JPH11330504A - Msm photoconductor element - Google Patents

Msm photoconductor element

Info

Publication number
JPH11330504A
JPH11330504A JP10138841A JP13884198A JPH11330504A JP H11330504 A JPH11330504 A JP H11330504A JP 10138841 A JP10138841 A JP 10138841A JP 13884198 A JP13884198 A JP 13884198A JP H11330504 A JPH11330504 A JP H11330504A
Authority
JP
Japan
Prior art keywords
electrode
substrate
protective film
photoconductive material
msm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10138841A
Other languages
Japanese (ja)
Inventor
Toshiyuki Araki
俊行 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP10138841A priority Critical patent/JPH11330504A/en
Publication of JPH11330504A publication Critical patent/JPH11330504A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To contrive to realize a MSM(metal semiconductor metal) photoconductor element with a small distortion and thermal stress due to a protection film and no dark current. SOLUTION: A MSM photoconductor element is provided with a first electrode 2 and a second electrode 3 formed on a substrate 1 composed of a photoconductive material and in proximity each other in an irradiation part of lights 5. Here, the element comprises a protection film 6 of Al2 O3 formed in an irradiation part of the lights 5 on each upper face of the first and second electrodes 2, 3 and an upper face of the substrate 1 surrounding the first and second electrodes 2, 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光半導体基板の表
面に近接して電極を形成した構造を有し、光通信システ
ムなどに用いられる、光信号を電気信号に変換するため
の広帯域光半導体スイッチとして使用されるMSMフォ
トコンダクター素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a broadband optical semiconductor for converting an optical signal into an electric signal, which has a structure in which an electrode is formed close to the surface of an optical semiconductor substrate and is used in an optical communication system or the like. The present invention relates to an MSM photoconductor element used as a switch.

【0002】[0002]

【従来の技術】図1はMSM(Metal-Semiconductor-Met
al) フォトコンダクター素子の斜視図である。MSMフ
ォトコンダクター素子は、光導電材料からなる基板1上
に形成され、光5の照射部分で相互に近接した第1の電
極2及び第2の電極3を備える金属−半導体−金属から
なる素子で、広帯域な光応答特性を有し、光5を照射す
ることにより金属電極間の抵抗値が変化する。これら金
属電極間にバイアス4がかけられているときに、電極ギ
ャップ間に光5が照射されると導通する。MSMフォト
コンダクター素子は、この特性を利用して半導体光スイ
ッチとして利用される。
2. Description of the Related Art FIG. 1 shows an MSM (Metal-Semiconductor-Met).
al) It is a perspective view of a photoconductor element. The MSM photoconductor element is a metal-semiconductor-metal element formed on a substrate 1 made of a photoconductive material and provided with a first electrode 2 and a second electrode 3 which are close to each other at a portion irradiated with light 5. Has a broadband optical response characteristic, and the resistance between metal electrodes changes when light 5 is irradiated. When a bias 4 is applied between these metal electrodes and light 5 is applied between the electrode gaps, conduction occurs. The MSM photoconductor element is used as a semiconductor optical switch by utilizing this characteristic.

【0003】従来例としては、光導電材料からなる基板
1としては、半絶縁性GaAs基板,半絶縁性InP基
板,低温成長GaAsエピタキシャル基板等が挙げら
れ、前記第1の電極2及び第2の電極3としては、Ti
/Pt/Au,Ti/Au等が挙げられる。このような
MSMフォトコンダクター素子においては、電極ギャッ
プ間が数μm程度である微細な第1の電極2及び第2の
電極3を保護するため、光導電材料からなる基板1上と
第1の電極2及び第2の電極3上とに保護膜6をコーテ
ィングする。この保護膜6は反射防止膜としても働き、
光5の入射効率を向上させる目的も兼ねている。従来例
のMSMフォトコンダクター素子では、保護膜無しかあ
るいは保護膜6にSiO2 やSi3 4 を用いたものが
多い。
As a conventional example, a substrate 1 made of a photoconductive material includes a semi-insulating GaAs substrate, a semi-insulating InP substrate, a low-temperature grown GaAs epitaxial substrate, and the like. As the electrode 3, Ti
/ Pt / Au, Ti / Au and the like. In such an MSM photoconductor device, a first electrode 2 and a second electrode 3 made of a photoconductive material are protected to protect the fine first electrode 2 and second electrode 3 having a gap of about several μm between the electrodes. A protective film 6 is coated on the second and third electrodes 3. This protective film 6 also functions as an anti-reflection film,
It also serves to improve the incidence efficiency of the light 5. Many of the conventional MSM photoconductor elements have no protective film or use SiO 2 or Si 3 N 4 for the protective film 6 in many cases.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来例の
SiO2 やSi3 4 からなる保護膜6の熱膨張係数や
熱伝導率は、半絶縁性GaAs基板,半絶縁性InP基
板,低温成長GaAsエピタキシャル基板等の光導電材
料からなる基板1の熱膨張係数や熱伝導率と一致しない
ため、熱応力が発生し、光導電材料からなる基板1の表
面に歪みが生じるという問題があった。また、前記熱応
力のために電気的特性の1つである暗電流のリーク (漏
れ)が生じるという問題があった。
However, the thermal expansion coefficient and the thermal conductivity of the above-mentioned conventional protective film 6 made of SiO 2 or Si 3 N 4 are limited to the semi-insulating GaAs substrate, semi-insulating InP substrate, Since the thermal expansion coefficient and the thermal conductivity of the substrate 1 made of a photoconductive material such as a grown GaAs epitaxial substrate do not match, there is a problem that thermal stress is generated and the surface of the substrate 1 made of the photoconductive material is distorted. . In addition, there is a problem that a dark current, which is one of the electrical characteristics, occurs due to the thermal stress.

【0005】本発明の目的は、上記問題点に鑑み、光導
電材料からなる基板1の表面に歪みや熱応力が発生せ
ず、そのため暗電流のリークが生じないMSMフォトコ
ンダクター素子を提供することにある。
In view of the above problems, an object of the present invention is to provide an MSM photoconductor element in which no distortion or thermal stress is generated on the surface of a substrate 1 made of a photoconductive material, so that a dark current does not leak. It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を実現するため
に、本発明においては、MSMフォトコンダクター素子
の保護膜をAl2 3 で形成する。すなわち、本発明の
MSMフォトコンダクター素子においては、光導電材料
からなる基板上に第1の電極及び第2の電極とを形成
し、光導電材料からなる基板上と第1の電極及び第2の
電極上との光の照射部分を覆うように電子ビーム蒸着で
Al2 3 からなる保護膜を蒸着する。
In order to achieve the above object, in the present invention, a protective film of an MSM photoconductor element is formed of Al 2 O 3 . That is, in the MSM photoconductor device of the present invention, the first electrode and the second electrode are formed on the substrate made of the photoconductive material, and the first electrode and the second electrode are formed on the substrate made of the photoconductive material. A protective film made of Al 2 O 3 is deposited by electron beam evaporation so as to cover a portion of the electrode irradiated with light.

【0007】本発明によれば光導電材料からなる基板の
熱膨張係数と熱伝導率とを一致させたAl2 3 を保護
膜とすることで、光導電材料からなる基板の表面に歪み
や熱応力が発生せず、そのため暗電流のリークが生じな
い。
According to the present invention, Al 2 O 3 having the same thermal expansion coefficient and thermal conductivity as that of a substrate made of a photoconductive material is used as a protective film, so that the surface of the substrate made of a photoconductive material can be prevented from being distorted. No thermal stress occurs, and therefore no dark current leakage occurs.

【0008】[0008]

【発明の実施の形態】本発明の実施例のMSMフォトコ
ンダクター素子は図1に示した従来例と同じ外観を有す
る。半絶縁性GaAs基板,半絶縁性InP基板,低温
成長GaAsエピタキシャル基板等の光導電材料からな
る基板1の表面にくし形の第1の電極2及び第2の電極
3とが形成される。従来例と異なるのは、電極ギャップ
間が数μm程度である微細なくし形の第1の電極2及び
第2の電極3とを保護するため、光導電材料からなる基
板1上と第1の電極2及び第2の電極3上とにコーティ
ングされる保護膜6がAl2 3 からなることである。
このAl2 3 からなる保護膜6は光導電材料からなる
基板1の熱膨張係数と熱伝導率とほぼ一致しており、ま
たAl2 3 からなる保護膜6は光の入射効率を向上さ
せる目的も兼ねている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An MSM photoconductor device according to an embodiment of the present invention has the same appearance as the conventional example shown in FIG. A comb-shaped first electrode 2 and a second electrode 3 are formed on a surface of a substrate 1 made of a photoconductive material such as a semi-insulating GaAs substrate, a semi-insulating InP substrate, and a low-temperature grown GaAs epitaxial substrate. What is different from the conventional example is that the first electrode 2 and the second electrode 3 in the form of fine combs having a gap of about several μm between the substrate 1 made of a photoconductive material and the first electrode 2 are protected. The protective film 6 coated on the second and third electrodes 3 is made of Al 2 O 3 .
The protective film 6 made of Al 2 O 3 substantially matches the thermal expansion coefficient and the thermal conductivity of the substrate 1 made of a photoconductive material, and the protective film 6 made of Al 2 O 3 improves the light incidence efficiency. It also serves the purpose of making it work.

【0009】図2,3,4を参照して、本実施例におけ
るMSMフォトコンダクター素子の製造方法について説
明する。図2は絶縁性GaAs基板,半絶縁性InP基
板,低温成長GaAsエピタキシャル基板等の光導電材
料からなる基板1上に第1の電極2及び第2の電極3と
を形成する工程であるリフトオフプロセスを示し、図3
はMSMフォトコンダクター素子の第1の電極2及び第
2の電極3との形状の例を示し、図4は第1の電極2及
び第2の電極3とを形成した後、各前記電極と同様に保
護膜6を形成する工程であるリフトオフプロセスを示
す。
With reference to FIGS. 2, 3, and 4, a method of manufacturing an MSM photoconductor device in this embodiment will be described. FIG. 2 shows a lift-off process in which a first electrode 2 and a second electrode 3 are formed on a substrate 1 made of a photoconductive material such as an insulating GaAs substrate, a semi-insulating InP substrate, and a low-temperature grown GaAs epitaxial substrate. And FIG.
Shows an example of the shape of the first electrode 2 and the second electrode 3 of the MSM photoconductor element, and FIG. 4 shows the same as each of the electrodes after forming the first electrode 2 and the second electrode 3. 5 shows a lift-off process as a step of forming the protective film 6.

【0010】まずリフトオフプロセスにより電極の形状
にパターンを形成する。本実施例では、はじめに光導電
材料からなる基板1上に、所望の電極部以外の場所にホ
トレジスト膜7をフォトリソグラフィを用いて形成す
る。図2(1) はこの状態を示す。この図において光導電
材料からなる基板1の厚さは約600μmである。続い
て、塗布されたホトレジスト膜7を有する光導電材料か
らなる基板1上の全面に、電子ビーム蒸着装置によって
電極材として金属膜8を蒸着する。この状態を図2(2)
に示す。そしてホトレジスト膜7の除去とともに所望の
電極部以外の金属膜を除去し、所望の第1の電極2及び
第2の電極3のパターンを形成する。この状態を図2
(3) に示す。この図において、第1の電極2及び第2の
電極3の厚さは約400nmである。
First, a pattern is formed in the shape of an electrode by a lift-off process. In this embodiment, first, a photoresist film 7 is formed on a substrate 1 made of a photoconductive material at a position other than a desired electrode portion by using photolithography. FIG. 2A shows this state. In this figure, the thickness of the substrate 1 made of a photoconductive material is about 600 μm. Subsequently, a metal film 8 is deposited as an electrode material on the entire surface of the substrate 1 made of a photoconductive material having the coated photoresist film 7 by an electron beam evaporation apparatus. Fig. 2 (2)
Shown in Then, along with the removal of the photoresist film 7, the metal film other than the desired electrode portion is removed, and a desired pattern of the first electrode 2 and the second electrode 3 is formed. This state is shown in FIG.
See (3). In this figure, the thickness of the first electrode 2 and the second electrode 3 is about 400 nm.

【0011】ところで、本実施例においては、光導電材
料からなる基板1上の相互に近接した第1の電極2及び
第2の電極3として図1に示すくし形構造を用いている
が、その他に図3に示すような様々な形状が考えられ
る。図3(1) は光導電材料からなる基板1上の第1の電
極2及び第2の電極3とが長方形の形状をとって近接し
て配置された場合であり、図3(2) は光導電材料からな
る基板1上に第1の電極2及び第2の電極3とが突起部
を持つように近接して配置された場合であり、図3(3)
は光導電材料からなる基板1上に第1の電極2及び第2
の電極3とが相互に対面する各電極の面積が図3(1) の
場合に比べてさらに大きくなるようにT字形の形状で配
置された場合である。照射する光強度が同じ場合、低光
導電材料からなる基板1上に形成された第1の電極2及
び第2の電極3の形状により抵抗値が変わる。
In this embodiment, the comb-shaped structure shown in FIG. 1 is used as the first electrode 2 and the second electrode 3 which are close to each other on the substrate 1 made of a photoconductive material. Various shapes as shown in FIG. FIG. 3A shows a case where a first electrode 2 and a second electrode 3 on a substrate 1 made of a photoconductive material are arranged close to each other in a rectangular shape, and FIG. FIG. 3C shows a case where the first electrode 2 and the second electrode 3 are disposed close to each other on the substrate 1 made of a photoconductive material so as to have a projection.
Denotes a first electrode 2 and a second electrode 2 on a substrate 1 made of a photoconductive material.
This is a case where the electrodes 3 are arranged in a T-shape such that the area of each electrode facing each other is larger than that in the case of FIG. When the irradiation light intensity is the same, the resistance value changes depending on the shapes of the first electrode 2 and the second electrode 3 formed on the substrate 1 made of a low photoconductive material.

【0012】次に光導電材料からなる基板1上と該光導
電材料からなる基板1上に形成された第1の電極2及び
第2の電極3上とに、保護膜6をコーティングする。保
護膜6の材料としては、光導電材料からなる基板1と熱
膨張係数や熱伝導率が同じような材料であることが重要
である。そのため保護膜6の材料は、その熱膨張係数や
熱伝導率が光導電材料からなる基板1の熱膨張係数や熱
伝導率がほぼ同じAl 2 3 を選ぶ。Al2 3
らなる保護膜6も第1の電極2及び第2の電極3と同様
にリフトオフプロセスで保護膜の形状にパターンを形成
する。
Next, the substrate 1 made of a photoconductive material and the
A first electrode 2 formed on a substrate 1 made of an electrically conductive material;
A protective film 6 is coated on the second electrode 3. Security
As the material of the protective film 6, the substrate 1 made of a photoconductive material and the heat
It is important that the materials have the same expansion coefficient and thermal conductivity
It is. Therefore, the material of the protective film 6 has its thermal expansion coefficient and
The thermal conductivity of the substrate 1 made of a photoconductive material has a coefficient of thermal expansion or heat.
Al with almost the same conductivity TwoOThreeChoose AlTwoOThreeOr
The protective film 6 made of the same material as the first electrode 2 and the second electrode 3
Pattern in the shape of protective film by lift-off process
I do.

【0013】本実施例では、まず、光導電材料からなる
基板1上と該光導電材料からなる基板1上に形成された
第1の電極2及び第2の電極3上に、所望の保護膜6以
外の場所にホトレジスト膜7をフォトリソグラフィを用
いて形成する。図4(1) はこの状態を示す。次に、塗布
されたホトレジスト膜7を有する光導電材料からなる基
板1上と該光導電材料からなる基板1上に形成された第
1の電極2及び第2の電極3上の全面に、電子ビーム蒸
着装置によって保護膜材料としてAl2 3 を蒸着す
る。この状態を図4(2) に示す。続いてホトレジスト膜
7の除去とともに所望の保護膜6以外の部分のAl2
3 膜9を除去し、所望の保護膜6のパターンを形成す
る。この状態を図4(3) に示す。保護膜6の厚さは反射
防止膜の条件であるd=λ/4nを満たし、例えば85
0nmの波長で約133nmである。ここで、dは保護
膜6の厚さ、λは光5の波長、nは保護膜6の屈折率で
ある。
In this embodiment, first, a desired protective film is formed on a substrate 1 made of a photoconductive material and on a first electrode 2 and a second electrode 3 formed on the substrate 1 made of the photoconductive material. A photoresist film 7 is formed at a location other than 6 using photolithography. FIG. 4A shows this state. Next, electrons are applied to the entire surface of the substrate 1 made of a photoconductive material having the coated photoresist film 7 and the first electrode 2 and the second electrode 3 formed on the substrate 1 made of the photoconductive material. Al 2 O 3 is deposited as a protective film material by a beam deposition apparatus. This state is shown in FIG. Subsequently, along with the removal of the photoresist film 7, Al 2 O in a portion other than the desired protective film 6 is formed.
3 The film 9 is removed, and a desired pattern of the protective film 6 is formed. This state is shown in FIG. The thickness of the protective film 6 satisfies the condition of the antireflection film, that is, d = λ / 4n.
It is about 133 nm at a wavelength of 0 nm. Here, d is the thickness of the protective film 6, λ is the wavelength of the light 5, and n is the refractive index of the protective film 6.

【0014】上記の製造プロセスが終了したウエハは素
子の大きさにへき開し、個々のMSMフォトコンダクタ
ー素子になる。チップ化されたMSMフォトコンダクタ
ー素子はボンディングによってモジュール化される。こ
こで重要な製造プロセスは保護膜6を形成する工程であ
る。一般に膜付けする方法としては電子ビーム蒸着,ス
パッタ,P−CVD等が考えられる。ここでは、光導電
材料からなる基板1に極力圧力を与えないような方法で
保護膜6を形成しなければならない。このため、保護膜
6の形成の工程には電子ビーム蒸着を使用する。スパッ
タ,P−CVDでは歪みが大きくなるので使用できな
い。
After the above-described manufacturing process is completed, the wafer is cleaved to the size of the device, and becomes an individual MSM photoconductor device. The chipped MSM photoconductor element is modularized by bonding. Here, an important manufacturing process is a step of forming the protective film 6. In general, electron beam evaporation, sputtering, P-CVD or the like can be considered as a method for forming a film. Here, the protective film 6 must be formed in such a manner that pressure is not applied to the substrate 1 made of the photoconductive material as much as possible. Therefore, electron beam evaporation is used in the step of forming the protective film 6. Sputtering and P-CVD cannot be used because the strain increases.

【0015】電子ビーム蒸着は蒸発材料を直接加熱して
いるので蒸発材料への汚染が少なく、高融点金属や酸化
物、その他の無機化合物の蒸着に適している。スパッタ
による蒸着は、重い荷電粒子をターゲット材に照射し、
その衝撃でターゲット材から飛び出してきた粒子を対向
する試料上に付着させる方法である。スパッタ膜は通常
の蒸着方法に比べて基板に対して密着力が強く、エピタ
キシャル温度も低い。P−CVDは反応ガスをプラズマ
化し非平衡状態にして、プラズマ相による化学反応で基
板に膜を析出させる方法である。
Electron beam evaporation directly heats the vaporized material, so that the vaporized material is less contaminated and is suitable for vapor deposition of high melting point metals, oxides and other inorganic compounds. Deposition by sputtering irradiates the target material with heavy charged particles,
This is a method in which particles coming out of the target material due to the impact are attached to the facing sample. The sputtered film has a stronger adhesion to the substrate and a lower epitaxial temperature than a normal vapor deposition method. P-CVD is a method in which a reaction gas is turned into plasma to make it in a non-equilibrium state, and a film is deposited on a substrate by a chemical reaction in a plasma phase.

【0016】電子ビーム蒸着,スパッタ,P−CVDに
よって膜付けした各保護膜6の暗電流について、1Vの
バイアス4を印加して測定した値を表1にまとめた。M
SMフォトコンダクター素子は図1に示すのと同じ構造
に統一しており、くし形の第1の電極2と第2の電極3
とのギャップは6μmであり、使用した光導電材料から
なる基板1は半絶縁性InP基板である。
Table 1 summarizes the dark current of each protective film 6 formed by electron beam evaporation, sputtering, and P-CVD measured by applying a bias 4 of 1 V. M
The SM photoconductor element has the same structure as that shown in FIG. 1 and has a comb-shaped first electrode 2 and a second electrode 3.
Is 6 μm, and the substrate 1 made of the used photoconductive material is a semi-insulating InP substrate.

【0017】[0017]

【表1】 [Table 1]

【0018】上記表1からも分かるように保護膜6とし
てAl2 3 を電子ビーム蒸着したMSMフォトコンダ
クター素子の暗電流値がもっとも小さい値を示してい
る。これは膜付け時に熱的ストレスが小さいことによる
ものと考えられる。すなわち光導電材料からなる基板1
と保護膜6の材料のそれぞれの熱膨張係数と熱伝導率の
差の大きさによって暗電流値が決まってくると予想され
る。
As can be seen from the above Table 1, the dark current value of the MSM photoconductor element in which Al 2 O 3 is deposited by electron beam as the protective film 6 has the smallest value. This is considered to be due to a small thermal stress during film formation. That is, the substrate 1 made of a photoconductive material
It is expected that the dark current value will be determined by the magnitude of the difference between the coefficient of thermal expansion and the thermal conductivity of the material of the protective film 6 and the material of the protective film 6.

【0019】また、保護膜6としてAl2 3 を電子ビ
ーム蒸着したMSMフォトコンダクター素子は耐圧特性
にも優れ、バイアス4の電圧が10Vでも暗電流値が急
激に大きくなることはなかった。また保護膜としての特
性も優れ、高温高湿試験(バイアス4の電圧10V、6
0℃、相対湿度85%、1000時間という条件下で)
にも耐えることが分かった。
Further, the MSM photoconductor element in which Al 2 O 3 was vapor-deposited by electron beam as the protective film 6 had excellent withstand voltage characteristics, and the dark current value did not increase sharply even when the bias 4 voltage was 10 V. Further, the characteristics as a protective film are excellent, and a high-temperature and high-humidity test (voltage of bias 4 of 10 V, 6
(Under conditions of 0 ° C, relative humidity of 85% and 1000 hours)
I found that I could endure.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
MSMフォトコンダクター等の光半導体素子の表面に保
護膜6としてAl2 3 を電子ビーム蒸着することでS
iO2やSi3 4 より暗電流値の小さい保護膜を形成
することができる。
As described above, according to the present invention,
By depositing Al 2 O 3 as a protective film 6 on the surface of an optical semiconductor device such as an MSM photoconductor by electron beam evaporation,
A protective film having a lower dark current value than iO 2 or Si 3 N 4 can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来及び本発明の実施例における、光学膜材料
を用いたMSMフォトコンダクター素子の外観を示す斜
視図である。
FIG. 1 is a perspective view showing an appearance of an MSM photoconductor element using an optical film material in a conventional example and an example of the present invention.

【図2】本発明における、光導電材料からなる基板上に
第1の電極2及び第2の電極3とを形成する工程である
リフトオフプロセスについて示す図である。
FIG. 2 is a view showing a lift-off process, which is a step of forming a first electrode 2 and a second electrode 3 on a substrate made of a photoconductive material according to the present invention.

【図3】MSMフォトコンダクター素子の各電極の形状
の例を示す図である。
FIG. 3 is a diagram showing an example of the shape of each electrode of the MSM photoconductor element.

【図4】本発明における、光導電材料からなる基板1上
と該光導電材料からなる基板1上に形成された第1の電
極2及び第2の電極3上に保護膜6を形成する工程であ
るリフトオフプロセスについて示す図である。
FIG. 4 is a step of forming a protective film 6 on a substrate 1 made of a photoconductive material and on a first electrode 2 and a second electrode 3 formed on the substrate 1 made of the photoconductive material in the present invention. It is a figure showing about lift-off process which is.

【符号の説明】[Explanation of symbols]

1…光導電材料からなる基板 2…第1の電極 3…第2の電極 5…光 6…保護膜 7…ホトレジスト膜 8…金属膜 9…Al2 3 1 ... made of photoconductive material substrate 2 ... first electrode 3 ... second electrode 5 ... light 6 ... protective film 7 ... photoresist film 8 ... metal film 9 ... Al 2 O 3 film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光導電材料からなる基板と、 該基板上に形成され、光の照射部分において相互に近接
する第1の電極及び第2の電極と、を備える金属−半導
体−金属からなるMSM(Metal-Semiconductor-Metal)
フォトコンダクター素子であって、 前記第1及び第2の電極の各上面ならびに該第1及び第
2の電極の周辺の前記基板の上面の前記光の照射部分に
形成されたAl2 3 の保護膜を備えることを特徴とす
るMSMフォトコンダクター素子。
An MSM comprising a metal-semiconductor-metal comprising a substrate made of a photoconductive material, and a first electrode and a second electrode formed on the substrate and adjacent to each other in a light-irradiated portion. (Metal-Semiconductor-Metal)
A photoconductor element, wherein protection of Al 2 O 3 formed on each of the upper surfaces of the first and second electrodes and on the light-irradiated portion of the upper surface of the substrate around the first and second electrodes. An MSM photoconductor element comprising a film.
【請求項2】 請求項1に記載のMSMフォトコンダク
ター素子であって、 dを前記保護膜の厚さ、λを光の波長、nを前記保護膜
の屈折率としたときに、 前記保護膜の厚さdは、λ/4nであるMSMフォトコ
ンダクター素子。
2. The MSM photoconductor device according to claim 1, wherein d is a thickness of the protective film, λ is a wavelength of light, and n is a refractive index of the protective film. Has a thickness d of λ / 4n.
【請求項3】 請求項1に記載のMSMフォトコンダク
ター素子であって、前記保護膜は電子ビーム蒸着により
形成されたものであるMSMフォトコンダクター素子。
3. The MSM photoconductor device according to claim 1, wherein said protective film is formed by electron beam evaporation.
JP10138841A 1998-05-20 1998-05-20 Msm photoconductor element Withdrawn JPH11330504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10138841A JPH11330504A (en) 1998-05-20 1998-05-20 Msm photoconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10138841A JPH11330504A (en) 1998-05-20 1998-05-20 Msm photoconductor element

Publications (1)

Publication Number Publication Date
JPH11330504A true JPH11330504A (en) 1999-11-30

Family

ID=15231455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10138841A Withdrawn JPH11330504A (en) 1998-05-20 1998-05-20 Msm photoconductor element

Country Status (1)

Country Link
JP (1) JPH11330504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513212B2 (en) 2014-02-24 2016-12-06 Seiko Epson Corporation Photoconductive antenna, camera, imaging device, and measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513212B2 (en) 2014-02-24 2016-12-06 Seiko Epson Corporation Photoconductive antenna, camera, imaging device, and measurement device

Similar Documents

Publication Publication Date Title
US4135290A (en) Method for fabricating solar cells having integrated collector grids
KR101830205B1 (en) Piezoelectric sensor manufacturing method and piezoelectric sensor using the same
CN101208617A (en) High performance CdxZn1-xTe X-ray and Gamma ray radiation detector and method of manufacture thereof
US5147468A (en) Photovoltaic semiconductor device and method for manufacturing the same
US5055424A (en) Method for fabricating ohmic contacts on semiconducting diamond
EP4100707A2 (en) Snspd with integrated aluminum nitride seed or waveguide layer
EP4100706A2 (en) Snspd with integrated aluminum nitride seed or waveguide layer
JPH11330504A (en) Msm photoconductor element
Enukova et al. Amorphous silicon and germanium films for uncooled microbolometers
JPH08128889A (en) Infrared sensor
JP5672742B2 (en) Infrared temperature sensor
US20090065052A1 (en) Solar cell having improved electron emission using amorphous diamond materials
Dodd et al. Optimizing MOM diode performance via the oxidation technique
JPH0423364A (en) Photoelectromotive force device usable as mirror
JPH027576A (en) Manufacture of thin-film type photoelectric converting element
JPS6114769A (en) Photovoltaic device
CN111679454B (en) Method for manufacturing semiconductor device
JPS6261376A (en) Solar battery
Palmer et al. Novel Metal-Semiconductor-Metal Photodetectors on Semi-Insulating Indium Phosphide
KR101411781B1 (en) Method for manufacturing local electrode of solar cell and local electrode manufactured by the same
JPH04249379A (en) Photovoltaic device and manufacture thereof
JPH0758809B2 (en) Ohmic joining device
JPS62149175A (en) Optoelectric transducer
JPS6281778A (en) Amorphous silicon thin film device
JPH04249378A (en) Photovoltaic device and manufacture thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802