JPH11337521A - Member for electrophoresis - Google Patents
Member for electrophoresisInfo
- Publication number
- JPH11337521A JPH11337521A JP10141893A JP14189398A JPH11337521A JP H11337521 A JPH11337521 A JP H11337521A JP 10141893 A JP10141893 A JP 10141893A JP 14189398 A JP14189398 A JP 14189398A JP H11337521 A JPH11337521 A JP H11337521A
- Authority
- JP
- Japan
- Prior art keywords
- electrophoresis
- reservoir
- solution
- liquid
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Measuring Cells (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、極微量のタンパク
や核酸などを高速かつ高分解能に分析する場合に利用さ
れる電気泳動装置に用いられる電気泳動用部材に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophoresis member used in an electrophoresis apparatus used for analyzing very small amounts of proteins, nucleic acids, and the like at high speed and with high resolution.
【0002】[0002]
【従来の技術】ガラスキャピラリーを用いた電気泳動装
置では、ガラスキャピラリーの両端が泳動バッファを満
たした2つの泳動バッファ溜めに、ガラスキャピラリー
の両端と、高圧電源に接続された高電圧印加用の電極が
浸されており、ガラスキャピラリーの両端に高電圧を印
加することで、分析対象物をキャピラリー内で展開させ
て検出器で検出している。しかしながら、ガラスキャピ
ラリーを用いた電気泳動装置では、ガラスキャピラリー
の外径が10〜数10μm程度と細く破損しやすいた
め、ユーザが行うガラスキャピラリー交換時の取扱が容
易ではなく、装置の小型化が行えないという問題があっ
た。2. Description of the Related Art In an electrophoresis apparatus using a glass capillary, two electrophoresis buffer reservoirs in which both ends of the glass capillary are filled with an electrophoresis buffer are connected to both ends of the glass capillary and electrodes for applying a high voltage connected to a high voltage power supply. Is applied, and a high voltage is applied to both ends of the glass capillary, whereby the analyte is developed in the capillary and detected by the detector. However, in an electrophoresis apparatus using a glass capillary, the outer diameter of the glass capillary is as thin as about 10 to several tens of μm and is easily broken, so that the handling when the user replaces the glass capillary is not easy, and the apparatus can be downsized. There was no problem.
【0003】そこで、2枚の基板を接合して形成された
プレート状のキャピラリー部材が提案されている。図5
に従来のプレート状キャピラリーを用いた電気泳動用部
材を示す。Therefore, a plate-like capillary member formed by joining two substrates has been proposed. FIG.
1 shows an electrophoresis member using a conventional plate-shaped capillary.
【0004】フォトファブリケーション技術を用いて、
互いに交差する分析用流路溝5及び試料注入用流路溝3
が形成された基板1aと、さらにそれらの溝5、3の両
端に位置する泳動バッファ溜め7が形成された基板1b
を接合することで、プレート状キャピラリー電気泳動用
部材を構成している。[0004] Using photo fabrication technology,
Analysis channel groove 5 and sample injection channel groove 3 that intersect each other
And a substrate 1b on which migration buffer reservoirs 7 located at both ends of the grooves 5 and 3 are formed.
Are joined to form a plate-like capillary electrophoresis member.
【0005】そして、2つの泳動バッファ溜め7に電位
差を与えて、分析用流路溝5に液体試料が混ざった泳動
液を展開して、光を照射して分析を行っている。[0005] Then, a potential difference is applied to the two electrophoresis buffer reservoirs 7, the electrophoresis liquid mixed with the liquid sample is developed in the analysis channel groove 5, and light is irradiated to perform analysis.
【0006】[0006]
【発明が解決しようとする課題】ところで、上記従来技
術では、泳動液の種類によっては、液体試料液の分析が
終了する時間までに、泳動バッファ溜めの泳動液が分析
精度を悪化させる程度にイオン化してしまうため、泳動
バッファ溜めでの電気分解により形成されるイオン成分
の影響を受け、分析用流路溝5に試料液が一定の速度で
泳動することができず、泳動速度が変化し、同じ試料を
同条件で分析した時の分析再現性がなくなり、正確な測
定を行うことができない。However, in the above prior art, depending on the type of the electrophoresis solution, the electrophoresis solution in the electrophoresis buffer reservoir is ionized to such an extent that the analysis accuracy is deteriorated by the time when the analysis of the liquid sample solution is completed. As a result, the sample solution cannot be migrated at a constant speed in the flow channel for analysis 5 due to the influence of ionic components formed by electrolysis in the electrophoresis buffer reservoir, and the migration speed changes. Reproducibility of analysis when the same sample is analyzed under the same conditions is lost, and accurate measurement cannot be performed.
【0007】例えば、リン酸バッファのような、電気伝
導度の高い泳動液を用いた場合には、10μAの泳動電
流が流れていると、1秒間に10-11 モルものイオンが
新たに生じ、泳動バッファ溜めを1μlとすると10秒
間で10-4Mの濃度となり、無視できない影響を与えて
しまう。For example, when a migration solution having a high electric conductivity such as a phosphate buffer is used, when a migration current of 10 μA flows, 10 -11 mol of ions are newly generated per second. If the volume of the electrophoresis buffer is 1 μl, the concentration becomes 10 −4 M in 10 seconds, which has a considerable effect.
【0008】本発明は、上記課題を解決するために創案
されたもので、試料液の分析が終了するまでに泳動バッ
ファ溜めでの電気分解により形成されるイオン成分の影
響を抑え、電気泳動液の泳動速度を一定にすることがで
きる電気泳動用部材を提供することを目的としている。The present invention has been devised to solve the above-mentioned problems, and suppresses the influence of ionic components formed by electrolysis in a migration buffer reservoir until the analysis of a sample solution is completed. It is an object of the present invention to provide an electrophoresis member capable of keeping the electrophoresis speed constant.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
め、本発明の電気泳動用部材は、所定の基板の内部には
少なくとも2本の流路が交差するように形成されている
とともに、それら流路の一端には泳動液または試料を入
れるリザーバが形成されており、それら流路およびリザ
ーバに泳動液を充填し、各流路の両端に電位差を印加す
ることで、電気泳動による試料の移動や分離分析を行う
部材において、少なくとも1本の流路の片方のリザーバ
は、必要な時間の間電気泳動させてもリザーバ内のイオ
ン濃度の変動が十分小さく抑えることの出来る量の泳動
液を溜めることが可能な構造をしたことを特徴としてい
る。In order to achieve the above object, an electrophoresis member according to the present invention is formed such that at least two flow paths intersect inside a predetermined substrate. At one end of each of the flow paths, a reservoir for storing an electrophoresis running solution or a sample is formed.The flow path and the reservoir are filled with the electrophoresis running fluid, and by applying a potential difference to both ends of each flow path, the sample of the electrophoresis is removed. In a member that performs movement or separation analysis, at least one of the reservoirs in at least one of the flow passages has an electrophoresis solution in an amount that can sufficiently suppress fluctuations in ion concentration in the reservoir even when electrophoresis is performed for a required time. It is characterized by a structure that can be stored.
【0010】また、別の構成では、必要な時間の間電気
泳動させてもイオン濃度の変動が十分小さく抑えること
の出来る量の泳動液を溜めるリザーバは、外部に追加さ
れた泳動液溜め部であることを特徴している。[0010] In another configuration, a reservoir for storing an amount of the electrophoresis running liquid capable of keeping the fluctuation of the ion concentration sufficiently small even when electrophoresed for a required time is provided in an electrophoresis running fluid reservoir added to the outside. It is characterized by being.
【0011】さらに、上記リザーバの代わりに、十分な
泳動液の量を確保するため、流路の一部を泳動液溜めと
して用いたことを特徴している。Furthermore, in order to secure a sufficient amount of the electrophoresis running solution, a part of the flow path is used as a reservoir for the electrophoresis running solution in place of the reservoir.
【0012】[0012]
【発明の実施の形態】以下、図面を参照しつつ本発明の
一実施例について述べる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
【0013】図1は本発明の電気泳動用部材の構成を示
す図である。FIG. 1 is a view showing the structure of the electrophoretic member of the present invention.
【0014】1は十分な泳動液の量を確保するためのリ
ザーバ、2は液体試料導入口、3は液体試料排出口、4
は泳動液排出口、5は試料液導入流路、6は液体試料を
分離する分離流路、7a〜7dは電極である。1 is a reservoir for securing a sufficient amount of electrophoresis running liquid, 2 is a liquid sample inlet, 3 is a liquid sample outlet, 4
Denotes an electrophoresis solution outlet, 5 denotes a sample liquid introduction channel, 6 denotes a separation channel for separating a liquid sample, and 7a to 7d denote electrodes.
【0015】電気泳動用部材は、石英、ガラス、Si、プ
ラスチックなどからなる基板a、bを2枚張り合わせて
構成されており、基板a側には、リザーバ1、液体試料
導入口2、液体試料排出口3、泳動液排出口4、電極7
a〜7bが形成されており、基板b側には、試料液導入
流路5、分離流路6が形成されている。The electrophoresis member is constituted by laminating two substrates a and b made of quartz, glass, Si, plastic or the like. On the substrate a side, a reservoir 1, a liquid sample inlet 2, a liquid sample Outlet 3, electrophoresis running fluid outlet 4, electrode 7
a to 7b are formed, and a sample liquid introduction channel 5 and a separation channel 6 are formed on the substrate b side.
【0016】電極7a〜7dはスパッタ成膜等でCrを
200〜300オングストローム程度成膜し、その上に
Auを2000〜3000オングストローム程度成膜す
る。リザーバ1は図に示すように十分な泳動液の量を確
保するために必要な大きさの容積を備えているととも
に、電極7aをリザーバ1の内部全面に形成せずに、リ
ザーバ1の内部の所定深さまでの小さな面積で構成され
ている。The electrodes 7a to 7d are formed by depositing Cr to a thickness of about 200 to 300 angstroms by sputtering or the like, and then forming Au to a thickness of about 2000 to 3000 angstroms. As shown in the figure, the reservoir 1 has a volume required to secure a sufficient amount of the electrophoresis running solution, and the electrode 7a is not formed on the entire surface of the reservoir 1, but is formed inside the reservoir 1. It has a small area up to a predetermined depth.
【0017】また、電極7b〜7dは、液体試料排出口
3、液体試料導入口2、泳動液排出口4の各々の貫通孔
内部の全面に形成せずに、上部内面一部だけに形成され
ている。The electrodes 7b to 7d are not formed on the entire inner surfaces of the through holes of the liquid sample outlet 3, the liquid sample inlet 2, and the electrophoretic solution outlet 4, but are formed only on a part of the upper inner surface. ing.
【0018】電気泳動を行わせる場合には、リザーバ
1、液体試料導入口2、液体試料排出口3、泳動液排出
口4の各々に適切な関係の電圧を印加し、試料液導入流
路5と分離流路6の交差部分に存在する液体試料を泳動
液排出口4の方向へ泳動させ、分離流路6に展開させ
る。そして、例えば、上方より検出光を分離流路6に展
開させられた液体試料に照射し、その透過光をセンサで
検出して分析を行う。In order to perform electrophoresis, a voltage having an appropriate relationship is applied to each of the reservoir 1, the liquid sample inlet 2, the liquid sample outlet 3, and the electrophoretic solution outlet 4, and the sample liquid introduction flow path 5 The liquid sample present at the intersection of the separation channel 6 and the separation channel 6 is migrated in the direction of the electrophoretic solution discharge port 4 and is developed in the separation channel 6. Then, for example, the detection light is irradiated from above onto the liquid sample developed in the separation channel 6, and the transmitted light is detected by a sensor for analysis.
【0019】本発明では、リザーバ1の容積を十分大き
くするとともに、電極7aの位置をリザーバ1の内部上
面に一部形成した構成としているので、泳動液全体が電
気分解によりイオン化されるまでには相当の時間を要
し、また、電極7aは分離流路6の入り口から離れた場
所に小さく形成されているので、電気分解によるイオン
が一度に大量に分離流路6に流れ込むこともなく、電気
分解により形成されるイオンの影響が分析流路内(分離
流路6)で非常に小さいものとなり、電気泳動液の泳動
速度を一定にすることができる。In the present invention, since the volume of the reservoir 1 is made sufficiently large and the position of the electrode 7a is partially formed on the inner upper surface of the reservoir 1, it is necessary to completely ionize the electrophoresis running solution by electrolysis. It takes a considerable amount of time, and since the electrode 7a is formed small at a location away from the entrance of the separation flow path 6, a large amount of ions due to electrolysis do not flow into the separation flow path 6 at one time. The influence of the ions formed by the decomposition becomes very small in the analysis flow path (separation flow path 6), and the migration speed of the electrophoresis liquid can be kept constant.
【0020】次に、図2に流路の一部を泳動液の溜めと
して利用し、電気分解により形成されるイオン成分の影
響を分析流路内で受け難い構造としたものを示す。Next, FIG. 2 shows a structure in which a part of the flow path is used as a reservoir for the electrophoresis liquid so as to be hardly affected by the ionic components formed by electrolysis in the analysis flow path.
【0021】図1と同様な構成については同じ符号を付
している。泳動液導入口1aは、通常の容積をもつ構成
となっているが、この泳動液導入口1aに断面積が大き
な泳動液導入流路17が接続され、この泳動液導入流路
17が断面積が小さな分離流路6に接続されており、泳
動液導入流路17の体積は、分離流路6の検出部までの
体積と同等か、それ以上が望ましい。The same components as those in FIG. 1 are denoted by the same reference numerals. The electrophoresis liquid inlet 1a has a normal volume, but the electrophoresis liquid inlet channel 1 having a large cross section is connected to the electrophoresis liquid inlet 1a. Is connected to the small separation channel 6, and the volume of the electrophoresis liquid introduction channel 17 is preferably equal to or larger than the volume of the separation channel 6 up to the detection unit.
【0022】例えば、泳動液導入流路17は幅500μ
m、深さ20μmで構成されており、分離流路6は幅5
0μm、深さ20μmで構成されている。For example, the electrophoresis running liquid introduction channel 17 has a width of 500 μm.
m, and a depth of 20 μm.
It is composed of 0 μm and a depth of 20 μm.
【0023】このような構成とすることで、泳動液導入
流路17がバッファの役割を果たし、泳動液導入口1a
で生じたイオンが電気浸透流により分離流路6に達する
までには相当の時間を要し、また、電極7eは泳動液導
入流路17からは遠方に小さく形成されているので、電
気分解によるイオンが一度に大量に分離流路6に流れ込
むこともなく、電気分解により形成されるイオンの影響
が分析流路内(分離流路6)で非常に小さい。With such a configuration, the electrophoresis liquid introduction channel 17 serves as a buffer, and the electrophoresis liquid inlet 1a
It takes a considerable time for the ions generated in the above to reach the separation channel 6 by the electroosmotic flow, and since the electrode 7e is formed small and far away from the electrophoresis solution introduction channel 17, the electrode 7e The ions do not flow into the separation channel 6 in large quantities at one time, and the influence of ions formed by electrolysis is very small in the analysis channel (separation channel 6).
【0024】図3は、基板上に形成した電気泳動用部材
のリザーバ部の外部に追加の泳動液溜め部を形成して、
リザーバで電気分解により形成されるイオン成分の影響
を分析流路内で受け難い構造としたものを示す。FIG. 3 shows that an additional electrophoresis liquid reservoir is formed outside the reservoir of the electrophoresis member formed on the substrate.
This shows a structure in which the influence of ion components formed by electrolysis in the reservoir is hardly affected in the analysis channel.
【0025】図4は図3のA部の詳細図であり、図4
(a)はA部の上面図を、図4(b)は側面図を示す。FIG. 4 is a detailed view of the part A in FIG.
4A shows a top view of the portion A, and FIG. 4B shows a side view.
【0026】外付けリザーバ10は貫通孔9の上側に形
成されており、リザーバ10内のイオン濃度の変動が十
分小さく抑えることの出来る量の泳動液を溜める容積を
有している。この外付けリザーバ10は、例えばシリコ
ンゴム等を基板に押しつけて、接着剤等で接着する。電
極8は貫通孔9より離して形成されており、貫通孔9は
分離流路6に接続されている。The external reservoir 10 is formed above the through-hole 9 and has a volume for storing an amount of the electrophoresis running fluid capable of keeping the fluctuation of the ion concentration in the reservoir 10 sufficiently small. The external reservoir 10 presses, for example, silicon rubber or the like against a substrate and adheres with an adhesive or the like. The electrode 8 is formed apart from the through hole 9, and the through hole 9 is connected to the separation channel 6.
【0027】このようにすることで、上記実施例と同様
の理由で、分析に必要な時間の電気泳動をさせても、電
気分解により形成されるイオンの影響が分析流路内(分
離流路6)で非常に小さいものとなり、電気泳動液の泳
動速度を一定にすることができる。In this manner, for the same reason as in the above embodiment, even if the electrophoresis is performed for the time required for the analysis, the influence of ions formed by the electrolysis can be caused in the analysis channel (separation channel). In 6), the size becomes very small, and the electrophoresis speed of the electrophoresis solution can be kept constant.
【0028】[0028]
【発明の効果】本発明によれば、電気泳動用部材に十分
な容積のリザーバや泳動液を溜めておけるような泳動液
導入流路を設けて、電気泳動を行わせて分析することに
より、分析に必要な時間内において、リザーバで電気分
解により形成されるイオン成分の影響を分析流路内の泳
動液が受け難くすることで、分析再現性が向上する。According to the present invention, the electrophoresis member is provided with a reservoir having a sufficient volume and an electrophoresis liquid introduction channel for storing the electrophoresis liquid, and the electrophoresis is carried out for analysis. The analysis reproducibility is improved by making it difficult for the electrophoresis liquid in the analysis flow path to be affected by the ionic components formed by electrolysis in the reservoir within the time required for the analysis.
【図1】本発明の一実施例の構成を示す図である。FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.
【図2】本発明の他の構成を示す図である。FIG. 2 is a diagram showing another configuration of the present invention.
【図3】本発明の他の実施例を示す図である。FIG. 3 is a diagram showing another embodiment of the present invention.
【図4】図3のA部の拡大図である。FIG. 4 is an enlarged view of a portion A in FIG. 3;
【図5】従来の電気泳動用部材の構成を示す図である。FIG. 5 is a view showing a configuration of a conventional electrophoretic member.
Claims (3)
路が交差するように形成されているとともに、それら流
路の一端には泳動液または試料を入れるリザーバが形成
されており、それら流路およびリザーバに泳動液を充填
し、各流路の両端に電位差を印加することで、電気泳動
による試料の移動や分離分析を行う部材において、少な
くとも1本の流路の片方のリザーバは、必要な時間の間
電気泳動させてもリザーバ内のイオン濃度の変動が十分
小さく抑えることの出来る量の泳動液を溜めることが可
能な構造をしていることを特徴とする電気泳動用部材。At least two flow paths are formed inside a predetermined substrate so as to intersect with each other, and at one end of each of the flow paths, a reservoir for storing an electrophoretic solution or a sample is formed. A channel and a reservoir are filled with an electrophoresis liquid, and a potential difference is applied to both ends of each channel, so that at least one of the reservoirs of at least one channel is necessary in a member for moving a sample by electrophoresis or performing separation analysis. An electrophoretic member having a structure capable of storing an amount of an electrophoresis running solution capable of sufficiently suppressing fluctuations in ion concentration in a reservoir even when electrophoresis is performed for a short period of time.
て、必要な時間の間電気泳動させてもイオン濃度の変動
が十分小さく抑えることの出来る量の泳動液を溜めるリ
ザーバは、外部に追加された泳動液溜め部であることを
特徴とする電気泳動用部材。2. The electrophoretic member according to claim 1, wherein a reservoir for storing an amount of the electrophoresis running liquid capable of keeping the fluctuation of the ion concentration sufficiently small even when the electrophoresis is performed for a required time is added to the outside. A member for electrophoresis, wherein the member is an electrophoresis liquid reservoir.
路が交差するように形成されているとともに、それら流
路の一端には泳動液または試料を入れるリザーバが形成
されており、それら流路およびリザーバに泳動液を充填
し、各流路の両端に電位差を印加することで、電気泳動
による試料の移動や分離分析を行う部材において、必要
な時間の間電気泳動させてもイオン濃度の変動が十分小
さく抑えることの出来る量の泳動液の量を確保するた
め、流路の一部を泳動液溜めとして用いたことを特徴と
する電気泳動用部材。3. At least two channels are formed inside a predetermined substrate so as to intersect with each other, and at one end of each channel, a reservoir for storing an electrophoretic solution or a sample is formed. By filling the flow path and the reservoir with the electrophoresis running solution and applying a potential difference to both ends of each flow path, the member that performs electrophoretic sample movement and separation analysis can maintain the ion concentration even when electrophoresed for the required time. An electrophoresis member characterized in that a part of a flow path is used as an electrophoresis liquid reservoir in order to secure a sufficient amount of electrophoresis liquid in which fluctuations can be sufficiently suppressed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14189398A JP3475787B2 (en) | 1998-05-22 | 1998-05-22 | Electrophoresis components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14189398A JP3475787B2 (en) | 1998-05-22 | 1998-05-22 | Electrophoresis components |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11337521A true JPH11337521A (en) | 1999-12-10 |
JP3475787B2 JP3475787B2 (en) | 2003-12-08 |
Family
ID=15302625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14189398A Expired - Fee Related JP3475787B2 (en) | 1998-05-22 | 1998-05-22 | Electrophoresis components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3475787B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188061A (en) * | 1999-12-28 | 2001-07-10 | Shimadzu Corp | Microchip for analysis |
JP2007506092A (en) * | 2003-09-22 | 2007-03-15 | 株式会社島津製作所 | Electrophoresis apparatus and method, and electrophoresis member and sample dispensing probe |
JP2012068213A (en) * | 2010-09-27 | 2012-04-05 | Arkray Inc | Electrophoretic analysis device and microchip for electrophoretic analysis |
EP2998732A1 (en) | 2014-09-11 | 2016-03-23 | ARKRAY, Inc. | Analysis method, analysis chip, and analysis system |
JP2016057289A (en) * | 2014-09-11 | 2016-04-21 | アークレイ株式会社 | Analysis method, analysis chip, and analysis system |
JP2016102728A (en) * | 2014-11-28 | 2016-06-02 | 株式会社東芝 | Microanalysis chip |
EP3093656A1 (en) | 2015-05-13 | 2016-11-16 | ARKRAY, Inc. | Analytical tool and analytical system |
JP2016212090A (en) * | 2015-05-13 | 2016-12-15 | アークレイ株式会社 | Analysis tool and analysis system |
EP3315959A1 (en) | 2016-10-27 | 2018-05-02 | ARKRAY, Inc. | Analytical method and analytical system |
EP3438654A2 (en) | 2017-08-03 | 2019-02-06 | ARKRAY, Inc. | Analysis chip |
EP3608663A1 (en) | 2018-08-08 | 2020-02-12 | ARKRAY, Inc. | Analysis chip device |
-
1998
- 1998-05-22 JP JP14189398A patent/JP3475787B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001188061A (en) * | 1999-12-28 | 2001-07-10 | Shimadzu Corp | Microchip for analysis |
JP2007506092A (en) * | 2003-09-22 | 2007-03-15 | 株式会社島津製作所 | Electrophoresis apparatus and method, and electrophoresis member and sample dispensing probe |
JP2012068213A (en) * | 2010-09-27 | 2012-04-05 | Arkray Inc | Electrophoretic analysis device and microchip for electrophoretic analysis |
EP2998732A1 (en) | 2014-09-11 | 2016-03-23 | ARKRAY, Inc. | Analysis method, analysis chip, and analysis system |
JP2016057289A (en) * | 2014-09-11 | 2016-04-21 | アークレイ株式会社 | Analysis method, analysis chip, and analysis system |
US9983170B2 (en) | 2014-09-11 | 2018-05-29 | Arkray, Inc. | Analysis method, analysis chip, and analysis system |
JP2016102728A (en) * | 2014-11-28 | 2016-06-02 | 株式会社東芝 | Microanalysis chip |
US10337976B2 (en) | 2014-11-28 | 2019-07-02 | Kabushiki Kaisha Toshiba | Microanalysis chip |
US10605772B2 (en) | 2015-05-13 | 2020-03-31 | Arkray, Inc. | Analytical tool and analytical system |
EP3093656A1 (en) | 2015-05-13 | 2016-11-16 | ARKRAY, Inc. | Analytical tool and analytical system |
JP2016212090A (en) * | 2015-05-13 | 2016-12-15 | アークレイ株式会社 | Analysis tool and analysis system |
US10866212B2 (en) | 2015-05-13 | 2020-12-15 | Arkray, Inc. | Analytical tool and analytical system |
EP3315959A1 (en) | 2016-10-27 | 2018-05-02 | ARKRAY, Inc. | Analytical method and analytical system |
US10775345B2 (en) | 2016-10-27 | 2020-09-15 | Arkray, Inc. | Analytical method and analytical system |
EP3438654A2 (en) | 2017-08-03 | 2019-02-06 | ARKRAY, Inc. | Analysis chip |
EP3608663A1 (en) | 2018-08-08 | 2020-02-12 | ARKRAY, Inc. | Analysis chip device |
US11513096B2 (en) | 2018-08-08 | 2022-11-29 | Arkray, Inc. | Analysis chip device |
Also Published As
Publication number | Publication date |
---|---|
JP3475787B2 (en) | 2003-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1296134B1 (en) | Sampling device and its use for controlling sample introduction in microcolumn separation techniques | |
US6159353A (en) | Capillary electrophoretic separation system | |
Keynton et al. | Design and development of microfabricated capillary electrophoresis devices with electrochemical detection | |
JP4362987B2 (en) | Sample introduction method in microchip electrophoresis | |
JPH11337521A (en) | Member for electrophoresis | |
JPH1010088A (en) | Capillary electrophoretic device | |
CA2123940A1 (en) | Electrophoresis plate | |
JPH08327594A (en) | Capillary electrophoretic chip | |
JPH09210960A (en) | Capillary electrophoretic device | |
JPH08327593A (en) | Capillary electrophoretic device | |
JP3048345B2 (en) | Capillary electrophoresis device | |
JPH08304339A (en) | Capillary electrophoretic device | |
JP4216846B2 (en) | Electrodes for electrochemical measurements and electrochemical measurement methods | |
JPH11311616A (en) | Microchip electrophoresis apparatus | |
WO2000075650A1 (en) | Potential gradient detector for electrophoresis | |
JP2001083118A (en) | Electrophoresis device | |
JPH11352102A (en) | Capillary electrophoresis apparatus | |
JPH11108890A (en) | Electrophoresis detecting apparatus | |
US6994778B2 (en) | Microfluidic device and analyzing method using the same | |
WO2001042774A2 (en) | Potentiometric sensor | |
JP2933362B2 (en) | An improved system for measuring electrokinetic properties and characterizing electrokinetic separation by monitoring current in electrophoresis | |
US20180217093A1 (en) | Electrophoresis device | |
Dorairaj et al. | Capillary electrophoresis systems and methods | |
Starkey | Enzyme and affinity assays by microchip capillary electrophoresis | |
JP2001066276A (en) | One-chip ion concentration-measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080926 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090926 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090926 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100926 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110926 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120926 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130926 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |