JPH11335731A - Production of high strength steel excellent in resistance to sulfide stress corrosion cracking - Google Patents

Production of high strength steel excellent in resistance to sulfide stress corrosion cracking

Info

Publication number
JPH11335731A
JPH11335731A JP14000898A JP14000898A JPH11335731A JP H11335731 A JPH11335731 A JP H11335731A JP 14000898 A JP14000898 A JP 14000898A JP 14000898 A JP14000898 A JP 14000898A JP H11335731 A JPH11335731 A JP H11335731A
Authority
JP
Japan
Prior art keywords
steel
less
ksi
tempering
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14000898A
Other languages
Japanese (ja)
Other versions
JP4134377B2 (en
Inventor
Tomohiko Omura
朋彦 大村
Takahiro Kushida
隆弘 櫛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14000898A priority Critical patent/JP4134377B2/en
Publication of JPH11335731A publication Critical patent/JPH11335731A/en
Application granted granted Critical
Publication of JP4134377B2 publication Critical patent/JP4134377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain steel excellent in stress corrosion cracking by subjecting the steel, which consists of elements of a specified ratio and the balance Fe with inevitable impurities, contains the elements of a specified ratio in the impurities and is in specified relation between an Mo content and a V content, to heat treatment after hot working. SOLUTION: This steel contains, by mass, 0.2-0.35% C, 0.05-0.5% Si, 0.1-1% Mo, 0.1-1% Mn, 0.1-1.2% Cr, 0.005-0.5% V, 0.005-0.15 Ti+0.5 Zr with <=0.1% one kind or the kinds among Ti, Zr respectively and the balance Fe with inevitable impurities, further contains <=0.25% P, <=0.01% S, <=0.1% Ni, etc., in the impurities and further, satisfies formula for the contents of Mo, V. In the formula, A: 4930 e<(-0.0133> D<)> , B: 1.07×18<-8> e<(0.0187> D<)> , D: E-100 e<(-0.52> M<o-5.15> V<+0.4)> , C is respectively 150, 190, 270 for producing the steel of yield stress (ksi) of 110 to 125, >125 to <=140, >140 to <=155, E is 770, 755, 740, (e) is a base of a natural logarithm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、油井やガス井用の
ケーシングやチュービング、掘削用のドリルパイプ、輸
送用のラインパイプおよび化学プラント用配管などに用
いられる耐硫化物応力割れ性に優れた高強度鋼材の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is excellent in sulfide stress cracking resistance used in casings and tubing for oil and gas wells, drill pipes for drilling, line pipes for transportation, and piping for chemical plants. The present invention relates to a method for manufacturing a high-strength steel material.

【0002】[0002]

【従来の技術】近年のエネルギー事情の逼迫に伴い、こ
れまで敬遠されてきた硫化水素を多く含む原油や天然ガ
スが活用される情勢になってきており、それらの掘削、
輸送、貯蔵等が必要となってきた。その上、油井やガス
井の深井戸化に伴いこの分野で用いられる鋼材、特に鋼
管については、これまで以上に高強度化が要求されてい
る。
2. Description of the Related Art With the recent tightening of the energy situation, crude oil and natural gas containing a large amount of hydrogen sulfide, which have been shunned so far, are being used.
Transport and storage have become necessary. In addition, with the deepening of oil and gas wells, steel materials used in this field, particularly steel pipes, are required to have higher strength than ever before.

【0003】すなわち、従来広く用いられていた降伏応
力(以下、YSと記す)の80ksi級(80〜90k
si)や90ksi級(90超え、100ksi以下)
の耐硫化物応力割れ性に優れた鋼管に代わって、最近で
は110ksi級(110〜125ksi)や125k
si級(125超え、140ksi以下)の耐硫化物応
力割れ性に優れた高強度鋼管が使用されるようになっ
た。さらに、YSが140ksi以上の耐硫化物応力割
れ性に優れた超高強度鋼管に対する要求も高まりつつあ
る。
That is, a yield stress (hereinafter referred to as YS) of 80 ksi class (80 to 90 k
si) and 90 ksi class (more than 90, 100 ksi or less)
In recent years, 110 ksi class (110-125 ksi) and 125 k
High-strength steel pipes of si-class (greater than 125 and 140 ksi or less) having excellent sulfide stress crack resistance have come to be used. Further, there is an increasing demand for an ultra-high strength steel pipe having a YS of 140 ksi or more and excellent in sulfide stress cracking resistance.

【0004】一般に、鋼材はその強度が増すほど耐硫化
物応力割れ性(以下、「硫化物応力割れ」を「SSC」
という)がわるくなる。したがって、硫化水素を多く含
む環境下で使用される鋼材の高強度化に対し、最も大き
な課題となるのは耐SSC性の改善である。
[0004] In general, as the strength of a steel material increases, its resistance to sulfide stress cracking (hereinafter, “sulfide stress cracking” is referred to as “SSC”)
Is worse). Therefore, the biggest challenge for increasing the strength of steel materials used in an environment containing a large amount of hydrogen sulfide is improving the SSC resistance.

【0005】この耐SSC性を改善するため、鋼材の
組織をマルテンサイトが約80%以上を占める組織とす
る、高温で焼戻し処理する、鋼を高清浄度化する、
鋼材の組織を細粒組織とする、などの対策がこれまで
に講じられてきた。
In order to improve the SSC resistance, the structure of the steel material is changed to a structure in which martensite accounts for about 80% or more, tempering is performed at a high temperature, and the steel is made highly clean.
Countermeasures have been taken so far, such as changing the structure of the steel material to a fine-grained structure.

【0006】これらのうちの組織を細粒化する方法
は、下記のような利点があるため特に注目され、研究、
開発が進められてきた。
[0006] Among these, the method of refining the structure is particularly noted because of the following advantages.
Development has been advanced.

【0007】すなわち、第一の利点は、鋼材の強度が高
くなるとその脆性割れは結晶粒単位あるいは所謂「破面
単位」で進展するので、組織を細粒化すると割れに対す
る抑止力が増すことである。第二に、細粒化そのものも
強度上昇に寄与すること、第三に細粒化すれば単位体積
当たりの粒界面積が増加するので間接的に不純物元素の
粒界偏析が軽減され粒界脆化が防止されることである。
That is, the first advantage is that when the strength of a steel material increases, its brittle cracks propagate in units of crystal grains or so-called “fracture units”. Therefore, when the structure is refined, the deterrent to cracks increases. is there. Secondly, the grain refinement itself also contributes to an increase in strength. Thirdly, grain refinement increases the grain boundary area per unit volume, so indirectly reduces the grain boundary segregation of impurity elements and reduces grain boundary brittleness. Is prevented.

【0008】鋼材組織の細粒化の一般的な手法として、
変態、加工変形を利用する方法および加工変形後の再結
晶時の粒成長を抑止する方法等がある。鋳造後の鋼塊を
熱間で鋼管など所定の形状の鋼材に成形する際は、必然
的に加工変形が加えられ、加工と再結晶の繰り返しによ
り細粒化される。
[0008] As a general method of grain refinement of steel structure,
There are a method using transformation and working deformation, and a method for suppressing grain growth during recrystallization after working deformation. When the cast steel ingot is hot-formed into a steel material having a predetermined shape such as a steel pipe, it is inevitably deformed by processing, and is refined by repeating processing and recrystallization.

【0009】しかし、加工後の強度を調整する熱処理に
おける焼入れは一般にオーステナイト領域、つまり、A
c3点以上の温度に加熱しなければならないので、結晶
粒成長が起きやすく、結晶を細粒にしておくには、焼入
れ時の加熱温度を低くすることが望ましい。ところが、
細粒であること、および焼入れ温度を低くすることは、
焼入性を大きく低下させる要因となり、通常の冷却手段
では焼入れ時に80%以上がマルテンサイトである充分
な焼入れ組織を確保することが難しくなってくる。ま
た、細粒化のために焼入れ温度を低くすると、焼入れ時
に合金元素が基地に固溶し難くなって、鋼材を高強度化
するためには低温焼戻しが必要となる。低温での焼戻し
は後述するように耐SSC性を著しく低下させてしま
う。一方、焼入性確保のために合金元素を多量に添加す
れば、鋼の加工性を悪くし、製造コストの上昇の要因に
もなる。
However, quenching in heat treatment for adjusting the strength after working is generally performed in the austenite region, that is, in the A region.
Since heating must be performed to a temperature of c3 or more, crystal grain growth is likely to occur, and it is desirable to lower the heating temperature during quenching in order to keep the crystals fine. However,
Being fine granules and lowering the quenching temperature
This is a factor that greatly reduces the hardenability, and it becomes difficult to secure a sufficient hardened structure in which 80% or more is martensite at the time of hardening by ordinary cooling means. Further, when the quenching temperature is lowered for grain refinement, the alloy element hardly dissolves in the matrix during quenching, and low-temperature tempering is required to increase the strength of the steel material. Tempering at a low temperature significantly lowers the SSC resistance as described below. On the other hand, if a large amount of alloying elements is added to ensure hardenability, the workability of the steel is deteriorated and the production cost is increased.

【0010】特開昭61−9519号公報には、急速加
熱後に焼入れして細粒化する「耐硫化物腐食割れ性に優
れた高強度鋼の製法」が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 61-9519 discloses "a method for producing high-strength steel excellent in sulfide corrosion cracking resistance" in which quenching is carried out after rapid heating to reduce the grain size.

【0011】特開昭59−232220号公報には、鋼
を2回焼入れして細粒化する「耐硫化物腐食割れ性に優
れた高強度鋼の製法」が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 59-232220 discloses a "method of producing high-strength steel excellent in sulfide corrosion cracking resistance" in which steel is quenched twice and refined.

【0012】しかしながら、上記した公報に記載されて
いる方法は、いずれも降伏応力(YS)が90ksi級
(90超え、100ksi以下)や100ksi級(1
00超え、110ksi以下)の高強度鋼を対象とした
ものである。これらの方法では、YSが110ksi以
上の高強度になると、必ずしも所望の耐SSC性が得ら
れなかった。
However, all of the methods described in the above-mentioned publications have a yield stress (YS) of 90 ksi class (over 90 and 100 ksi or less) or 100 ksi class (1).
(Exceeding 00 and 110 ksi or less). In these methods, when YS has a high strength of 110 ksi or more, the desired SSC resistance cannot always be obtained.

【0013】[0013]

【発明が解決しようとする課題】本発明の課題は、YS
が110〜155ksi(758〜1068MPa)と
高強度でありながら耐SSC性に優れた油井やガス井及
びそれらに関連した諸設備や化学プラント設備などに好
適な鋼材の製造方法を提供することにある。
The object of the present invention is to provide a YS
It is an object of the present invention to provide a method for producing a steel material suitable for oil wells and gas wells having excellent SSC resistance while having a high strength of 110 to 155 ksi (758 to 1068 MPa) and various facilities related to them and chemical plant facilities. .

【0014】なお、耐SSC性の改善目標は、NACE
(National Association of Corrosion Engineers)T
M0177A法に規定された浴(1気圧の硫化水素で飽
和した25℃の0.5%酢酸+5%食塩水)中で定荷重
試験を行った時の割れ発生限界応力(σth)が鋼材の
YSの80%以上であることである。前記の条件を満た
せば、その鋼材は昨今の厳しい腐食環境下での使用に充
分耐え得ることが知られている
The goal of improving SSC resistance is NACE.
(National Association of Corrosion Engineers) T
When a constant load test was performed in a bath specified in the M0177A method (0.5% acetic acid + 5% saline solution at 25 ° C. saturated with 1 atm of hydrogen sulfide at 25 ° C.), the critical stress (σth) for cracking was YS of steel. 80% or more. It is known that if the above conditions are satisfied, the steel material can sufficiently withstand the use in the recent severe corrosive environment.

【0015】[0015]

【課題を解決するための手段】耐SSC性に優れた高強
度鋼材の製造方法に係わる本発明の要旨は以下の通りで
ある。
The gist of the present invention relating to a method for producing a high-strength steel material having excellent SSC resistance is as follows.

【0016】(1)質量%で、C:0.2〜0.35
%、Si:0.05〜0.5%、Mn:0.1〜1%、
Cr:0.1〜1.2%、Mo:0.1〜1%、Al:
0.005〜0.1%、B:0.0001〜0.01
%、Nb:0.005〜0.5%、V:0.005〜
0.5%、TiおよびZrの一種または二種をそれぞれ
0.1%以下で、かつTi+0.5Zr:0.005〜
0.15%、W:0〜1%、Ca:0〜0.01%を含
み、残部がFe及び不可避的不純物からなり、不純物中
のP:0.025%以下、S:0.01%以下、Ni:
0.1%以下、N:0.01%以下、O(酸素):0.
01%以下であり、Mo、V含有量が下記式(1)を満
足する鋼を熱間加工し、次いで焼入れ焼戻しの熱処理を
施すことを特徴とする110〜155ksiの降伏応力
を有する耐硫化物応力割れ性に優れた高強度鋼材の製造
方法。
(1) In mass%, C: 0.2 to 0.35
%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%,
Cr: 0.1 to 1.2%, Mo: 0.1 to 1%, Al:
0.005 to 0.1%, B: 0.0001 to 0.01
%, Nb: 0.005 to 0.5%, V: 0.005 to
0.5%, one or two of Ti and Zr are each 0.1% or less, and Ti + 0.5Zr: 0.005 to
0.15%, W: 0 to 1%, Ca: 0 to 0.01%, the balance being Fe and unavoidable impurities, P in the impurities: 0.025% or less, S: 0.01% Below, Ni:
0.1% or less, N: 0.01% or less, O (oxygen): 0.
A sulfide having a yield stress of 110 to 155 ksi, wherein a steel having a Mo and V content of not more than 01% and satisfying the following formula (1) is hot-worked and then subjected to heat treatment of quenching and tempering. A method for producing high-strength steel with excellent stress cracking properties.

【0017】 2Mo+5V≦B×C−A+1.4 ・・・・・・ (1) ここで、A:4930e(-0.0133D) B:1.07×10-8(0.0187D) D:E−100e(-0.52Mo-5.15V+0.4) C、E:降伏応力が110以上、125ksi以下の鋼
材を製造する場合 C:150、E:770 降伏応力が125超え、140ksi以下の鋼材を製造
する場合 C:190、E:755 降伏応力が140超え、155ksi以下の鋼材を製造
する場合 C:270、E:740 e:自然対数の底数 Mo、Vは含有量(質量%) (2)質量%で、C:0.2〜0.35%、Si:0.
05〜0.5%、Mn:0.1〜1%、Cr:0.1〜
1.2%、Mo:0.1〜1%、Al:0.005〜
0.1%、B:0.0001〜0.01%、Nb:0.
005〜0.5%、V:0.005〜0.5%、Tiお
よびZrの一種または二種をそれぞれ0.1%以下で、
かつTi+0.5Zr:0.005〜0.15%、W:
0〜1%、Ca:0〜0.01%を含み、残部がFe及
び不可避的不純物からなり、不純物中のP:0.025
%以下、S:0.01%以下、Ni:0.1%以下、
N:0.01%以下、O(酸素):0.01%以下であ
り、Mo、VおよびNb含有量が下記式(2)を満足す
る鋼を熱間加工し、熱間加工終了後に直接焼入れを施
し、次いで焼戻し処理することを特徴とする110〜1
55ksiの降伏応力を有する耐硫化物応力割れ性に優
れた高強度鋼材の製造方法。
2Mo + 5V ≦ B × C−A + 1.4 (1) where A: 4930e (−0.0133D) B: 1.07 × 10 −8 e (0.0187D) D: E− 100e (-0.52Mo-5.15V + 0.4) C, E: When producing steel material with a yield stress of 110 or more and 125 ksi or less C: 150, E: 770 When producing a steel material with a yield stress exceeding 125 and 140 ksi or less C: 190, E: 755 When a steel material with a yield stress exceeding 140 and 155 ksi or less is produced. C: 270, E: 740 e: Base of natural logarithm Mo, V are contents (% by mass) (2) In mass% , C: 0.2-0.35%, Si: 0.
05-0.5%, Mn: 0.1-1%, Cr: 0.1-
1.2%, Mo: 0.1-1%, Al: 0.005-
0.1%, B: 0.0001 to 0.01%, Nb: 0.
005 to 0.5%, V: 0.005 to 0.5%, one or two of Ti and Zr are each 0.1% or less,
And Ti + 0.5Zr: 0.005 to 0.15%, W:
0 to 1%, Ca: 0 to 0.01%, the balance being Fe and unavoidable impurities, P in the impurities: 0.025
%, S: 0.01% or less, Ni: 0.1% or less,
N: 0.01% or less, O (oxygen): 0.01% or less, Mo, V, and Nb contents satisfy the following formula (2). 110-1 characterized by quenching and then tempering
A method for producing a high-strength steel material excellent in sulfide stress cracking resistance having a yield stress of 55 ksi.

【0018】 2Mo+4Nb+5V≦B×C−A+1.4 ・・・・・・ (2) ここで、A:4930e(-0.0133D) B:1.07×10-8(0.0187D) D:E−100e(-0.52Mo-9.36Nb-5.15V+0.4) C、E:降伏応力が110以上、125ksi以下の鋼
材を製造する場合 C:150、E:770 降伏応力が125超え、140ksi以下の鋼材を製造
する場合 C:190、E:755 降伏応力が140超え、155ksi以下の鋼材を製造
する場合 C:270、E:740 e:自然対数の底数 Mo、VおよびNbは含有量(質量%) 本発明者らは、耐SSC性を向上させる結晶粒微細化の
効果につき検討した結果、結晶粒の微細化はYSが11
0ksi未満の鋼材には有効であるが、110ksi以
上の高強度鋼材に対しては耐SSC性を向上させる作用
が不安定になり、特にYSが120ksiを超える鋼材
に対しては、耐SSC性の向上効果が認められないこと
を確認した。
2Mo + 4Nb + 5V ≦ B × C−A + 1.4 (2) where A: 4930e (−0.0133D) B: 1.07 × 10 −8 e (0.0187D) D: E− 100e (-0.52Mo-9.36Nb-5.15V + 0.4) C, E: When producing a steel material with a yield stress of 110 or more and 125 ksi or less C: 150, E: 770 A steel material with a yield stress of more than 125 and 140 ksi or less When manufacturing: C: 190, E: 755 When yielding stress exceeds 140, and when manufacturing a steel material of 155 ksi or less C: 270, E: 740 e: Base of natural logarithm Mo, V and Nb are contents (mass%) The present inventors have studied the effect of grain refinement for improving SSC resistance.
Although it is effective for steel materials less than 0 ksi, the effect of improving SSC resistance becomes unstable for high-strength steel materials of 110 ksi or more. It was confirmed that no improvement effect was observed.

【0019】そこで、組織を細粒化する方法以外の方法
で、YSが110ksi以上の高強度で、耐SSC性に
優れた鋼材を製造する方法を開発すべく、鋼の化学組成
につき検討し、種々実験を重ねた結果、以下の知見を得
た。
Therefore, in order to develop a method of manufacturing a steel material having a high strength of YS of 110 ksi or more and excellent in SSC resistance by a method other than the method of refining the structure, the chemical composition of the steel was examined. As a result of various experiments, the following findings were obtained.

【0020】a)硫化水素環境で鋼中に吸蔵された拡散
性水素の量(以下吸蔵水素濃度と言う)は、鋼の組成に
応じて異なる。
A) The amount of diffusible hydrogen occluded in steel in a hydrogen sulfide environment (hereinafter referred to as occluded hydrogen concentration) differs depending on the composition of the steel.

【0021】b)硫化水素環境下で水素吸蔵に大きく影
響する元素はMoとVであり、どちらも含有量を増加さ
せれば焼戻し軟化抵抗が高まり高温焼戻しすることがで
きて内部歪みを低減することができるが、一方で吸蔵水
素濃度を増加させる働きがある。その理由は、焼戻し軟
化抵抗、すなわち析出強化に寄与するMo系やV系の微
細炭化物の界面に拡散性水素がトラップされることにあ
る。
B) Elements Mo and V greatly affect hydrogen storage in a hydrogen sulfide environment. Increasing the content of both elements increases the tempering softening resistance and enables high-temperature tempering to reduce internal strain. It has the function of increasing the stored hydrogen concentration. The reason is that diffusible hydrogen is trapped at the interface between Mo-based and V-based fine carbides that contribute to temper softening resistance, that is, precipitation strengthening.

【0022】c)通常の焼入れ熱処理では鋼中に固溶し
ないNbも、直接焼入れする場合に限り焼入れ時に完全
に鋼中に固溶し、その後の焼戻し時に微細炭化物として
析出し焼戻し軟化抵抗を高める。しかし、MoやVと同
様に吸蔵水素を増加させる働きを示す。従って、これら
の元素を含有させることにより高温焼戻しによる内部歪
みの低減を図ることができるが、一方で微細炭化物自身
が吸蔵水素濃度を増してしまう作用がある。ただし、直
接焼入れもしくは直接焼入れ焼戻し後に通常の焼入れ焼
戻しした場合は、Nb炭化物は粗大化し、焼戻し軟化抵
抗には効かない。
C) Nb which does not form a solid solution in the steel by ordinary quenching heat treatment is completely dissolved in the steel at the time of quenching only when directly quenched, and precipitates as fine carbide during the subsequent quenching to increase the temper softening resistance. . However, like Mo and V, it has a function of increasing stored hydrogen. Therefore, by containing these elements, internal strain due to high-temperature tempering can be reduced, but on the other hand, the fine carbide itself has an effect of increasing the occluded hydrogen concentration. However, when normal quenching and tempering are performed after direct quenching or direct quenching and tempering, the Nb carbide is coarsened and has no effect on temper softening resistance.

【0023】d)耐SSC性は、吸蔵水素の低減と高温
焼戻しの相乗効果で著しく改善される。すなわち、SS
Cが発生する場合には、欠陥や転位等で局部的に水素濃
度が増加し、その結果割れに至るのであるが、吸蔵水素
濃度を低減することに加え、さらに高温焼戻しにより内
部歪みを低減すれば、この水素の局部的な濃度上昇に伴
うSSCの発生が抑制される。
D) SSC resistance is remarkably improved by the synergistic effect of reduction of stored hydrogen and high-temperature tempering. That is, SS
When C is generated, the hydrogen concentration locally increases due to defects, dislocations, and the like, which results in cracking. However, in addition to reducing the occluded hydrogen concentration, internal strain can be further reduced by high-temperature tempering. Thus, the generation of SSC due to the local increase in the concentration of hydrogen is suppressed.

【0024】e)そのため、鋼中のMo、VおよびNb
(ただし、Nbは直接焼入れの場合のみ)含有量を鋼材
の強度レベルに応じて適切な量にするのがよい。
E) Mo, V and Nb in steel
(However, Nb is only in the case of direct quenching) The content is preferably set to an appropriate amount according to the strength level of the steel material.

【0025】[0025]

【発明の実施の形態】以下、本発明の製造方法で規定し
た条件について詳しく説明する。なお、化学成分の含有
量の「%」は「質量%」を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The conditions specified in the manufacturing method of the present invention will be described below in detail. In addition, “%” of the content of the chemical component indicates “% by mass”.

【0026】(A)鋼材の化学組成 C:0.2〜0.35% Cは焼入性を高め、強度を向上させるのに有効な元素で
ある。しかし、その含有量が0.2%未満では、焼入性
が低下すると共に耐SSC性が低下することがある。一
方、0.35%を超えると、炭化物が増加し、拡散性水
素のトラップサイトが多くなって耐SSC性が低下す
る。さらに、焼割れ感受性も増大する。したがって、C
の含有量は0.2〜0.35%とした。C含有量の好ま
しい上限は0.3%である。
(A) Chemical composition of steel C: 0.2 to 0.35% C is an element effective for improving hardenability and improving strength. However, if the content is less than 0.2%, the hardenability is reduced and the SSC resistance is sometimes reduced. On the other hand, if it exceeds 0.35%, the amount of carbides increases, the number of diffusible hydrogen trap sites increases, and the SSC resistance decreases. In addition, the susceptibility to cracking increases. Therefore, C
Was 0.2 to 0.35%. A preferred upper limit of the C content is 0.3%.

【0027】ここでいうトラップサイトとは、拡散がで
きないほど強力に水素を固定するのではなく、鋼中に固
溶している水素が、その部分に存在する方がより安定で
あり、鋼の素地(基地)の水素濃度レベルよりは相対的
に濃度が高くなる局所的部分のことをいう。
The term "trap site" as used herein means that hydrogen is not fixed so strongly that it cannot be diffused, but that hydrogen present as a solid solution in steel is more stable in that portion. This refers to a local portion where the concentration is relatively higher than the hydrogen concentration level of the base (base).

【0028】Si:0.05〜0.5% Siは、鋼の脱酸に有効な元素であり、焼戻し軟化抵抗
を高めて耐SSC性を向上させる元素でもある。脱酸の
目的からは0.05%以上の含有量とする必要がある。
しかし、その含有量が0.5%を超えると靭性が低下す
ると共に、粒界強度が低くなるので耐SSC性も却って
低下してしまう。したがって、Siの含有量は0.05
〜0.5%とした。なお、Si含有量の好ましい上限は
0.3%である。
Si: 0.05-0.5% Si is an element effective in deoxidizing steel, and is also an element that increases tempering softening resistance and improves SSC resistance. For the purpose of deoxidation, the content needs to be 0.05% or more.
However, if the content exceeds 0.5%, the toughness is lowered and the grain boundary strength is lowered, so that the SSC resistance is also lowered. Therefore, the content of Si is 0.05
-0.5%. Note that a preferable upper limit of the Si content is 0.3%.

【0029】Mn:0.1〜1% Mnは、鋼の焼入性を確保するのに有効な元素である。
この目的からは0.1%以上の含有量が必要である。し
かし、1%を超えて含有させると粒界に偏析して耐SS
C性及び靭性の低下を招く。したがって、Mnの含有量
は0.1〜1%とした。なお、Mn含有量の上限は望ま
しくは0.5%である。
Mn: 0.1-1% Mn is an element effective for ensuring the hardenability of steel.
For this purpose, a content of 0.1% or more is required. However, if the content exceeds 1%, segregation at the grain boundaries causes SS resistance.
This leads to a decrease in C properties and toughness. Therefore, the content of Mn is set to 0.1 to 1%. Note that the upper limit of the Mn content is desirably 0.5%.

【0030】Cr:0.1〜1.2% Crは、焼入性を上げるとともに焼戻し軟化抵抗を高め
て高温焼戻しを可能にし、耐SSC性を向上させる作用
がある。前記の効果を確実に得るためにはCrの含有量
は0.1%以上とする必要がある。しかし、Crを1.
2%を超えて含有させると、硫化水素を含む酸性の湿潤
環境ではCrが活性溶解して腐食速度が大きくなり、却
って耐SSC性の低下を招く。したがって、Crの含有
量は0.1〜1.2%とした。なお、Cr含有量の好ま
しい上限は0.5%である。
Cr: 0.1 to 1.2% Cr has the effect of increasing the hardenability and increasing the tempering softening resistance to enable high temperature tempering, thereby improving the SSC resistance. In order to ensure the above-mentioned effects, the Cr content needs to be 0.1% or more. However, if Cr is 1.
If the content exceeds 2%, Cr is actively dissolved in an acidic wet environment containing hydrogen sulfide to increase the corrosion rate, and on the contrary, the SSC resistance is lowered. Therefore, the content of Cr is set to 0.1 to 1.2%. Note that a preferable upper limit of the Cr content is 0.5%.

【0031】Mo:0.1〜1% Moは、V、Nbとともに本発明において重要な元素で
あり、焼入性を向上させるとともに、焼戻し軟化抵抗を
高めて高温焼戻しを可能にし、耐SSC性を向上させる
作用を有する。しかし、その含有量が0.1%未満では
前記の効果が得られない。一方、1%を超えて含有させ
ると、焼戻しで針状のMo炭化物が析出して拡散性水素
をトラップして吸蔵水素濃度を増し、かつその周辺の応
力集中により耐SSC性を却って低下させる。したがっ
て、Moの含有量を0.1〜1%とした。
Mo: 0.1 to 1% Mo is an important element in the present invention together with V and Nb, and improves the hardenability, increases the tempering softening resistance, enables high-temperature tempering, and improves the SSC resistance. Has the effect of improving However, if the content is less than 0.1%, the above effects cannot be obtained. On the other hand, when the content exceeds 1%, needle-like Mo carbides precipitate by tempering, diffusible hydrogen is trapped, the concentration of occluded hydrogen is increased, and the SSC resistance is rather lowered due to the concentration of stress around it. Therefore, the content of Mo is set to 0.1 to 1%.

【0032】Al:0.005〜0.1% Alは、鋼の脱酸に必要な元素である。しかし、その含
有量が0.005%未満ではその効果を十分得ることが
できない。一方、0.1%を超えて含有させると粗大な
Al23のようなAl系介在物が多くなって靭性及び耐
SSC性が低下する。したがって、Alの含有量は0.
005〜0.1%とした。Al含有量の望ましい範囲は
0.01〜0.05%である。なお、本発明でいうAl
とは所謂「sol.Al(酸可溶Al)」のことであ
る。
Al: 0.005 to 0.1% Al is an element necessary for deoxidizing steel. However, if the content is less than 0.005%, the effect cannot be sufficiently obtained. On the other hand, if the content exceeds 0.1%, coarse Al-based inclusions such as Al 2 O 3 increase, and the toughness and SSC resistance decrease. Therefore, the content of Al is 0.1.
005 to 0.1%. A desirable range of the Al content is 0.01 to 0.05%. Note that, in the present invention, Al
Is so-called “sol. Al (acid-soluble Al)”.

【0033】B:0.0001〜0.01% Bは、微量でも鋼の焼入性を向上させる作用を有する。
しかし、その含有量が0.0001%未満ではその効果
が充分でなく、0.01%を超えると靭性及び耐SSC
性が低下するため、Bの含有量は0.0001〜0.0
1%とした。なお、B含有量の望ましい範囲は、0.0
002〜0.002%である。
B: 0.0001 to 0.01% B has an effect of improving the hardenability of steel even in a trace amount.
However, if the content is less than 0.0001%, the effect is not sufficient, and if it exceeds 0.01%, the toughness and SSC resistance are reduced.
The content of B is 0.0001 to 0.0
1%. The desirable range of the B content is 0.0
002 to 0.002%.

【0034】Nb:0.005〜0.5% Nbは、通常の焼入れ焼戻し熱処理では未固溶の炭化物
としてピニング効果により細粒化に有効な元素である。
また直接焼入れ法により焼入れ時に完全に固溶させれ
ば、焼戻し軟化抵抗に活用でき、耐SSC性を高めるこ
ともできる。この効果を得るためにはNbを0.005
%以上含有させる必要がある。一方、0.5%を超えて
含有させると、粗大なNb炭化物が拡散性水素のトラッ
プサイトとなって水素吸蔵量が増えるので耐SSC性が
低下する。したがって、Nbの含有量を0.005〜
0.5%とした。
Nb: 0.005 to 0.5% Nb is an element which is effective for grain refinement by a pinning effect as an undissolved carbide in ordinary quenching and tempering heat treatment.
Further, if the solid solution is completely dissolved at the time of quenching by the direct quenching method, it can be used for tempering softening resistance and SSC resistance can be improved. To obtain this effect, Nb should be 0.005
% Or more. On the other hand, if the content exceeds 0.5%, coarse Nb carbides become trap sites for diffusible hydrogen and increase the amount of hydrogen occlusion, so that the SSC resistance decreases. Therefore, the content of Nb is 0.005 to
0.5%.

【0035】V:0.005〜0.5% Vは、焼戻し時に微細な炭化物として析出して焼戻し軟
化抵抗を高め、高温焼戻しを可能とすることにより耐S
SC性を改善する作用を有する。この効果を確実に得る
には、Vは0.005%以上の含有量とする。一方、V
含有量が0.5%を超えるとV炭化物が粗大化して強化
に寄与しなくなることに加え、その粗大炭化物が拡散性
水素のトラップサイトとなって水素吸蔵量が増えるので
却って耐SSC性が低下する。したがって、Vの含有量
を0.005〜0.5%とした。
V: 0.005 to 0.5% V precipitates as fine carbides at the time of tempering to increase tempering softening resistance and enables high-temperature tempering, thereby improving S resistance.
It has the effect of improving SC properties. To ensure this effect, the content of V is set to 0.005% or more. On the other hand, V
If the content exceeds 0.5%, V carbides are coarsened and do not contribute to strengthening. In addition, the coarse carbides serve as trap sites for diffusible hydrogen and increase the amount of hydrogen occlusion, thereby deteriorating the SSC resistance. I do. Therefore, the content of V is set to 0.005 to 0.5%.

【0036】なお、上記Mo、VおよびNbに関して
は、熱処理法とYSの目標とする範囲に応じて後述する
所定の式(1)および(2)を満たす含有量としなけれ
ばならない。
The contents of Mo, V and Nb must satisfy the following formulas (1) and (2) according to the heat treatment method and the target range of YS.

【0037】TiおよびZr:一種または二種をそれぞ
れ0.1%以下、かつTi+0.5Zr:0.005〜
0.15% TiとZrは、それぞれ鋼中の不純物であるNをTiN
やZrNとして固定する目的で添加する。また、Nの固
定に必要とする量よりも過剰なTiやZrは、炭化物と
なって微細に析出し、焼戻し軟化抵抗を高める効果を有
する。Nを固定する必要があるのは、焼入性向上のため
に添加するBがBNとなるのを抑制し、Bを固溶状態に
維持して充分な焼入性を確保するためである。
Ti and Zr: One or two kinds are each 0.1% or less, and Ti + 0.5 Zr: 0.005 to
0.15% Ti and Zr respectively convert N, which is an impurity in steel, into TiN
Or for the purpose of fixing as ZrN. Further, Ti or Zr in excess of the amount required for fixing N becomes carbide and is finely precipitated, and has an effect of increasing tempering softening resistance. The reason why N needs to be fixed is to prevent B added to improve quenchability from becoming BN, and to maintain B in a solid solution state to secure sufficient quenchability.

【0038】こうした効果は、TiとZrの含有量に関
し、Ti+0.5Zrの値が0.005%以上の場合に
確実に得られる。しかし、Ti+0.5Zrの値で0.
15%を超えるTiとZrを添加しても前記の効果は飽
和するのでコストが嵩み、さらに、粗大な炭化物が増加
して靭性および耐SSC性が低下することがある。
Such an effect can be surely obtained when the value of Ti + 0.5Zr is 0.005% or more with respect to the contents of Ti and Zr. However, at the value of Ti + 0.5Zr, the value of 0.1.
Even if more than 15% of Ti and Zr are added, the above-mentioned effect is saturated, so that the cost increases, and further, coarse carbides increase, and toughness and SSC resistance may decrease.

【0039】なお、Ti+0.5Zrの値が0.005
〜0.15%でありさえすれば良いので、必ずしもTi
とZrを複合して含有させる必要はない。Zrを添加し
ない、つまりTiを単独で添加する場合、その含有量が
0.1%を超えると炭化物が増加し靭性および耐SSC
性が低下する。逆にTiを添加しない、つまりZrを単
独で添加する場合に、Zrを0.1%を超えて含有させ
ると炭化物が増加し靭性および耐SSC性が低下する。
The value of Ti + 0.5Zr is 0.005
Since it only needs to be 0.15%, Ti
And Zr need not be compounded. When Zr is not added, that is, when Ti is added alone, if its content exceeds 0.1%, carbides increase, resulting in toughness and SSC resistance.
Is reduced. Conversely, when Ti is not added, that is, when Zr is added alone, if Zr is contained in an amount exceeding 0.1%, carbides increase and toughness and SSC resistance decrease.

【0040】W:0〜1% Wは必要により含有させるもので、含有させれば焼入性
を高めるとともに、焼戻し軟化抵抗を高めて高温焼戻し
に有利となり、耐SSC性を向上させる作用を有する。
前記の効果を確実に発揮させるには、Wの含有量は0.
3%以上とすることが好ましい。しかし、1%を超えて
含有させると析出炭化物の粗大化が起こって前記の効果
が飽和あるいは低下するのに加え、粗大化した炭化物が
拡散性水素のトラップサイトとなって却って耐SSC性
が低下する。したがって、Wを含有させる場合の上限は
1%とした。なお、W含有量の好ましい上限は0.7%
である。
W: 0 to 1% W is contained if necessary. If W is contained, it has the effect of improving the hardenability, increasing the tempering softening resistance, being advantageous for high temperature tempering, and improving the SSC resistance. .
In order to ensure the above-mentioned effect, the content of W should be set to 0.1.
It is preferable to set it to 3% or more. However, when the content exceeds 1%, the precipitated carbides are coarsened, and the above-mentioned effect is saturated or reduced. In addition, the coarsened carbides serve as trap sites for diffusible hydrogen, and the SSC resistance is lowered. I do. Therefore, when W is contained, the upper limit is set to 1%. Note that a preferable upper limit of the W content is 0.7%.
It is.

【0041】Ca:0〜0.01% Caは必要により含有させるもので、鋼中のSと結合し
て硫化物を形成し、介在物の形状を改善して耐SSC性
を向上させる。したがって、前記の効果を確保したい場
合には、Caを含有させてもよい。なお、前記の効果を
確実に得るには、0.0001%以上の含有量とするこ
とが好ましい。しかし、その含有量が0.01%を超え
ると、却って耐SSC性が低下するばかりか靭性も低下
するし、鋼材表面に地疵などの欠陥が発生し易くなる。
したがって、Caを含有させる場合の上限は0.01%
とした。
Ca: 0 to 0.01% Ca is contained as necessary, and combines with S in steel to form a sulfide, thereby improving the shape of inclusions and improving SSC resistance. Therefore, when it is desired to secure the above effects, Ca may be contained. In order to surely obtain the above-mentioned effects, the content is preferably 0.0001% or more. However, when the content exceeds 0.01%, not only does the SSC resistance decrease, but also the toughness decreases, and defects such as ground flaws easily occur on the steel material surface.
Therefore, when Ca is contained, the upper limit is 0.01%.
And

【0042】P:0.025%以下 Pは不純物として鋼中に不可避的に存在するが、粒界に
偏析して耐SSC性を劣化させてしまう。特に、その含
有量が0.025%を超えると耐SSC性の劣化が著し
くなる。そのため、その含有量は0.025%以下にす
る必要がある。なお、耐SSC性を高めるためにPの含
有量はできるだけ低くすることが望ましい。
P: not more than 0.025% P is inevitably present in steel as an impurity, but segregates at grain boundaries and degrades SSC resistance. In particular, if the content exceeds 0.025%, the deterioration of SSC resistance becomes remarkable. Therefore, its content needs to be 0.025% or less. It is desirable that the P content be as low as possible in order to increase the SSC resistance.

【0043】S:0.01%以下 SはPと同様に不純物として鋼中に不可避的に存在する
が、粒界に偏析することと、硫化物系の介在物を多量に
生成することによって耐SSC性を低下させてしまう。
特に、その含有量が0.01%を超えると耐SSC性の
低下が著しくなる。したがって、その含有量は0.01
%以下にする必要がある。なお、耐SSC性を高めるた
めにSの含有量はできるだけ低くすることが望ましい。
S: 0.01% or less S is inevitably present in steel as an impurity like P, but it is resistant to segregation at grain boundaries and generation of a large amount of sulfide-based inclusions. SSC property will be reduced.
In particular, if the content exceeds 0.01%, the decrease in SSC resistance becomes significant. Therefore, its content is 0.01
% Or less. It is desirable that the content of S be as low as possible in order to increase the SSC resistance.

【0044】Ni:0.1%以下 Niは不純物として鋼中に存在し、本発明で規定する化
学組成範囲の鋼においては耐SSC性を低下させる。特
に、Niの含有量が0.1%を超えると耐SSC性の低
下が著しくなる。したがって、Niの含有量を0.1%
以下とした。なお、Niは、Cr原料中に不可避的に含
まれている場合は、Crを含有させる場合、Niの含有
量を0(ゼロ)にすることは工業的に極めて難しいが、
できるだけ少なくすることが望ましい。
Ni: 0.1% or less Ni is present as an impurity in steel, and deteriorates SSC resistance in steel having a chemical composition range specified in the present invention. In particular, when the Ni content exceeds 0.1%, the SSC resistance is significantly reduced. Therefore, the content of Ni is 0.1%
It was as follows. In addition, when Ni is inevitably contained in the Cr raw material, it is industrially extremely difficult to reduce the Ni content to 0 (zero) when Cr is contained,
It is desirable to minimize it.

【0045】N:0.01%以下 Nは不純物として鋼中に存在し、粒界に偏析して靭性及
び耐SSC性を低下させる。しかし、その含有量が0.
01%以下であれば許容できることから、Nの含有量を
0.01%以下とした。なお、Nは溶製中に大気などか
らも鋼中に溶解するので、その含有量を0(ゼロ)にす
ることは工業的に極めて難しいが、できるだけ少なくす
ることが望ましい。
N: 0.01% or less N is present in steel as an impurity and segregates at grain boundaries to lower toughness and SSC resistance. However, when its content is 0.1.
The content of N is set to 0.01% or less because the content of N is acceptable if it is 01% or less. It should be noted that N is dissolved in the steel from the atmosphere and the like during smelting. Therefore, it is extremely difficult industrially to make the content 0 (zero), but it is desirable to reduce the content as much as possible.

【0046】O(酸素):0.01%以下 Oは不純物として鋼中に存在し、粒界に偏析して靭性及
び耐SSC性を低下させる。しかし、その含有量が0.
01%以下であれば許容できることから、Oの含有量を
0.01%以下とした。なお、Oは溶製中に大気などか
らも鋼中に溶解するので、その含有量を0(ゼロ)にす
ることは工業的に極めて難しいが、できるだけ少なくす
ることが望ましい。
O (oxygen): 0.01% or less O is present as an impurity in steel and segregates at grain boundaries to lower toughness and SSC resistance. However, when its content is 0.1.
Since the content of O is acceptable if it is 01% or less, the content of O is set to 0.01% or less. Since O is dissolved in the steel from the atmosphere during the smelting, it is extremely difficult industrially to make the content 0 (zero), but it is desirable to reduce the content as much as possible.

【0047】次に、Mo、Nb、Vに関しては、前記し
たように熱処理法とYSの目標とする範囲に応じて、下
記式(1)および(2)を満たす必要がある。
Next, with respect to Mo, Nb and V, it is necessary to satisfy the following equations (1) and (2) according to the heat treatment method and the target range of YS as described above.

【0048】通常の焼入れ焼戻し熱処理の場合 2Mo+5V≦B×C−A+1.4 ・・・・・・ (1) ここで、A:4930e(-0.0133D) B:1.07×10-8(0.0187D) D:E−100e(-0.52Mo-5.15V+0.4) C、E:降伏応力が110以上、125ksi以下の鋼
材を製造する場合 C:150、E:770 降伏応力が125超え、140ksi以下の鋼材を製造
する場合 C:190、E:755 降伏応力が140超え、155ksi以下の鋼材を製造
する場合 C:270、E:740 e:自然対数の底数 直接焼入れの場合 2Mo+4Nb+5V≦B×C−A+1.4 ・・・・・・ (2) ここで、A:4930e(-0.0133D) B:1.07×10-8(0.0187D) D:E−100e(-0.52Mo-9.36Nb-5.15V+0.4) C、E:降伏応力が110以上、125ksi以下の鋼
材を製造する場合 C:150、E:770 降伏応力が125超え、140ksi以下の鋼材を製造
する場合 C:190、E:755 降伏応力が140超え、155ksi以下の鋼材を製造
する場合 C:270、E:740 e:自然対数の底数 耐SSC性能は、前述したように吸蔵水素濃度の低減と
高温焼戻しの相乗効果により改善され、種々試験を繰り
返した結果求めた下記式の指標値(以下、耐SSC指標
と記す)でよく整理できる。
In the case of ordinary quenching and tempering heat treatment, 2Mo + 5V ≦ B × C−A + 1.4 (1) where A: 4930e (−0.0133D) B: 1.07 × 10 −8 e ( 0.0187D) D: E-100e (-0.52Mo-5.15V + 0.4) C, E: When producing steel having a yield stress of 110 or more and 125 ksi or less C: 150, E: 770 Yield stress exceeds 125 and 140 ksi When producing the following steel materials: C: 190, E: 755 When the yield stress exceeds 140 and when producing steel materials of 155 ksi or less C: 270, E: 740 e: The base of the natural logarithm Direct quenching 2Mo + 4Nb + 5V ≦ B × C −A + 1.4 (2) where A: 4930e (−0.0133D) B: 1.07 × 10 −8 e (0.0187D) D: E−100e (−0.52Mo-9.36Nb) -5.15V + 0.4) C, E: yield stress of 110 or more, 125 ksi When producing the lower steel material: C: 150, E: 770 When producing a steel material with a yield stress exceeding 125 and 140 ksi or less C: 190, E: 755 When producing a steel material with a yield stress exceeding 140 and 155 ksi or less C : 270, E: 740 e: base of natural logarithm The SSC resistance performance was improved by the synergistic effect of the reduction of the stored hydrogen concentration and the high-temperature tempering as described above, and the index value of the following equation obtained by repeating various tests ( Hereinafter, this is referred to as an SSC resistance index).

【0049】耐SSC指標=(吸蔵水素濃度)/1.07×
10-8(0.0187D) Dは、焼鈍温度で℃を示す。また、吸蔵水素濃度は種々
の測定法により実測可能で、単位はppmである。
SSC resistance index = (hydrogen storage concentration) /1.07×
10 -8 e (0.0187D) D indicates ° C. at the annealing temperature. Further, the stored hydrogen concentration can be measured by various measuring methods, and the unit is ppm.

【0050】e(0.0187D)の値は、焼戻し温度Dが低く
なるほど小さくなる。すなわち、高温焼戻しになるほど
転位が拡散移動により消滅して内部歪が解消され、拡散
性水素がそうした転位に集まりにくくなるからである。
The value of e (0.0187D) decreases as the tempering temperature D decreases. That is, as the temperature becomes higher, the dislocations disappear due to the diffusion movement, the internal strain is eliminated, and the diffusible hydrogen hardly collects at such dislocations.

【0051】図1は、YSが140ksi級(140〜
155ksi)の鋼の耐SSC指標と耐SSC性との関
係を示す図である。
FIG. 1 shows that YS is 140 ksi class (140 to 140 ksi class).
It is a figure which shows the relationship between SSC resistance index and SSC resistance of 155 ksi) steel.

【0052】横軸は、種々の鋼種における吸蔵水素濃度
の測定値を、上式で求めた1.07×10-8(0.0187D)で除
した値(耐SSC指標)である。一方、縦軸は後述する
NACE TM0177A法に従う定荷重試験による破
断限界応力の実測YSに対する比である。耐SSC性を
改善するには耐SSC指標を小さくすればよいことが分
かる。すなわち、耐SSC指標は、(吸蔵水素濃度)/
1.07×10-8(0.0187D)であるから吸蔵水素濃度が小さ
くなる成分系の鋼とするのがよい。
The horizontal axis is the value (SSC resistance index) obtained by dividing the measured value of the stored hydrogen concentration in various steel types by 1.07 × 10 −8 e (0.0187D) obtained by the above equation. On the other hand, the vertical axis is the ratio of the breaking limit stress to the actually measured YS by the constant load test according to the NACE TM0177A method described later. It can be seen that the SSC resistance can be improved by reducing the SSC resistance index. That is, the SSC resistance index is (storage hydrogen concentration) /
Since it is 1.07 × 10 −8 e (0.0187D), it is preferable to use a steel of a component system in which the occluded hydrogen concentration becomes small.

【0053】硫化水素環境での吸蔵水素濃度は、Mo、
VおよびNbの含有量により、通常の焼入れ焼戻し熱処
理と直接焼入れ焼戻しの場合に応じて下記式(4)およ
び(5)で表せる。
The stored hydrogen concentration in the hydrogen sulfide environment is Mo,
Depending on the contents of V and Nb, they can be expressed by the following formulas (4) and (5) depending on the case of ordinary quenching and tempering heat treatment and the case of direct quenching and tempering.

【0054】通常の焼入れ焼戻し熱処理の場合 吸蔵水素濃度=A+2Mo+5V−1.4 ・・・・(4) 直接焼入れの場合 吸蔵水素濃度=A+2Mo+4Nb+5V−1.4 ・・・・(5) A:4930e(-0.0133D) D:焼戻し温度(℃) 第1項のAは内部歪みにトラップされる水素濃度に相当
し、高温焼戻しに伴い低減される。一方、第2項以下は
焼戻し軟化抵抗、すなわち析出強化に寄与する微細炭化
物の界面にトラップされる水素濃度に相当する。直接焼
入れプロセスの場合はNbが析出強化に寄与するので、
Nbの水素吸蔵効果を考慮する必要がある。
In the case of normal quenching and tempering heat treatment, the absorbed hydrogen concentration = A + 2Mo + 5V-1.4 (4) In the case of direct quenching The absorbed hydrogen concentration = A + 2Mo + 4Nb + 5V-1.4 (5) A: 4930e ( -0.0133D) D: Tempering temperature (° C.) A in the first term corresponds to the concentration of hydrogen trapped by internal strain, and is reduced with high-temperature tempering. On the other hand, the second and subsequent terms correspond to temper softening resistance, that is, the concentration of hydrogen trapped at the interface of fine carbides that contribute to precipitation strengthening. In the case of the direct quenching process, Nb contributes to precipitation strengthening.
It is necessary to consider the hydrogen storage effect of Nb.

【0055】また、焼戻し温度は強度ごとに各合金元素
の影響を受け、回帰計算により求めた下式で表せる。
The tempering temperature is affected by each alloy element for each strength, and can be expressed by the following equation obtained by regression calculation.

【0056】 通常の焼入れ焼戻し熱処理の場合 焼戻し温度、D(℃)=E−100e
(-1.5Mo-5.15V+0.4) 直接焼入れの場合 焼戻し温度、D(℃)=E−100e
(-1.5Mo-9.36Nb-5.15V+0.4) ここでEは、 110以上、125ksi以下の鋼材を製造する場合 E=770 125超え、140ksi以下の鋼材を製造する場合 E=755 140超え、155ksi以下の鋼材を製造する場合 E=740 従って、耐SSC指標は、YSの範囲に応じて下式で表
せ、Mo、VおよびNbの含有量により影響される。
In the case of ordinary quenching and tempering heat treatment, tempering temperature, D (° C.) = E−100e
(-1.5Mo-5.15V + 0.4) In case of direct quenching Tempering temperature, D (℃) = E-100e
(-1.5Mo-9.36Nb-5.15V + 0.4) where E is 110 to 125 ksi when producing steel material E = 770 When 125 or more and 140 ksi or less steel material is produced E = 755 140 or more and 155 ksi When the following steel material is manufactured: E = 740 Accordingly, the SSC resistance index can be expressed by the following equation according to the range of YS, and is affected by the contents of Mo, V, and Nb.

【0057】(1)通常の焼入れ焼戻し熱処理の場合 耐SSC指標=(A+2Mo+5V−1.4)/B A=4930e(-0.0133D) B=1.07×10-8(0.0187D) D=E−100e(-0.52Mo-5.15V+0.4)・・・(焼戻し温
度、℃) Eは、上記の通りである。
(1) In the case of ordinary quenching and tempering heat treatment SSC resistance index = (A + 2Mo + 5V-1.4) / B A = 4930e (−0.0133D) B = 1.07 × 10 −8 e (0.0187D) D = E-100e (-0.52Mo-5.15V + 0.4) (tempering temperature, ° C) E is as described above.

【0058】(2)直接焼入れの場合 耐SSC指標=(A+2Mo+4Nb+5V−1.4)
/B A=4930e(-0.0133D) B=1.07×10-8(0.0187D) D=E−100e(-0.52Mo-9.36Nb-5.15V+0.4) Eは、上記の通りである。
(2) In case of direct quenching SSC resistance index = (A + 2Mo + 4Nb + 5V-1.4)
/ B A = 4930e (−0.0133D) B = 1.07 × 10 −8 e (0.0187D) D = E−100e (−0.52Mo-9.36Nb-5.15V + 0.4) E is as described above. .

【0059】吸蔵水素濃度を低減できる成分系を選択す
れば、上記式の分子を小さくすることができ、一方、高
温焼戻しを実現できる成分系を選択すれば分母を大きく
し内部歪みを低減することができ、どちらの方法でも耐
SSC性を改善することができる。しかし吸蔵水素濃度
と焼戻し温度は独立ではなく密接に相関しており、最適
な成分バランスが実際には存在する。
If a component system capable of reducing the stored hydrogen concentration is selected, the numerator of the above formula can be reduced. On the other hand, if a component system capable of realizing high-temperature tempering is selected, the denominator is increased and the internal strain is reduced. And the SSC resistance can be improved by either method. However, the stored hydrogen concentration and the tempering temperature are not independent but closely correlated, and an optimum component balance actually exists.

【0060】図2は、通常の焼入れ焼戻し熱処理でYS
が140ksi超の鋼の場合で、MoとVの含有量を変
化させた場合の耐SSC指標の変化を示す図である。
FIG. 2 shows that YS is obtained by ordinary quenching and tempering heat treatment.
FIG. 6 is a diagram showing a change in the SSC resistance index when the content of Mo and V is changed in a case where is more than 140 ksi.

【0061】耐SSC性を向上させるMoとVの最適組
合せ範囲が存在し、所望の耐SSC性を満足するには耐
SSC指標をある値以下にする成分系を選択すればよい
ことがわかる。この値は、種々の試験により求めた結
果、YSが110級(110〜125ksi)であれば
150、125級(125〜140ksi)であれば1
90、140級(140〜155ksi)では270と
なった。また、MoとV過剰添加は吸蔵水素濃度を増
す効果が大きくなり、耐SSC性をかえって低下させる
方向に向かう。
It can be seen that there is an optimum combination range of Mo and V for improving the SSC resistance, and a component system that makes the SSC resistance index equal to or less than a certain value should be selected to satisfy the desired SSC resistance. As a result of various tests, this value is 150 when YS is 110 class (110 to 125 ksi) and 1 when YS is 125 class (125 to 140 ksi).
It was 270 for 90 and 140 grades (140 to 155 ksi). Furthermore, excessive addition of Mo and V increased the effect of increasing the storage of hydrogen concentration, toward the direction of reducing rather the SSC resistance.

【0062】したがって、上記目標とする各耐SSC指
標をCとすると、下式を満足する成分系とすればよい。
Accordingly, if each of the target SSC resistance indices is C, the component system should satisfy the following equation.

【0063】・通常の焼入れ焼戻し熱処理の場合は、 (A+2Mo+5V−1.4)/B≦C すなわち、 2Mo+5V≦B×C−A+1.4 ・直接焼入れの場合は、 (A+2Mo+4Nb+5V−1.4)/B≦C すなわち、 2Mo+4Nb+5V≦B×C−A+1.4 Nbは吸蔵水素濃度を増さず耐SSC性を高めるのに最
も有効な元素である。しかし焼戻し軟化抵抗に有効活用
するには直接焼入れによって焼入れ時に一度完全固溶さ
せることが必須であり、通常の焼入れ焼戻し処理に適用
することはできない。
(A + 2Mo + 5V-1.4) /B.ltoreq.C, ie, 2Mo + 5V.ltoreq.B.times.C-A + 1.4, in the case of normal quenching and tempering heat treatment, (A + 2Mo + 4Nb + 5V-1.4) / B ≦ C That is, 2Mo + 4Nb + 5V ≦ B × C−A + 1.4Nb is the most effective element for increasing the SSC resistance without increasing the stored hydrogen concentration. However, in order to effectively utilize the tempering softening resistance, it is essential that the solid solution be made once in quenching by direct quenching, and it cannot be applied to ordinary quenching and tempering treatment.

【0064】化学成分を上記の式にしたがい最適化すれ
ば、結晶粒の微細化は耐SSC性の改善に必ずしも必要
でない。直接焼入れ法では一般的に結晶粒の粗大化が問
題であるが、最適成分範囲を満足していれば、粗粒であ
っても所望の耐SSC性を満足する。その理由は、SS
Cの破断形態が、従来の低温焼戻し鋼とは異なり粒内破
断型となるためである。したがって、本発明では製造時
の熱処理や加工度の影響はほとんど受けず、主に成分系
のみで耐SSC性が決定される。もちろん、数回熱処理
を施す等の手段で細粒化を試みても耐SSC性を低下さ
せることはなく問題ない。例えば、ある程度の靭性を確
保したければ過度の粗粒化は避けた方が望ましい。
If the chemical components are optimized according to the above formula, the refinement of the crystal grains is not always necessary for improving the SSC resistance. In the direct quenching method, coarsening of crystal grains is generally a problem, but if the optimum component range is satisfied, desired SSC resistance is satisfied even with coarse grains. The reason is SS
This is because the fracture mode of C is an intragranular fracture type unlike the conventional low-temperature tempered steel. Therefore, in the present invention, the SSC resistance is determined mainly by only the component system without being affected by the heat treatment and the working degree at the time of production. Of course, even if an attempt is made to reduce the grain size by means of, for example, performing heat treatment several times, the SSC resistance is not reduced and there is no problem. For example, if a certain degree of toughness is to be ensured, it is desirable to avoid excessive coarsening.

【0065】(B)熱処理条件 (B-1)焼入れ条件 上記の化学組成を有する鋼は通常の方法で溶製された
後、例えば、通常の方法による熱間での鍛造、穿孔や圧
延などの熱間加工によって鋼管や鋼板など所定の形状の
鋼材に成形された後、焼入れ焼戻し処理して所望の強度
に調整される。
(B) Heat treatment conditions (B-1) Quenching conditions After the steel having the above chemical composition is melted by a usual method, for example, hot forging, piercing, rolling, etc. by a normal method. After being formed into a steel material of a predetermined shape such as a steel pipe or a steel plate by hot working, the steel material is quenched and tempered to adjust to a desired strength.

【0066】鍛造、穿孔および圧延などの熱間加工は通
常の条件でおこなえばよいが、例えば、鋼塊、ビレット
やスラブといった鋼片を1000〜1250℃の温度域
の温度に加熱し、表面疵などの発生防止の点から900
〜1100℃の温度で鋼管や鋼板など所定の形状の鋼材
に仕上げることが望ましい。
Hot working such as forging, piercing and rolling may be performed under ordinary conditions. For example, a steel ingot, billet or slab is heated to a temperature in a temperature range of 1000 to 1250 ° C. 900 from the point of prevention
It is desirable to finish a steel material of a predetermined shape such as a steel pipe or a steel plate at a temperature of 11100 ° C.

【0067】焼入れ温度や保持時間については特に制限
は無いが、靭性を確保したい場合は粗粒化を避ける観点
から850℃以上1000℃以下の温度で焼入れ熱処理
を実施するのが望ましい。
The quenching temperature and the holding time are not particularly limited. However, when it is desired to secure toughness, it is preferable to perform quenching heat treatment at a temperature of 850 ° C. to 1000 ° C. from the viewpoint of avoiding coarsening.

【0068】焼入れ方法についても特に制限しなくても
よい。鋼材の化学組成に応じて適宜油焼入れや水焼入れ
など通常の焼入れ方法を用いればよい。すなわち、例え
ば、予め鋼材の化学組成に応じて予備調査した結果に基
づいて充分な焼入れ組織(例えば、マルテンサイトが約
80%以上であるような組織)となるように焼入れ方法
を決定すればよい。
The quenching method need not be particularly limited. An ordinary quenching method such as oil quenching or water quenching may be appropriately used according to the chemical composition of the steel material. That is, for example, the quenching method may be determined so as to have a sufficient quenched structure (for example, a structure in which martensite is about 80% or more) based on a result of a preliminary investigation according to the chemical composition of the steel material in advance. .

【0069】また、熱間圧延直後に焼入れする直接焼入
れ法を適用してもよい。この際の加熱温度、加工度につ
いても特に制限は無いが、一般的な鍛造、圧延と同様1
000℃〜1250℃の温度に加熱し、900〜110
0℃の温度で仕上げるのが望ましい。焼入れ方法につい
ても特に制限はない。また、直接焼入れもしくは直接焼
入れ焼戻し後に通常の焼入れ焼戻しを施してもよい。こ
の場合は、Nbの析出軟化抵抗は効かないので通常の焼
入れ焼戻しの処理の場合と同じとなる。
A direct quenching method of quenching immediately after hot rolling may be applied. The heating temperature and the working ratio at this time are not particularly limited.
Heated to a temperature of 000 ° C to 1250 ° C;
It is desirable to finish at a temperature of 0 ° C. There is no particular limitation on the quenching method. Further, normal quenching and tempering may be performed after direct quenching or direct quenching and tempering. In this case, since the precipitation softening resistance of Nb is not effective, it becomes the same as the case of the normal quenching and tempering treatment.

【0070】(B-2)焼戻し条件 焼戻し方法は特に規定されない。焼き戻しの時間も特に
制限はないが、通常は鋼材全体に均質な熱処理を施す観
点から10分以上保持するのが望ましい。焼戻し後の冷
却方法も特に限定されるものではなく、放冷、風冷、ミ
スト水冷や水冷など通常の冷却方法で行えばよい。
(B-2) Tempering Conditions The tempering method is not particularly defined. Although the tempering time is not particularly limited, it is generally preferable to hold the tempering for 10 minutes or more from the viewpoint of performing a uniform heat treatment on the entire steel material. The cooling method after tempering is not particularly limited, and may be performed by a normal cooling method such as standing cooling, air cooling, mist water cooling, or water cooling.

【0071】なお、吸蔵水素濃度の測定方法も特に指定
されるものはなく、後述するNACE TM0177A
法の試験液中で吸蔵される水素濃度を、鋼材間で精度良
く比較できるものであれば良い。例えば、鋼材を試験液
中に24時間以上浸漬後、取り出して45℃のグリセリ
ン液中に72時間以上浸漬して放出される水素濃度を測
定する方法等が一般的である。
The method for measuring the stored hydrogen concentration is not particularly specified, and NACE TM0177A described later is not specified.
Any method can be used as long as the concentration of hydrogen absorbed in the test solution of the method can be accurately compared between steel materials. For example, a method is generally used in which a steel material is immersed in a test solution for 24 hours or more, taken out, immersed in a glycerin solution at 45 ° C. for 72 hours or more, and the concentration of released hydrogen is measured.

【0072】その他、最近用いられる簡便法の昇温水素
分析法を用いてもよい。鋼材を試験液中に24時間以上
浸漬した後、取り出して常温から一定速度で温度を上
げ、放出される水素量を分析する方法である。この場合
は拡散性水素は400℃以下ですべて放出されると言わ
れており、この水素量を測定して比較すればよい。
In addition, a recently used simple method of elevated temperature hydrogen analysis may be used. In this method, a steel material is immersed in a test liquid for 24 hours or more, taken out, raised at a constant speed from room temperature, and analyzed for the amount of hydrogen released. In this case, it is said that all of the diffusible hydrogen is released at 400 ° C. or lower, and the amount of hydrogen may be measured and compared.

【0073】[0073]

【実施例】表1〜3に示す化学組成の150kg鋼塊を
真空溶解炉を用いて通常の方法により溶製した。
EXAMPLES A 150 kg steel ingot having the chemical composition shown in Tables 1 to 3 was melted by a conventional method using a vacuum melting furnace.

【0074】[0074]

【表1】 [Table 1]

【0075】[0075]

【表2】 [Table 2]

【0076】[0076]

【表3】 [Table 3]

【0077】これらの鋼塊を1250℃に加熱してから
熱間鍛造して40mm厚さ×80mm幅×250mm長
さの鋼片とした。この鋼片を下記(1)(2)の方法で
熱間圧延後に焼入れ、焼戻しの熱処理をおこない強度調
整した。
These ingots were heated to 1250 ° C. and then hot forged to form slabs having a thickness of 40 mm × 80 mm width × 250 mm length. This steel slab was quenched after hot rolling by the following methods (1) and (2), and heat treated for tempering to adjust the strength.

【0078】(1)鋼片を1250℃に1時間加熱して
から圧延仕上げ温度950℃で厚さ14mmに熱間圧延
し、さらに表面を研削して厚さ12mmに仕上げた。
(1) The slab was heated to 1250 ° C. for 1 hour, hot rolled to a thickness of 14 mm at a rolling finish temperature of 950 ° C., and further ground to finish to a thickness of 12 mm.

【0079】この厚さ12mmの鋼板を850℃〜95
0℃の温度域に加熱して焼入れをおこなった後、表4〜
7に記した種種の温度で焼戻し処理をおこなった。な
お、焼入れは水焼入れとした。表4〜7中の「熱処理方
法」の欄に記載した「QT」は、この焼入れ、焼戻し処
理を示す。
The steel sheet having a thickness of 12 mm is heated at 850 ° C. to 95
After quenching by heating to a temperature range of 0 ° C.,
The tempering treatment was performed at various temperatures described in No. 7. The quenching was water quenching. "QT" described in the column of "Heat treatment method" in Tables 4 to 7 indicates this quenching and tempering treatment.

【0080】(2)1250℃の温度に加熱して熱間圧
延を施し厚さ14mmに仕上げた後直接焼入れし、その
後表4〜7に併記した種種の温度で焼戻し処理を行っ
た。焼入れは水焼入れとした。表4〜7中の「熱処理方
法」の欄の「DQT」は、この焼入れ、焼戻し処理を示
す。
(2) The steel sheet was heated to a temperature of 1250 ° C., subjected to hot rolling, finished to a thickness of 14 mm, directly quenched, and then tempered at various temperatures listed in Tables 4 to 7. The quenching was water quenching. "DQT" in the column of "Heat treatment method" in Tables 4 to 7 indicates this quenching and tempering treatment.

【0081】[0081]

【表4】 [Table 4]

【0082】[0082]

【表5】 [Table 5]

【0083】[0083]

【表6】 [Table 6]

【0084】[0084]

【表7】 [Table 7]

【0085】上記(1)(2)の熱間圧延、熱処理後の
厚さ12mmの鋼板から圧延方向に平行に引張試験片を
採取し、常温(室温)で引張試験をおこなって、YSを
測定した。
A tensile test specimen was taken in parallel with the rolling direction from a 12 mm thick steel sheet after the hot rolling and heat treatment of (1) and (2) above, and a tensile test was conducted at room temperature (room temperature) to measure YS. did.

【0086】焼戻し後の厚さ12mmの鋼板の厚さ方向
の中央部から、圧延方向に平行に、平行部の直径が6.
35mmで長さが25.4mmの丸棒引張試験片を採取
し、NACETM0177A法に準拠した方法で耐SS
C性の評価を行った。
The diameter of the parallel portion of the steel sheet having a thickness of 12 mm after tempering is 6.
A round bar tensile test specimen having a length of 35 mm and a length of 25.4 mm was sampled and subjected to a SS-resistant method according to the NACETM0177A method.
The C property was evaluated.

【0087】すなわち、1気圧の硫化水素で飽和した2
5℃の0.5%酢酸+5%食塩水中で定荷重試験をおこ
ない耐SSC性を評価した。負荷応力を変化させ、72
0時間の試験時間中に破断しなかった最大応力が80%
YS以上のものを耐SSC性良好と認定した。
That is, 2 saturated with 1 atm of hydrogen sulfide
A constant load test was performed in 0.5% acetic acid + 5% saline at 5 ° C. to evaluate SSC resistance. Change the applied stress to 72
80% maximum stress that did not break during the 0 hour test time
And those of the actual YS or higher were determined to have good SSC resistance.

【0088】また上記の硫化水素で飽和した25℃の
0.5%酢酸+5%食塩水中に24時間浸漬した後、取
り出して昇温水素分析法により400℃以下で放出され
る水素濃度を吸蔵水素濃度として測定した。
After immersing for 24 hours in a 0.5% acetic acid + 5% saline solution at 25 ° C. saturated with hydrogen sulfide as described above, the sample was taken out, and the hydrogen concentration released at 400 ° C. or less was measured by a temperature-raising hydrogen analysis method. It was measured as a concentration.

【0089】上記の各種試験結果を表4〜7に併せて示
す。
The results of the various tests are shown in Tables 4 to 7.

【0090】表4〜5から明らかなように、各YSの範
囲に強度調整した後、化学組成が本発明で規定する範囲
にある鋼材は、いずれも定荷重試験において実測YSの
80%以上の負荷応力でも破断をせず、耐SSC性は良
好である。
As is clear from Tables 4 and 5, any steel having a chemical composition within the range specified by the present invention after adjusting the strength to the range of each YS has a ratio of 80% or more of the actually measured YS in the constant load test. It does not break even under applied stress, and has good SSC resistance.

【0091】これに対し、本発明で規定する範囲から外
れた場合には、すべて定荷重試験での破断限界応力が8
0%未満であり、耐SSC性に劣っている。
On the other hand, when the value is out of the range specified in the present invention, the breaking limit stress in the constant load test is 8%.
It is less than 0% and is inferior in SSC resistance.

【0092】例えば、表1中の鋼Dは通常の焼入れ焼戻
し処理によってC110級に強度調整した場合は、表4
中の試験番号4に示すように所望の耐SSC性を満足す
るが、C125級に調整した表4中の試験番号20や、
C140級に強度調整した表5中の試験番号36では、
MoとVのバランスが不適なため所望の耐SSC性を満
足しない。またこのD鋼は直接焼入れ法を適用すればN
bの析出強化が有効活用でき、C125級(表5中の試
験番号28)やC140級(表6中の試験番号44)で
も良好な耐SSC性を示す。
For example, when the strength of steel D in Table 1 was adjusted to C110 grade by ordinary quenching and tempering,
As shown in Test No. 4 in the table, the desired SSC resistance was satisfied, but Test No. 20 in Table 4 adjusted to C125 grade,
In Test No. 36 in Table 5 adjusted to C140 grade,
The desired SSC resistance is not satisfied because the balance between Mo and V is inappropriate. This D steel can be N if the direct quenching method is applied.
The precipitation strengthening of b can be effectively used, and good SSC resistance is exhibited even in C125 grade (test No. 28 in Table 5) and C140 grade (test No. 44 in Table 6).

【0093】表1中のI鋼およびJ鋼は各々の成分は本
発明の規定内にあるが、表6中の試験番号49〜60に
示すように、いずれのYSの範囲でも耐SSC指標が本
発明の規定を外れるため所望の耐SSC性を満足しな
い。
The steels I and J in Table 1 have respective components within the scope of the present invention. However, as shown in Test Nos. 49 to 60 in Table 6, the SSC resistance index in any range of YS was as follows. The desired SSC resistance is not satisfied because the value does not satisfy the requirements of the present invention.

【0094】表2〜3中のK鋼〜11鋼は、表6〜7中
の試験番号61〜87に示すように各々の成分が本発明
の規定を外れるため耐SSC性は不芳である。試験番号
61〜87には直接焼入れによりYSを110ksi級
に調整した例しか記載していないが、より高強度の12
5ksi級、140ksi級になればさらにSSCに対
する感受性は高まり、耐SSC性は不芳となることは言
うまでもない。また、通常のQTではNbによる焼戻し
軟化抵抗の効果が期待できず、さらに耐SSC性は不芳
なことも言うまでも無い。
As shown in Test Nos. 61 to 87 in Tables 6 and 7, K steels to 11 steels in Tables 2 and 3 have unsatisfactory SSC resistance because each component is out of the range of the present invention. . Test Nos. 61 to 87 only describe examples in which YS was adjusted to 110 ksi class by direct quenching.
Needless to say, the sensitivity to SSC is further increased at 5 ksi class and 140 ksi class, and the SSC resistance becomes poor. In addition, the effect of tempering softening resistance due to Nb cannot be expected with normal QT, and it goes without saying that SSC resistance is poor.

【0095】[0095]

【発明の効果】本発明の製造方法によれば、YSが11
0〜155ksiの高強度であっても耐SSC性に優れ
た鋼材が容易に得られ、硫化水素を多量に含んでいる油
井やガス井用のケーシングやチュービング、掘削用のド
リルパイプ、輸送用のラインパイプ、さらには化学プラ
ント用配管などに用いることができ産業上の効果は極め
て大きい。
According to the manufacturing method of the present invention, YS is 11
Steel with excellent SSC resistance can be easily obtained even with a high strength of 0 to 155 ksi, and oil and gas well casings and tubing containing large amounts of hydrogen sulfide, drill pipes for drilling, drill pipes for transportation, It can be used for line pipes, and also piping for chemical plants, and has an extremely large industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐SSC指標と定荷重試験による限界破断応力
の相関を示した図である。
FIG. 1 is a diagram showing a correlation between an SSC resistance index and a critical breaking stress by a constant load test.

【図2】MoとVの含有バランスと耐SSC指標の相関
を示した図である。
FIG. 2 is a diagram showing the correlation between the Mo and V content balance and the SSC resistance index.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.2〜0.35%、S
i:0.05〜0.5%、Mn:0.1〜1%、Cr:
0.1〜1.2%、Mo:0.1〜1%、Al:0.0
05〜0.1%、B:0.0001〜0.01%、N
b:0.005〜0.5%、V:0.005〜0.5
%、TiおよびZrの一種または二種をそれぞれ0.1
%以下で、かつTi+0.5Zr:0.005〜0.1
5%、W:0〜1%、Ca:0〜0.01%を含み、残
部がFe及び不可避的不純物からなり、不純物中のP:
0.025%以下、S:0.01%以下、Ni:0.1
%以下、N:0.01%以下、O(酸素):0.01%
以下であり、Mo、V含有量が下記式(1)を満足する
鋼を熱間加工し、次いで焼入れ焼戻しの熱処理を施すこ
とを特徴とする110〜155ksiの降伏応力を有す
る耐硫化物応力割れ性に優れた高強度鋼材の製造方法。 2Mo+5V≦B×C−A+1.4 ・・・・・・ (1) ここで、A:4930e(-0.0133D) B:1.07×10-8(0.0187D) D:E−100e(-0.52Mo-5.15V+0.4) C、E:降伏応力が110以上、125ksi以下の鋼
材を製造する場合 C:150、E:770 降伏応力が125超え、140ksi以下の鋼材を製造
する場合 C:190、E:755 降伏応力が140超え、155ksi以下の鋼材を製造
する場合 C:270、E:740 e:自然対数の底数 Mo、Vは含有量(質量%)
(1) C: 0.2 to 0.35% by mass, S
i: 0.05 to 0.5%, Mn: 0.1 to 1%, Cr:
0.1 to 1.2%, Mo: 0.1 to 1%, Al: 0.0
05-0.1%, B: 0.0001-0.01%, N
b: 0.005 to 0.5%, V: 0.005 to 0.5
%, One or two of Ti and Zr are each 0.1%
% Or less, and Ti + 0.5Zr: 0.005 to 0.1
5%, W: 0-1%, Ca: 0-0.01%, the balance being Fe and unavoidable impurities.
0.025% or less, S: 0.01% or less, Ni: 0.1
%, N: 0.01% or less, O (oxygen): 0.01%
A steel having a Mo and V content satisfying the following formula (1) is hot-worked, and then subjected to heat treatment of quenching and tempering, and has a yield stress of 110 to 155 ksi. For producing high-strength steel with excellent heat resistance. 2Mo + 5V ≦ B × C−A + 1.4 (1) where A: 4930e (−0.0133D) B: 1.07 × 10 −8 e (0.0187D) D: E−100e (− 0.52Mo-5.15V + 0.4) C, E: When producing a steel material with a yield stress of 110 or more and 125 ksi or less C: 150, E: 770 When producing a steel material with a yield stress exceeding 125 and 140 ksi or less C: 190 , E: 755 In the case of producing a steel material having a yield stress exceeding 140 and 155 ksi or less C: 270, E: 740 e: Base of natural logarithm Mo, V are contents (% by mass)
【請求項2】質量%で、C:0.2〜0.35%、S
i:0.05〜0.5%、Mn:0.1〜1%、Cr:
0.1〜1.2%、Mo:0.1〜1%、Al:0.0
05〜0.1%、B:0.0001〜0.01%、N
b:0.005〜0.5%、V:0.005〜0.5
%、TiおよびZrの一種または二種をそれぞれ0.1
%以下で、かつTi+0.5Zr:0.005〜0.1
5%、W:0〜1%、Ca:0〜0.01%を含み、残
部がFe及び不可避的不純物からなり、不純物中のP:
0.025%以下、S:0.01%以下、Ni:0.1
%以下、N:0.01%以下、O(酸素):0.01%
以下であり、Mo、VおよびNb含有量が下記式(2)
を満足する鋼を熱間加工し、熱間加工終了後に直接焼入
れを施し、次いで焼戻し処理することを特徴とする11
0〜155ksiの降伏応力を有する耐硫化物応力割れ
性に優れた高強度鋼材の製造方法。 2Mo+4Nb+5V≦B×C−A+1.4 ・・・・・・ (2) ここで、A:4930e(-0.0133D) B:1.07×10-8(0.0187D) D:E−100e(-0.52Mo-9.36Nb-5.15V+0.4) C、E:降伏応力が110以上、125ksi以下の鋼
材を製造する場合 C:150、E:770 降伏応力が125超え、140ksi以下の鋼材を製造
する場合 C:190、E:755 降伏応力が140超え、155ksi以下の鋼材を製造
する場合 C:270、E:740 e:自然対数の底数 Mo、VおよびNbは含有量(質量%)
2. In mass%, C: 0.2 to 0.35%, S
i: 0.05 to 0.5%, Mn: 0.1 to 1%, Cr:
0.1 to 1.2%, Mo: 0.1 to 1%, Al: 0.0
05-0.1%, B: 0.0001-0.01%, N
b: 0.005 to 0.5%, V: 0.005 to 0.5
%, One or two of Ti and Zr are each 0.1%
% Or less, and Ti + 0.5Zr: 0.005 to 0.1
5%, W: 0-1%, Ca: 0-0.01%, the balance being Fe and unavoidable impurities.
0.025% or less, S: 0.01% or less, Ni: 0.1
%, N: 0.01% or less, O (oxygen): 0.01%
And the content of Mo, V and Nb is the following formula (2)
Is characterized by hot-working steel satisfying the following conditions, directly quenching after hot-working, and then tempering.
A method for producing a high-strength steel material having a yield stress of 0 to 155 ksi and excellent in sulfide stress cracking resistance. 2Mo + 4Nb + 5V ≦ B × C−A + 1.4 (2) where A: 4930e (−0.0133D) B: 1.07 × 10 −8 e (0.0187D) D: E−100e (− 0.52Mo-9.36Nb-5.15V + 0.4) C, E: when producing steel materials with a yield stress of 110 or more and 125 ksi or less C: 150, E: 770 when producing steel materials with a yield stress exceeding 125 and 140 ksi or less C: 190, E: 755 When a steel material with a yield stress exceeding 140 and 155 ksi or less is manufactured. C: 270, E: 740 e: Base of natural logarithm Mo, V and Nb are contents (% by mass).
JP14000898A 1998-05-21 1998-05-21 Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking Expired - Fee Related JP4134377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14000898A JP4134377B2 (en) 1998-05-21 1998-05-21 Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14000898A JP4134377B2 (en) 1998-05-21 1998-05-21 Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking

Publications (2)

Publication Number Publication Date
JPH11335731A true JPH11335731A (en) 1999-12-07
JP4134377B2 JP4134377B2 (en) 2008-08-20

Family

ID=15258796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14000898A Expired - Fee Related JP4134377B2 (en) 1998-05-21 1998-05-21 Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking

Country Status (1)

Country Link
JP (1) JP4134377B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068450A1 (en) * 1999-05-06 2000-11-16 Sumitomo Metal Industries, Ltd. Steel product for oil well having high strength and being excellent in resistance to sulfide stress cracking
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
WO2006003775A1 (en) 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
WO2006100891A1 (en) 2005-03-24 2006-09-28 Sumitomo Metal Industries, Ltd. Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
WO2007007678A1 (en) * 2005-07-08 2007-01-18 Sumitomo Metal Industries, Ltd. Low-alloy steel for oil well tube having excellent sulfide stress cracking resistance
WO2013191131A1 (en) 2012-06-20 2013-12-27 新日鐵住金株式会社 Steel for oil well pipe, and method for producing same
WO2014068794A1 (en) 2012-11-05 2014-05-08 新日鐵住金株式会社 Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes
CN104109805A (en) * 2014-07-25 2014-10-22 攀钢集团西昌钢钒有限公司 Steel strip for oil casing and production method of steel strip for oil casing
WO2015011917A1 (en) 2013-07-26 2015-01-29 新日鐵住金株式会社 Low-alloy steel pipe for oil well and production method therefor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068450A1 (en) * 1999-05-06 2000-11-16 Sumitomo Metal Industries, Ltd. Steel product for oil well having high strength and being excellent in resistance to sulfide stress cracking
EA010037B1 (en) * 2004-01-30 2008-06-30 Сумитомо Метал Индастриз, Лтд. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
WO2005073421A1 (en) * 2004-01-30 2005-08-11 Sumitomo Metal Industries, Ltd. Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
US9017494B2 (en) 2004-01-30 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless steel pipe for oil wells excellent in sulfide stress cracking resistance
AU2005209562B2 (en) * 2004-01-30 2008-09-25 Nippon Steel Corporation Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof
US8168010B2 (en) 2004-06-14 2012-05-01 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipes having excellent sulfide stress cracking resistance
EP1785501A4 (en) * 2004-06-14 2010-04-14 Sumitomo Metal Ind Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
WO2006003775A1 (en) 2004-06-14 2006-01-12 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
EP1785501A1 (en) * 2004-06-14 2007-05-16 Sumitomo Metal Industries, Ltd. Low alloy steel for oil well pipe having excellent sulfide stress cracking resistance
US8617462B2 (en) 2005-03-24 2013-12-31 Nippon Steel & Sumitomo Metal Corporation Steel for oil well pipe excellent in sulfide stress cracking resistance
WO2006100891A1 (en) 2005-03-24 2006-09-28 Sumitomo Metal Industries, Ltd. Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
US7670547B2 (en) 2005-07-08 2010-03-02 Sumitomo Metal Industries, Ltd. Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
WO2007007678A1 (en) * 2005-07-08 2007-01-18 Sumitomo Metal Industries, Ltd. Low-alloy steel for oil well tube having excellent sulfide stress cracking resistance
WO2013191131A1 (en) 2012-06-20 2013-12-27 新日鐵住金株式会社 Steel for oil well pipe, and method for producing same
US10407758B2 (en) 2012-06-20 2019-09-10 Nippon Steel Corporation Steel for oil country tubular goods and method of producing the same
WO2014068794A1 (en) 2012-11-05 2014-05-08 新日鐵住金株式会社 Low-alloy steel for oil well pipes which has excellent sulfide stress cracking resistance, and method for manufacturing low-alloy steel for oil well pipes
US9909198B2 (en) 2012-11-05 2018-03-06 Nippon Steel & Sumitomo Metal Corporation Method for producing a low alloy steel for oil country tubular goods having excellent sulfide stress cracking resistance
WO2015011917A1 (en) 2013-07-26 2015-01-29 新日鐵住金株式会社 Low-alloy steel pipe for oil well and production method therefor
US10036078B2 (en) 2013-07-26 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Low alloy oil well steel pipe and method for manufacturing same
CN104109805A (en) * 2014-07-25 2014-10-22 攀钢集团西昌钢钒有限公司 Steel strip for oil casing and production method of steel strip for oil casing

Also Published As

Publication number Publication date
JP4134377B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
AU2015291875B2 (en) Low alloy oil-well steel pipe
US7670547B2 (en) Low alloy steel for oil country tubular goods having high sulfide stress cracking resistance
JP4379550B2 (en) Low alloy steel with excellent resistance to sulfide stress cracking and toughness
JPH10280037A (en) Production of high strength and high corrosion-resistant seamless seamless steel pipe
CN109082591A (en) The high-strength oil annular tube steel of 125ksi anti-H 2 S stress corrosion and its preparation process
WO2006100891A1 (en) Steel for oil well pipe having excellent sulfide stress cracking resistance and method for manufacturing seamless steel pipe for oil well
JP2015038247A (en) High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well and method for producing the same
JPH1150148A (en) Production of high strength and high corrosion resistance seamless steel pipe
WO2006009142A1 (en) Steel for steel pipe
JP2003041341A (en) Steel material with high toughness and method for manufacturing steel pipe thereof
JP2001131698A (en) Steel tube excellent in sulfide stress cracking resistance
JP2000063940A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JP3666372B2 (en) Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP4016786B2 (en) Seamless steel pipe and manufacturing method thereof
JPH09249935A (en) High strength steel material excellent in sulfide stress cracking resistance and its production
JP4134377B2 (en) Manufacturing method of high strength steel with excellent resistance to sulfide stress cracking
JPH09249940A (en) High strength steel excellent insulfide stress cracking resistance and its production
JPH1161254A (en) Production of high strength high corrosion resistance seamless steel tube
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
CN114277310B (en) anti-H 2 S-corrosion oil casing and manufacturing method thereof
JPH11286720A (en) Manufacture of high strength steel product excellent in sulfide stress cracking resistance
JP3589066B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe
JPH08120345A (en) Production of martensitic stainless steel seamless tube excellent in corrosion resistance
JP3046183B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JPH10158778A (en) High tensile strength steel plate excellent in toughness and weldability, and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees