JPH027576A - Manufacture of thin-film type photoelectric converting element - Google Patents

Manufacture of thin-film type photoelectric converting element

Info

Publication number
JPH027576A
JPH027576A JP63158463A JP15846388A JPH027576A JP H027576 A JPH027576 A JP H027576A JP 63158463 A JP63158463 A JP 63158463A JP 15846388 A JP15846388 A JP 15846388A JP H027576 A JPH027576 A JP H027576A
Authority
JP
Japan
Prior art keywords
film
electrode
transparent
transparent protective
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63158463A
Other languages
Japanese (ja)
Inventor
Atsushi Sakai
淳 阪井
Shigeaki Tomonari
友成 惠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63158463A priority Critical patent/JPH027576A/en
Publication of JPH027576A publication Critical patent/JPH027576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable recessed and projected structures to be formed only on an uppermost transparent protective film without increasing the number of processes by performing ion-beam etching of Al film through a resist forming an Al electrode after forming the A film on the transparent protection film. CONSTITUTION:A metal electrode 1 such as Al and Cr is formed, a pinstructured amorphous Si photoelectric conversion layer 2 is formed, a transparent electrode 3 consisting of ITO (irridium and tin oxide) is formed. and a transparent protection film 4 consisting of SiO2 or Si3N4, etc., for improving reliability is formed in sequence. After that, a contact hole is opened on the transparent protection film 4 and an Al electrode 5 is formed on it. Then, when deposition is made on the transparent protection film 4 by using the resistance heating deposition or the EB deposition, a crystal particle of 2-10mum is formed. Patterning of a resist 6 is performed on an A film 5' thus formed by photolithography and the Al film 5' is etched. When the Al film 5' is etched to the etching of the Al film by using the ion beam etching device, recessed and projected structures are produced on the underlying transparent protective film 4 after the Al film 5' is eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜ペリ光電変換素子の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a thin film periphotoelectric conversion element.

〔従来の技術] 最近、アモルファスシリコンを太陽布地以外にも薄膜型
光センサやフォトカプラに用いられる受光素子に応用す
ることが試みられている。特に超小型受光素子として応
用する場合、微細加工と光電変換素子の高効率化がキー
ポイントとなる。
[Prior Art] Recently, attempts have been made to apply amorphous silicon to light-receiving elements used in thin-film optical sensors and photocouplers, in addition to solar fabrics. Particularly when applied as an ultra-small photodetector, the key points are microfabrication and high efficiency of the photoelectric conversion element.

微細加工はフォトリソグラフィ技術とウェットエツチン
グあるいはドライエツチング技術を用いて実現できる。
Microfabrication can be achieved using photolithography technology and wet etching or dry etching technology.

高効率化技術として、光入射側に凹凸構造を設けて光路
長を長くすることにより、変換効率を高めるいわゆるテ
クスチュア技術が開発されている。
As a technology for increasing efficiency, a so-called texture technology has been developed that increases conversion efficiency by providing a concavo-convex structure on the light incidence side to lengthen the optical path length.

従来のテクスチュア技術は、シリコン基板、金属基板等
の不透明な絶縁基板を用いるときは、基板そのものに凹
凸構造を設けることが行われている。具体的にはシリコ
ン基板の場合、(100)面表面にアルカリ性溶液を用
いて選択エツチングを行ない凹凸構造を設ける方法や、
Affi基板を電解エツチングにより粗らす方法が開発
されている。そして、このような凹凸基板の上に金属電
極、光電変換層、透明電極、透明保護膜を形成すると、
光入射側の最上面が凹凸構造になる。
In conventional texture technology, when an opaque insulating substrate such as a silicon substrate or a metal substrate is used, an uneven structure is provided on the substrate itself. Specifically, in the case of a silicon substrate, there is a method of selectively etching the (100) plane surface using an alkaline solution to form an uneven structure;
A method has been developed to roughen Affi substrates by electrolytic etching. Then, when a metal electrode, a photoelectric conversion layer, a transparent electrode, and a transparent protective film are formed on such an uneven substrate,
The top surface on the light incident side has an uneven structure.

[発明が解決しようとする課題] しかしながら、上述の如き方法により凹凸構造を設けた
場合、凹凸の大きさによっては、金属電極の膜厚にばら
つきが生じて、抵抗が増加したりピンホールの発生が増
加したりするといった問題点がある。また、凹凸を付け
るために、それだけで一つのプロセスを要し、全体とし
て非常に複雑な工程となる。
[Problems to be Solved by the Invention] However, when a concavo-convex structure is provided by the method described above, depending on the size of the concavities and convexities, variations may occur in the film thickness of the metal electrode, resulting in increased resistance and generation of pinholes. There are problems such as an increase in Furthermore, one process is required to create the unevenness, making the process as a whole extremely complicated.

本発明は、上記問題点を解決するためになされたもので
、その目的とするところは、工程数を増やすことなく、
最上層の透明保護膜にのみ凹凸構造を形成することがで
きる薄膜型光電変換素子の製造方法を提供するにある。
The present invention was made to solve the above problems, and its purpose is to
It is an object of the present invention to provide a method for manufacturing a thin film type photoelectric conversion element in which a concavo-convex structure can be formed only on the uppermost transparent protective film.

[発明の開示] 本発明は、不透明絶縁基板上に金属電極、光電変換層、
透明電極、透明保護膜、及び配線用Afi電極をフォト
リソグラフィ及びエツチングによって順次形成する薄膜
型光電変換素子の製造方法に関するものであり、透明保
護膜の形成までは従来と同様の方法で行なう、具体的に
は、第1図に示すように、Al、Cr等の金属電極1の
形成、pin構造構造7フルフアスSi重変換層2の形
成、ITO(インジウム・スズ酸化物)よりなる透明電
極3の形成、信頼性向上のためのS i 02あるいは
Si3N*等からなる透明保護膜4の形成を順次行ない
、その後、透明保護膜4にコシタクトホールを開け、こ
の上に下記のプロセスでAn重電極を形成する。
[Disclosure of the Invention] The present invention provides metal electrodes, a photoelectric conversion layer,
The present invention relates to a method for manufacturing a thin film photoelectric conversion element in which a transparent electrode, a transparent protective film, and an Afi electrode for wiring are sequentially formed by photolithography and etching. Specifically, as shown in FIG. 1, the formation of a metal electrode 1 made of Al, Cr, etc., the formation of a full Si double conversion layer 2 having a pin structure 7, and the formation of a transparent electrode 3 made of ITO (indium tin oxide). A transparent protective film 4 made of SiO2 or Si3N* is sequentially formed to improve formation and reliability. After that, a cosmic tact hole is made in the transparent protective film 4, and an An heavy electrode is formed on the transparent protective film 4 by the following process. form.

次に、上記透明保護膜4上にA/膜を形成するのである
が、その形成は抵抗加熱蒸着またはEB蒸着を用いて行
なう。これらの方法で蒸着すると、2〜lOμmの結晶
粒が形成されるのが確認された。このようにして形成し
たAl膜5°上にフォトリソグラフィによってレジスト
6のパターニングを行ない、A1膜5°をエツチングす
る。なお、本発明ではAl膜のエツチングにイオンビー
ムエツチング装置を用いた。このようにしてA j! 
IIW5゛をエツチングすると、/l膜5′が除去され
た後の下地の透明保護膜4に凹凸構造が生じる(第2図
参照)。
Next, the A/film is formed on the transparent protective film 4, which is formed using resistance heating vapor deposition or EB vapor deposition. When deposited using these methods, it was confirmed that crystal grains of 2 to 10 μm were formed. A resist 6 is patterned by photolithography on the Al film 5° thus formed, and the A1 film 5° is etched. In the present invention, an ion beam etching device was used for etching the Al film. In this way A j!
When IIW 5' is etched, an uneven structure is created in the underlying transparent protective film 4 after the /l film 5' is removed (see FIG. 2).

イオンビームエツチングとは、アルゴンなどの不活性ガ
スをイオン化し、電圧300■〜5KV程度で加速し、
材料表面を衝撃して材料表面分子をはじき飛ばすスパッ
タリング現象を利用したエツチング方法である。このイ
オンビームエツチングを用いてA1膜をエツチングして
いく過程を第2図(a)〜(C)に示す。
Ion beam etching involves ionizing an inert gas such as argon and accelerating it at a voltage of about 300 to 5 KV.
This is an etching method that utilizes the sputtering phenomenon in which molecules on the material surface are repelled by impacting the surface of the material. The process of etching the A1 film using this ion beam etching is shown in FIGS. 2(a) to 2(C).

まず、イオンビームBを試料に対して垂直に入射させる
。Al膜5′は結晶粒が成長しているため、粒界の部分
は薄くなっており、薄い部分から先にA7膜が除去され
、ビームBが透明保護膜4上に到達する。そしてAIl
膜5″が全面エツチングされたときには、1〜3μmの
凹凸が透明保護膜4に形成される。その拡大図を第3図
に示す。
First, the ion beam B is made perpendicularly incident on the sample. Since crystal grains have grown in the Al film 5', the grain boundary portion is thin, and the A7 film is removed from the thinner portion first, and the beam B reaches the transparent protective film 4. and AIl
When the entire surface of the film 5'' is etched, irregularities of 1 to 3 μm are formed on the transparent protective film 4. An enlarged view of the same is shown in FIG.

以上のようにして、透明保護膜4に凹凸構造を形成する
と、入射光が斜めに光重変換)−2に入っていくので光
路長が延びる。つまり、光電変換効率が向上する。
When the uneven structure is formed on the transparent protective film 4 as described above, the incident light obliquely enters the light weight conversion)-2, thereby increasing the optical path length. In other words, photoelectric conversion efficiency is improved.

(実施例) 絶縁基板として表面に5i02膜が形成されたシリコン
基板を用いる。集積型光電変換素子のパターン形状は、
第4図に示すように0.610のセルを10個直列に接
続したものである。
(Example) A silicon substrate with a 5i02 film formed on its surface is used as an insulating substrate. The pattern shape of the integrated photoelectric conversion element is
As shown in FIG. 4, ten 0.610 cells are connected in series.

まずスパッタリング装置によって、前記絶縁基板上にC
r腰を2000人形成する。そして、フォトリソグラフ
ィ・エツチング工程により所定の形状に加工して金属電
極1とする。次にプラズマCVD装置によりアモルファ
スSi膜をp、t、nのi府にそれぞれ300人、 6
000人、100人積屓して光電変換1fi 2を形成
する。このときドーピング量は、p層(82H6/S 
i H4)  1%、  nJii (PH3/SiH
*)1%である。そして、Cr電極1と同様にパターニ
ングを行なう。次に、EB蒸着装置により、ITOを9
00人形成してパターニングを行ない透明電極3を構成
する。そして、プラズマCVD装置により、透明保護膜
4としての5t02膜を5000人形成してこれにコン
タクトホールを開ける。ここまでのエツチング工程は、
すべて酸系のエッチャントを用いてエツチング可能であ
る。
First, a sputtering device is used to coat C on the insulating substrate.
Form 2,000 people. Then, the metal electrode 1 is processed into a predetermined shape using a photolithography and etching process. Next, 300 people each formed an amorphous Si film on the p, t, and n sections using a plasma CVD device.6
A photoelectric conversion system 1fi2 is formed by stacking 100 or 100 people. At this time, the doping amount is the p layer (82H6/S
i H4) 1%, nJii (PH3/SiH
*) 1%. Then, patterning is performed in the same manner as the Cr electrode 1. Next, using an EB evaporator, 90% of ITO was deposited.
A transparent electrode 3 is formed by forming and patterning the transparent electrode 3. Then, using a plasma CVD apparatus, 5,000 5t02 films are formed as the transparent protective film 4, and contact holes are formed therein. The etching process up to this point is
All can be etched using acid-based etchants.

次に、抵抗加熱方式真空蒸着装置によりAI!膜5°を
5000人形成する。Al膜5°のエツチングはりん酸
等によるウェフトエツチングによっても可能であるが、
その場合、前記5iO211f4は全く影響を受けず、
高効率化は望めない。
Next, AI! 5000 people will form a film 5°. Etching of the Al film at 5° is also possible by wet etching using phosphoric acid, etc.
In that case, the 5iO211f4 is not affected at all,
High efficiency cannot be expected.

本実施例では、コモンウェルス社製イオンビームエツチ
ング装置を用いてA 7!股5 ’ のエツチングを行
なった。エツチング条件は、加速器500V、100m
Aで30分エツチングを行なった。
In this example, an ion beam etching device manufactured by Commonwealth Corporation was used to perform A7! I had my crotch 5' etched. Etching conditions were accelerator 500V, 100m.
Etching was performed at A for 30 minutes.

その結果、下地の5i02膜4上には全面にわたって、
1〜3μmのクレータ−状の穴が生成された。比較例と
して、ウェットエツチングにより完全に平坦な5iO2
1Qを持つ素子を作製して両者の特性を比較した。光源
は100100Oの赤色LED2個を対向させた。実施
例及び比較例の特性を下表に示す。
As a result, over the entire surface of the underlying 5i02 film 4,
Crater-like holes of 1-3 μm were produced. As a comparative example, 5iO2 was completely flattened by wet etching.
A device with 1Q was fabricated and the characteristics of both were compared. The light source consisted of two red LEDs of 100100 O facing each other. The characteristics of Examples and Comparative Examples are shown in the table below.

[発明の効果] 本発明は上記のように、不透明絶縁基板上に金属電極、
光電変換層、透明電極、透明保護膜及び配線用Al電極
をフォトリソグラフィによって形成する薄膜型光電変換
素子の製造において、前記透明保護膜上にAl膜を形成
し、しかる後、前記AA電極を形成するレジストを介し
て前記Al膜をイオンビームエツチングすることにより
、前記透明保護膜に凹凸構造を形成したことを特徴とす
るので、工程数を増やすことなく、最上層の透明保護膜
上リコン凸構造を形成することができる。
[Effects of the Invention] As described above, the present invention provides metal electrodes on an opaque insulating substrate,
In manufacturing a thin film photoelectric conversion element in which a photoelectric conversion layer, a transparent electrode, a transparent protective film, and an Al electrode for wiring are formed by photolithography, an Al film is formed on the transparent protective film, and then the AA electrode is formed. The present invention is characterized in that the uneven structure is formed on the transparent protective film by ion beam etching the Al film through a resist, so that it is possible to form a reconvex structure on the top transparent protective film without increasing the number of steps. can be formed.

従って、従来のテクスチュア技術による光電変換素子よ
り製造コストの低減が図れると共に、高効率の薄膜型光
電変換素子を提供できる。
Therefore, manufacturing costs can be reduced compared to photoelectric conversion elements using conventional texture techniques, and a highly efficient thin film type photoelectric conversion element can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜型光電変換素子の断面図、第2図は本発明
に係るイオンビームエツチングのプロセスを示す図、第
3図は本発明に係る透明保護膜の拡大断面図、第4図は
本発明により製造された集積型光電変換素子の概略平面
図である。 1・・・金属電極、2・・・光電変換層、3・・・透明
電極4・・・透明保護膜、5・・・Al電極。
FIG. 1 is a cross-sectional view of a thin film type photoelectric conversion element, FIG. 2 is a diagram showing the ion beam etching process according to the present invention, FIG. 3 is an enlarged cross-sectional view of a transparent protective film according to the present invention, and FIG. 1 is a schematic plan view of an integrated photoelectric conversion element manufactured according to the present invention. DESCRIPTION OF SYMBOLS 1... Metal electrode, 2... Photoelectric conversion layer, 3... Transparent electrode 4... Transparent protective film, 5... Al electrode.

Claims (1)

【特許請求の範囲】[Claims] (1)不透明絶縁基板上に金属電極、光電変換層、透明
電極、透明保護膜及び配線用Al電極をフォトリソグラ
フィによって形成する薄膜型光電変換素子の製造におい
て、前記透明保護膜上にAl膜を形成し、しかる後、前
記Al電極を形成するレジストを介して前記Al膜をイ
オンビームエッチングすることにより、前記透明保護膜
に凹凸構造を形成したことを特徴とする薄膜型光電変換
素子の製造方法。
(1) In manufacturing a thin film photoelectric conversion element in which a metal electrode, a photoelectric conversion layer, a transparent electrode, a transparent protective film, and an Al electrode for wiring are formed on an opaque insulating substrate by photolithography, an Al film is formed on the transparent protective film. and then ion beam etching the Al film through the resist forming the Al electrode, thereby forming an uneven structure on the transparent protective film. .
JP63158463A 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element Pending JPH027576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158463A JPH027576A (en) 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158463A JPH027576A (en) 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element

Publications (1)

Publication Number Publication Date
JPH027576A true JPH027576A (en) 1990-01-11

Family

ID=15672292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158463A Pending JPH027576A (en) 1988-06-27 1988-06-27 Manufacture of thin-film type photoelectric converting element

Country Status (1)

Country Link
JP (1) JPH027576A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229098A (en) * 2005-02-21 2006-08-31 New Japan Radio Co Ltd Optical semiconductor device and manufacturing method therefor
JP2013065911A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode array
JP2013065912A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode manufacturing method and photodiode
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US8994135B2 (en) 2009-02-24 2015-03-31 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006229098A (en) * 2005-02-21 2006-08-31 New Japan Radio Co Ltd Optical semiconductor device and manufacturing method therefor
JP2013065911A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode array
JP2013065912A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Photodiode manufacturing method and photodiode
JP2013093609A (en) * 2009-02-24 2013-05-16 Hamamatsu Photonics Kk Semiconductor photodetection element
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US8994135B2 (en) 2009-02-24 2015-03-31 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9419159B2 (en) 2009-02-24 2016-08-16 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US9614109B2 (en) 2009-02-24 2017-04-04 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9972729B2 (en) 2009-02-24 2018-05-15 Hamamatsu Photonics K.K. Photodiode and photodiode array

Similar Documents

Publication Publication Date Title
CN101904014B (en) Thin film type solar cell and method for manufacturing the same
JPH027576A (en) Manufacture of thin-film type photoelectric converting element
US20080276986A1 (en) Photolithography Method For Contacting Thin-Film Semiconductor Structures
US20100032017A1 (en) Solar cell and method of manufacturing the same
CN113471324B (en) Broadband photoelectric detector based on graphene homojunction and preparation method thereof
JPH09219530A (en) Chalcopyirite structure semiconductor thin film solar battery and manufacture thereof
US9859452B1 (en) Fabrication of thin-film photovoltaic cells with reduced recombination losses
CN102751179A (en) Method for preparing graphene devices
JP2010177655A (en) Method for manufacturing back junction type solar cell
JPS6213829B2 (en)
JPS6342180A (en) Manufacture of integrated type photovoltaic device
JPH09199742A (en) Field effect solar cell
JPS5965489A (en) Solar battery device and manufacture thereof
KR950007349B1 (en) Making method of silicon quantum interference transistor
CN114864708A (en) Multi-grid graphene field effect transistor type photoelectric sensor and preparation method thereof
JPS61229370A (en) Manufacture of photo sensor element
JPH04274373A (en) Electronic device
JPH11514799A (en) Thin-film photovoltaic device
KR100977726B1 (en) Thin film type Solar Cell and Method for manufacturing the same
JPS62147784A (en) Amorphous solar cell and manufacture thereof
JPS6197875A (en) Manufacture of semiconductor device
JPH03205879A (en) Solar cell
CN114171686A (en) Preparation method of ultra-soft transparent solar cell
JPS60198783A (en) Manufacture of photovoltaic device
JPH0560273B2 (en)