index nk , nk + 1 , n of the first, k + 2nd dielectric layer
The polarizer according to claim 1, wherein k + 2 has a region satisfying the following expression. nk + 2 <ns < nk < nk + 1 (where k = 3h-2; h is a natural number, and ns is the refractive index of the substrate)
JP29918897A 1997-10-30 1997-10-30 Polarizer Pending JPH11133229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29918897A JPH11133229A (en) 1997-10-30 1997-10-30 Polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29918897A JPH11133229A (en) 1997-10-30 1997-10-30 Polarizer

Publications (1)

Publication Number Publication Date
JPH11133229A true JPH11133229A (en) 1999-05-21

Family

ID=17869291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29918897A Pending JPH11133229A (en) 1997-10-30 1997-10-30 Polarizer

Country Status (1)

Country Link
JP (1) JPH11133229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103852B2 (en) 2017-11-06 2021-08-31 Canon Anelva Corporation Structure and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11103852B2 (en) 2017-11-06 2021-08-31 Canon Anelva Corporation Structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5864427A (en) Polarizer and production method thereof
CN105388551B (en) Inorganic polarizing plate and method for manufacturing same
JP2740601B2 (en) Copper-containing polarizing glass and method for producing the same
US5999315A (en) Polarizer and a production method thereof and an optical isolator
US6317264B1 (en) Thin film polarizing device having metal-dielectric films
JPH0756018A (en) Production of polarizer
JPH11133229A (en) Polarizer
JP3602913B2 (en) Polarizing element, optical isolator using the same, and method of manufacturing the same
JPH1172618A (en) Polarizer
JP2002311403A (en) Faraday rotator
JP2002311402A (en) Faraday rotator
JP3784198B2 (en) Optical isolator
JPH11248935A (en) Polarizer and its manufacture
JPH06273621A (en) Polarizer and its production
JPH10274711A (en) Polarizing element and optical isolator using the same
JP2000193823A (en) Polarizer, and optical isolator using it
JP3722603B2 (en) Manufacturing method of polarizer
JPH11248936A (en) High extinction ratio polarizer
JPH1152129A (en) Polarizer and its production
JPH07301710A (en) Production of polarizer and apparatus for production
JPH09178939A (en) Polarizer and its production
JPH11344616A (en) Polarizer
JP3825154B2 (en) Manufacturing method of polarizer
JP4272659B2 (en) Polarizer
JPH09318813A (en) Polarizing element