JPH11326034A - Noncontact type vibration sensor and vibration detecting method - Google Patents

Noncontact type vibration sensor and vibration detecting method

Info

Publication number
JPH11326034A
JPH11326034A JP10148363A JP14836398A JPH11326034A JP H11326034 A JPH11326034 A JP H11326034A JP 10148363 A JP10148363 A JP 10148363A JP 14836398 A JP14836398 A JP 14836398A JP H11326034 A JPH11326034 A JP H11326034A
Authority
JP
Japan
Prior art keywords
magnetic field
vibration
magnetic
sensor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10148363A
Other languages
Japanese (ja)
Other versions
JP3936470B2 (en
Inventor
Masanori Mitsube
昌紀 三邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP14836398A priority Critical patent/JP3936470B2/en
Publication of JPH11326034A publication Critical patent/JPH11326034A/en
Application granted granted Critical
Publication of JP3936470B2 publication Critical patent/JP3936470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration sensor by which vibration of a vibratory body can be detected by a magnetic sensor with high sensitivity and in a noncontact system. SOLUTION: This sensor is composed of a magnetic field generating element fixed on a vibratory body 1 and a magnetic field sensor 3 arranged out of contact with the vibratory body 1. A magnetic-impedance element can be used for the magnetic field sensor 3, by which an electric current is sent to an amorphous magnetic wire and a voltage generated between both ends of the amorphous magnetic wire by the current is detected and also an external magnetic field in the axial direction of the wire is detected from the change of the detected voltage, and a current carrying conductor 2 or a permanent magnet is used for the magnetic field generating element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気−インピ−ダン
ス素子(MI素子)や磁気−抵抗素子(MR素子)を用
いた非接触式振動センサ及び振動検出方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact vibration sensor using a magnetic impedance element (MI element) or a magnetic resistance element (MR element) and a vibration detecting method.

【0002】[0002]

【従来の技術】従来、振動を検出するには、被検出体に
圧電変換素子、例えば圧電セラミックスを固着し、被検
出体の機械的振動歪を電気量に変換し、この電気量から
振動を検出している。
2. Description of the Related Art Conventionally, in order to detect vibration, a piezoelectric transducer, for example, a piezoelectric ceramic, is fixed to an object to be detected, and mechanical vibration distortion of the object to be detected is converted into an electric quantity. Detected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、圧電変
換素子においては、素子の弾性率や密度や寸法で定まる
共振周期数が存在し、振動周波数がこの共振周波数から
外れるに従い検出感度が低下していき、周波数が変化す
る振動を効率よく検出し難い。また、被検出体の機械的
歪を圧電変換素子に伝達するために圧電変換素子を被検
出体に強固に固着する必要があり、固着面が平坦面に限
られ、その固着も厄介である。周知の通り、電流iが流
れている微小部分Δlにより任意の点pに生じる磁界の
強さΔHは、微小部分の中心から点pまでの距離をr、
距離rとΔl部分の接線とがなす角をβとすれば、点p
の磁界ΔHはビオ・サバ−ルの法則より、
However, in a piezoelectric conversion element, there is a resonance cycle number determined by the elastic modulus, density, and dimensions of the element, and the detection sensitivity decreases as the vibration frequency deviates from the resonance frequency. And it is difficult to efficiently detect vibrations whose frequency changes. Further, in order to transmit the mechanical strain of the detection target to the piezoelectric conversion element, it is necessary to firmly fix the piezoelectric conversion element to the detection target, and the fixing surface is limited to a flat surface, and the fixing is troublesome. As is well known, the strength ΔH of the magnetic field generated at an arbitrary point p by the minute portion Δl in which the current i flows is represented by r, the distance from the center of the minute portion to the point p,
If the angle between the distance r and the tangent to the Δl portion is β, the point p
The magnetic field .DELTA.H is given by Biot-Savart's law.

【0004】 ΔH=iΔl・sinβ/(4πr2) ΔH = iΔl · sinβ / (4πr 2 )

【0000】で与えられ、距離rの微小変化Δrに対す
る点pの磁界変化率は
The change rate of the magnetic field at the point p with respect to the minute change Δr of the distance r is given by

【0005】 |ΔH’|=iΔl・sinβ/(2πr3) | ΔH ′ | = iΔl · sinβ / (2πr 3 )

【0006】である。而して、距離rが小であれば、|
ΔH’|を大にでき、磁気的に振動体の変位を検出する
ことは可能である。しかしながら、実際は、距離rを小
さくし得ず、従来技術では有効な磁気的な振動検出は困
難である。
[0006] Thus, if the distance r is small, |
ΔH ′ | can be increased, and it is possible to magnetically detect the displacement of the vibrating body. However, in practice, the distance r cannot be reduced, and it is difficult to effectively detect magnetic vibrations in the related art.

【0007】本発明の目的は、振動体の振動を磁気的に
高感度で、しかも非接触式にて検出できる振動センサを
提供することにある。
An object of the present invention is to provide a vibration sensor capable of detecting vibration of a vibrating body with high magnetic sensitivity and in a non-contact manner.

【0008】[0008]

【課題を解決するための手段】本発明に係る非接触式振
動センサは、振動体に取付ける磁界発生素子と、前記振
動体とは非接触で配設する磁界センサとからなることを
特徴とする構成であり、磁界センサには、アモルファス
磁性エレメントに電流を流し該電流によりアモルファス
磁性エレメント両端間に発生する電圧を検出し上記エレ
メントの軸方向外部磁界を上記検出電圧の変化から検出
する磁気−インピ−ダンス素子を用いることができ、ま
た磁界発生素子には、電流通電導体或いは永久磁石を用
いることができる。本発明に係る振動検出方法は、振動
体に電流を流して磁界を発生させ、前記振動体とは非接
触で配設した上記の磁気−インピ−ダンス素子の出力か
ら前記振動体の振動を検出することを特徴とする構成で
ある。
A non-contact vibration sensor according to the present invention comprises a magnetic field generating element mounted on a vibrating body and a magnetic field sensor disposed in non-contact with the vibrating body. The magnetic field sensor has a magnetic-impedance that supplies a current to the amorphous magnetic element, detects a voltage generated between both ends of the amorphous magnetic element by the current, and detects an axial external magnetic field of the element from a change in the detected voltage. A dance element can be used, and a current-carrying conductor or a permanent magnet can be used for the magnetic field generating element. The vibration detecting method according to the present invention detects a vibration of the vibrating body from an output of the magnetic-impedance element disposed in a non-contact manner with the vibrating body by causing a current to flow through the vibrating body. It is a configuration characterized by doing.

【0009】[0009]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1の(イ)は本発明に
係る非接触式振動センサの一例を示す平面図、図1の
(ロ)は同じく側面図をそれぞれ示している。図1にお
いて、1は振動を検出しようとする振動体である。2は
振動体1に取付けた導電体ロッド、21は直流電源(電
池)、22は絶縁リ−ド線であり、導電体ロッド2の先
端面の主に直径方向に電流を流している。3は振動体に
対し非接触方式で配設した磁界センサ、31は磁界セン
サ3の検出部の制御及び増幅部、32は出力波形表示器
である。上記磁界センサ3には、磁気−インピ−ダンス
効果を利用した磁気−インピ−ダンス素子(MI素子)
を使用しており、このMI素子の概略は次ぎの通りであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view showing an example of the non-contact vibration sensor according to the present invention, and FIG. 1B is a side view showing the same. In FIG. 1, reference numeral 1 denotes a vibrating body whose vibration is to be detected. Reference numeral 2 denotes a conductor rod attached to the vibrator 1, reference numeral 21 denotes a DC power source (battery), and reference numeral 22 denotes an insulated lead wire. Reference numeral 3 denotes a magnetic field sensor disposed in a non-contact manner with respect to the vibrating body, 31 denotes a control and amplification unit of a detection unit of the magnetic field sensor 3, and 32 denotes an output waveform display. The magnetic field sensor 3 includes a magnetic-impedance element (MI element) utilizing a magnetic-impedance effect.
The outline of this MI element is as follows.

【0010】即ち、アモルファス合金ワイヤとして自発
磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が
交互に磁壁で隔てられた構成の外殻部を有する、零磁歪
乃至は負磁歪のアモルファス合金ワイヤに高周波電流し
たときに発生するワイヤ両端間出力電圧中のインダクタ
ンス電圧分は、ワイヤの横断面内に生じる円周方向磁束
によって円周方向に易磁化性の外殻部が円周方向に磁化
されることにより変動する。而るに、この通電中のアモ
ルファスワイヤにワイヤ軸方向の外部磁界を作用させる
と、上記通電による円周方向磁束と外部磁束との合成に
より上記円周方向に易磁化性を有する外殻部に作用する
磁束の方向が円周方向からずれ、それだけ円周方向への
磁化が生じ難くなり、周方向透磁率μθが変化し、上記
インダクタンス電圧分が変動する。更に、表皮深さδ=
(2ρ/wμθ)1/2(μθは円周方向透磁率、ρは電気
抵抗率、wは角周波数)がμθにより変化し、このμθが
前記した通り外部磁界によって変化してワイヤ両端間出
力電圧中の抵抗電圧分も外部磁界で変動する。而して、
MI素子は、これらのインダクタンス電圧分と抵抗電圧
分の双方、すなわち、ワイヤ両端間出力電圧の変動(イ
ンピ−ダンス効果)から外部磁界(ワイヤ軸方向の外部
磁界)を検出するものである。
That is, a zero magnetostrictive or negative magnetostrictive amorphous alloy wire having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other with respect to the circumferential direction of the wire are alternately separated by domain walls. The inductance voltage in the output voltage across the wire that is generated when a high-frequency current is applied to the wire is determined by the fact that the circumferentially magnetizable outer shell portion is magnetized in the circumferential direction by the circumferential magnetic flux generated in the cross section of the wire. It fluctuates by Therefore, when an external magnetic field in the wire axis direction is applied to the energized amorphous wire, the outer magnetic flux is easily magnetized in the circumferential direction by the synthesis of the circumferential magnetic flux and the external magnetic flux by the energization. The direction of the acting magnetic flux deviates from the circumferential direction, so that the magnetization in the circumferential direction becomes less likely to occur, the circumferential magnetic permeability μθ changes, and the inductance voltage changes. Furthermore, the skin depth δ =
(2ρ / wμθ) 1/2 (μθ the circumferential permeability, [rho is the electrical resistivity, w is the angular frequency) is changed by Myushita, changes to the wire ends between the output by as the external magnetic field this Myushita has the The resistance voltage in the voltage also fluctuates due to the external magnetic field. Thus,
The MI element detects an external magnetic field (an external magnetic field in the wire axis direction) from both the inductance voltage and the resistance voltage, that is, the fluctuation of the output voltage across the wire (impedance effect).

【0011】今、図2に示すように導電体1の通電方向
がx方向、アモルファス合金ワイヤ3の方向がz方向で
あり、アモルファス合金ワイヤ3が導電体通電路の両端
e−eから等距離にあるとすると、長さΔlによる点p
における磁界ΔHは、前記式のビオ・サバ−ルの法則
より、
As shown in FIG. 2, the direction of conduction of the conductor 1 is the x direction, the direction of the amorphous alloy wire 3 is the z direction, and the amorphous alloy wire 3 is equidistant from both ends ee of the conductor conduction path. , The point p with length Δl
The magnetic field .DELTA.H at is given by Biot-Savart's law in the above equation.

【0012】 ΔH=Ix・sinβ・Δl/(4πa2) ΔH = Ix · sinβ · Δl / (4πa 2 )

【0013】で与えられ、導電体通電路e−eに流れる
電流Ixによりアモルファス合金ワイヤ3に作用する磁
界Hはアモルファス合金ワイヤ3の軸方向であり、その
大きさは、
The magnetic field H acting on the amorphous alloy wire 3 due to the current Ix flowing through the conductor conduction path e-e is in the axial direction of the amorphous alloy wire 3, and its magnitude is

【0014】 H=Ixcosα/(2πa) H = Ixcosα / (2πa)

【0015】となる。図1において、電流Iy、−Iyに
よる点pでの磁界は互いに打ち消し合って現れない。従
って、図1において、振動体1が±y方向に振動すれ
ば、磁界Hがその振動周波数で変動し、MI素子3の出
力が変動し、振動を出力波形表示器32の出力波形で検
出できる。
## EQU1 ## In FIG. 1, the magnetic fields at the point p due to the currents Iy and -Iy cancel each other and do not appear. Therefore, in FIG. 1, if the vibrating body 1 vibrates in the ± y direction, the magnetic field H fluctuates at the vibration frequency, the output of the MI element 3 fluctuates, and the vibration can be detected by the output waveform of the output waveform display 32. .

【0016】上記の通電導電体には、図3に示すような
ル−プを使用することもでき、図3において、点pでの
磁界は垂直方向成分のみで、その大きさHは
A loop as shown in FIG. 3 can be used for the above-mentioned current-carrying conductor. In FIG. 3, the magnetic field at the point p has only a vertical component, and its magnitude H is

【0017】H=isin2α/(2L)H = isin 2 α / (2L)

【0018】で与えられる。このル−プはその中心線が
上記アモルファス合金ワイヤを通るように振動体に取り
付けられる。
## EQU1 ## The loop is attached to the vibrator so that the center line passes through the amorphous alloy wire.

【0019】図4の(イ)は本発明に係る非接触式振動
センサの別例を、図4の(ロ)は図4の(イ)における
ロ−ロ断面図をそれぞれ示している。図4において、1
は振動を検出しようとする振動体、20は絶縁棒23の
先端に取付けた円盤状の永久磁石であり、絶縁棒23と
共に振動体1に固定してある。3は振動体1に対し非接
触方式で配設した磁気−インピ−ダンス素子、31は磁
気−インピ−ダンス素子3の検出部の制御及び増幅部、
32は出力波形表示器である。
FIG. 4A shows another example of the non-contact vibration sensor according to the present invention, and FIG. 4B is a cross-sectional view taken along the line B in FIG. 4A. In FIG. 4, 1
Is a vibrator for detecting vibration, and 20 is a disk-shaped permanent magnet attached to the tip of an insulating rod 23, which is fixed to the vibrating body 1 together with the insulating rod 23. Reference numeral 3 denotes a magnetic-impedance element disposed in a non-contact manner with respect to the vibrating body 1, reference numeral 31 denotes a control and amplification section of a detection unit of the magnetic-impedance element 3,
32 is an output waveform display.

【0020】図5において、点pでの磁界はアモルファ
ス合金ワイヤ(磁気−インピ−ダンス素子)3の軸方向
成分のみで、円盤状磁石20の単位面積当たりの磁気モ
−メントをφ、円盤状磁石の半径をa、距離をrとする
と、その大きさHは
In FIG. 5, the magnetic field at the point p is only the axial component of the amorphous alloy wire (magnetic-impedance element) 3, and the magnetic moment per unit area of the disc-shaped magnet 20 is φ, Assuming that the radius of the magnet is a and the distance is r, the size H is

【0021】 H=φa2/〔2μ0(a2+r2)3/2[0021] H = φa 2 / [2μ 0 (a 2 + r 2 ) 3/2 ]

【0022】で与えられる。従って、図4において、振
動体1が±y方向に振動すれば、磁界Hがその振動周波
数で変動し、MI素子3の出力が変動し、振動を出力波
形表示器32の表示より検出できる。
Is given by Therefore, in FIG. 4, when the vibrating body 1 vibrates in the ± y direction, the magnetic field H fluctuates at the vibration frequency, the output of the MI element 3 fluctuates, and the vibration can be detected from the display of the output waveform display 32.

【0023】永久磁石には、図6に示すような棒磁石の
使用も可能である。図6において、磁気モ−メントMの
磁気双極子200の点p(距離r、角ψ)でのR方向の
磁界Hr、及びΨ方向の磁界Hψは、
As the permanent magnet, a bar magnet as shown in FIG. 6 can be used. In FIG. 6, the magnetic field Hr in the R direction and the magnetic field H in the Ψ direction at the point p (distance r, angle の) of the magnetic dipole 200 of the magnetic moment M are:

【0024】 Hr=2Mcosψ/(4πμ03Hr = 2Mcosψ / (4πμ 0 r 3 )

【0025】 Hψ=Msinψ/(4πμ03Hψ = Msinψ / (4πμ 0 r 3 )

【0026】で与えられる。Is given by

【0027】従って、図7に示すように、棒磁石200
の磁気モ−メントMの方向とアモルファス合金ワイヤ3
の方向とを一致させて両者間の角度を0とすれば、アモ
ルファス合金ワイヤ3に作用する磁界はワイヤ軸方向の
Hrのみとなり(Hψ=0)、振動体1が±x方向に振
動すれば、磁界Hがその振動周波数で変動し、MI素子
3の出力が変動し、振動を出力波形表示器32の表示よ
り検出できる。
Therefore, as shown in FIG.
Direction of magnetic moment M and amorphous alloy wire 3
And the angle between the two is set to 0, the magnetic field acting on the amorphous alloy wire 3 is only Hr in the wire axis direction (Hψ = 0), and if the vibrating body 1 vibrates in the ± x direction, The magnetic field H fluctuates at the vibration frequency, the output of the MI element 3 fluctuates, and the vibration can be detected from the display of the output waveform display 32.

【0028】また、図8に示すように、棒磁石200の
磁気モ−メントMの方向をx方向とし、ψ=90°の位
置にアモルファス合金ワイヤをx方向に向けて配設する
こともでき、この場合、アモルファス合金ワイヤ3に作
用する磁界はワイヤ軸方向のHψのみとなり(Hr=
0)、振動体が±y方向に振動すれば、磁界Hがその振
動周波数で変動し、MI素子の出力が変動し、振動を出
力波形表示器32の表示より検出できる。
As shown in FIG. 8, the direction of the magnetic moment M of the bar magnet 200 is set to the x direction, and the amorphous alloy wire can be disposed at the position of ψ = 90 ° in the x direction. In this case, the magnetic field acting on the amorphous alloy wire 3 is only Hψ in the wire axis direction (Hr =
0) If the vibrating body vibrates in the ± y direction, the magnetic field H fluctuates at the vibration frequency, the output of the MI element fluctuates, and the vibration can be detected from the display of the output waveform display 32.

【0029】上記において、MI素子のアモルファス合
金エレメントにはアモルファス合金ワイヤを用いている
が、アモルファス合金膜(蒸着膜、スパッタリング膜
等)を用いることも可能である。本発明において、磁界
センサには磁気−抵抗素子(MR素子)を使用すること
もできる。
In the above description, an amorphous alloy wire is used for the amorphous alloy element of the MI element. However, an amorphous alloy film (a vapor deposition film, a sputtering film, or the like) may be used. In the present invention, a magnetic-resistance element (MR element) may be used for the magnetic field sensor.

【0030】本発明に係る振動センサの使用形態には、
平面状振動体の数箇所に通電導体または永久磁石を取付
けておき、磁界センサを走行させることによりそれら数
箇所の振動状態を経時的に測定すること、振動センサを
アレイ状に多数箇設け、各箇所の振動状態を合成して全
体の振動状態を把握すること等も含まれる。
The usage of the vibration sensor according to the present invention includes:
Conductive conductors or permanent magnets are attached to several places of the planar vibrator, and the running state of the magnetic field sensor is used to measure the vibration state of the several places over time. It also includes comprehending the overall vibration state by synthesizing the vibration state of the location.

【0031】請求項5〜6記載の方法により振動体の振
動を検出するには、振動体に直接電流を流して磁界を発
生させ、この磁界の変化を振動体と非接触で配設した磁
界センサ(MI素子、MR素子)に出力させ、その出力
の大きさから振動の振幅を、その出力の周波数から振動
周波数を検出していく。
In order to detect the vibration of the vibrating body by the method according to the fifth and sixth aspects, a magnetic field is generated by applying a current directly to the vibrating body, and a change in the magnetic field is detected in a non-contact manner with the vibrating body. Sensors (MI element, MR element) output the output, and the amplitude of the vibration is detected from the magnitude of the output, and the vibration frequency is detected from the frequency of the output.

【0032】[0032]

【実施例】〔実施例1〕図1に示す構成の非接触式振動
センサである。磁界センサには、外径50μmのCo71
15Si10Fe4アモルファスワイヤを用いた磁気−イ
ンピ−ダンス素子を使用し、この磁界センサをインダク
ティブ素子とするコルピッツ発振回路を組立て、更に、
外部磁界によるこの発振回路の振幅変調を復調する復調
回路を接続して検出部を構成した。通電導体には、直径
40mm,長さ100mmのアルミニウム棒の長手方向
に2本の絶縁リ−ド線を互いに逆方向に巻き付け、その
絶縁リ−ド線の先端をアルミニウム棒先端面に直径の距
離を隔ててはんだ付けし、リ−ド線後端に電池を接続し
たものを用い、これらを超音波振動子に両絶縁リ−ド線
先端(はんだ付け点)間の方向(通電導体の通電方向)
が磁界センサのアモルファスワイヤに対し図の位置関係
で、かつa=2mmとするように取付けた。磁界センサ
のアモルファスワイヤの通電電流を約40MHz,約10m
A、通電導体の通電電流を直流1A、振動子の振動を周波
数40KHz,振幅2μmとした。磁界センサの出力を確認
したところ、周波数40KHzの振動出力であった。ま
た、振動振幅を増減すると、これに伴い磁界センサの出
力も増減し、入力に対応した出力が得られた。
[Embodiment 1] A non-contact vibration sensor having the structure shown in FIG. For the magnetic field sensor, Co 71 having an outer diameter of 50 μm was used.
B 15 Si 10 Fe 4 magnetic using amorphous wires - Inpi - using dance elements, assembling the Colpitts oscillation circuit for the magnetic field sensor and an inductive element, further,
A detection unit was configured by connecting a demodulation circuit for demodulating the amplitude modulation of the oscillation circuit by the external magnetic field. Two insulated lead wires are wound around the current-carrying conductor in the longitudinal direction of an aluminum rod having a diameter of 40 mm and a length of 100 mm in opposite directions to each other. With a battery connected to the rear end of the lead wire. These are connected to the ultrasonic vibrator in the direction between the front ends (soldering points) of both insulated lead wires (current direction of the current-carrying conductor). )
Were attached to the amorphous wire of the magnetic field sensor in the positional relationship shown in the figure and a = 2 mm. Conducting current of amorphous wire of magnetic field sensor is about 40MHz, about 10m
A, the current flowing through the current-carrying conductor was 1 A DC, the vibration of the vibrator was 40 KHz, and the amplitude was 2 μm. When the output of the magnetic field sensor was confirmed, it was a vibration output at a frequency of 40 KHz. Also, when the vibration amplitude was increased or decreased, the output of the magnetic field sensor was also increased or decreased, and an output corresponding to the input was obtained.

【0033】〔実施例2〕図4に示す構成の非接触式振
動センサである。磁界センサには実施例1で使用したの
と同じものを用いた。直径10mm,長さ50mmのガ
ラス棒の先端面に円盤状のフェライト系永久磁石を接着
剤で固定し、これを超音波振動子に円盤状磁石の中心軸
を磁界センサのアモルファスワイヤの軸線に一致させ、
かつ円盤状磁石先端面からアモルファスワイヤ端までの
距離を1mmとするように取付けた。磁界センサのアモ
ルファスワイヤの通電電流を約40MHz,約10mA、振
動子の振動を周波数80KHz,振幅1μmとした。磁界セ
ンサの出力を確認したところ、周波数80KHzの振動出
力であった。また、振動振幅を増減すると、これに伴い
磁界センサの出力も増減し、入力に対応した出力が得ら
れた。更に、共振周波数が40KHzの超音波振動子を用
い、振幅1μmの連続波で振振動させたところ、同一周
波数の出力波形が観測された。
[Embodiment 2] A non-contact vibration sensor having the structure shown in FIG. The same magnetic field sensor as that used in Example 1 was used. A disk-shaped ferrite permanent magnet is fixed to the tip surface of a glass rod with a diameter of 10 mm and a length of 50 mm with an adhesive, and the center axis of the disk-shaped magnet is aligned with the axis of the amorphous wire of the magnetic field sensor on the ultrasonic vibrator. Let
And it was mounted so that the distance from the tip surface of the disc-shaped magnet to the end of the amorphous wire was 1 mm. The current supplied to the amorphous wire of the magnetic field sensor was about 40 MHz and about 10 mA, and the vibration of the vibrator was 80 KHz and the amplitude was 1 μm. When the output of the magnetic field sensor was confirmed, it was a vibration output at a frequency of 80 KHz. Also, when the vibration amplitude was increased or decreased, the output of the magnetic field sensor was also increased or decreased, and an output corresponding to the input was obtained. Further, when an ultrasonic transducer having a resonance frequency of 40 KHz was used to vibrate and vibrate with a continuous wave having an amplitude of 1 μm, an output waveform having the same frequency was observed.

【0034】[0034]

【発明の効果】本発明に係る非接触式振動センサにおい
ては、磁界発生素子を振動体に固定すればよく圧電変換
素子のように応力−歪を伝達を可能とする一体不可分的
な固着を必要としないから、取付け面形状に左右される
ことなく振動検出が可能であり、また共振周波数のない
フラットな周波数特性の振動検出が可能である。特に、
磁界センサにMI素子を使用する場合は、MI素子が応
答の速い磁化の回転による円周方向の磁束変化を利用す
るものであるから、高速応答であり、超高周波の振動の
検出が可能となる。また、本発明に係る振動検出方法に
よれば、振動体自体に通電により磁界を発生させている
から、磁界センサ固定界面での振動吸収の問題が無く、
伝搬振動の高感度検出が可能となる。
In the non-contact vibration sensor according to the present invention, the magnetic field generating element only needs to be fixed to the vibrating body, and an integral and inseparable fixing that can transmit stress-strain like a piezoelectric conversion element is required. Therefore, vibration can be detected without being affected by the shape of the mounting surface, and vibration having a flat frequency characteristic without a resonance frequency can be detected. Especially,
When the MI element is used for the magnetic field sensor, the MI element utilizes a change in the magnetic flux in the circumferential direction due to the rotation of the fast-response magnetization, so that the response is high-speed and it is possible to detect an ultra-high frequency vibration. . In addition, according to the vibration detection method of the present invention, since a magnetic field is generated by energizing the vibrating body itself, there is no problem of vibration absorption at the magnetic field sensor fixed interface,
High-sensitivity detection of propagation vibration becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非接触式振動センサの一実施例を
示す図面である。
FIG. 1 is a drawing showing one embodiment of a non-contact vibration sensor according to the present invention.

【図2】図1の非接触式振動センサにおける通電導体の
磁界発生パタ−ンを示す図面である。
FIG. 2 is a view showing a magnetic field generation pattern of a current-carrying conductor in the non-contact vibration sensor of FIG.

【図3】本発明において使用する通電導体の別例の磁界
発生パタ−ンを示す図面である。
FIG. 3 is a diagram showing a magnetic field generation pattern of another example of a current-carrying conductor used in the present invention.

【図4】本発明に係る非接触式振動センサの別実施例を
示す図面である。
FIG. 4 is a drawing showing another embodiment of the non-contact vibration sensor according to the present invention.

【図5】図4の非接触式振動センサにおける磁石円盤の
磁界発生パタ−ンを示す図面である。
5 is a view showing a magnetic field generation pattern of a magnet disk in the non-contact vibration sensor of FIG.

【図6】本発明において使用する棒磁石の磁界発生パタ
−ンを示す図面である。
FIG. 6 is a view showing a magnetic field generation pattern of a bar magnet used in the present invention.

【図7】本発明に係る非接触式振動センサの上記とは異
なる実施例を示す図面である。
FIG. 7 is a drawing showing another embodiment of the non-contact vibration sensor according to the present invention.

【図8】本発明に係る非接触式振動センサの上記とは異
なる実施例を示す図面である。
FIG. 8 is a drawing showing another embodiment of the non-contact vibration sensor according to the present invention.

【符号の説明】[Explanation of symbols]

1 振動体 2 通電導体 20 円盤状磁石 200 棒磁石 3 磁界センサ DESCRIPTION OF SYMBOLS 1 Oscillator 2 Current-carrying conductor 20 Disc-shaped magnet 200 Bar magnet 3 Magnetic field sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】振動体に取付ける磁界発生素子と、前記振
動体とは非接触で配設する磁界センサとからなることを
特徴とする非接触式振動センサ。
1. A non-contact vibration sensor comprising: a magnetic field generating element attached to a vibrating body; and a magnetic field sensor disposed in non-contact with the vibrating body.
【請求項2】アモルファス磁性エレメントに電流を流し
該電流によりアモルファス磁性エレメント両端間に発生
する電圧を検出し上記エレメントの軸方向外部磁界を上
記検出電圧の変化から検出する磁気−インピ−ダンス素
子を磁界センサとして用いた請求項1記載の非接触式振
動センサ。
2. A magnetic-impedance element for flowing a current through an amorphous magnetic element, detecting a voltage generated between both ends of the amorphous magnetic element by the current, and detecting an axial external magnetic field of the element from a change in the detected voltage. 2. The non-contact vibration sensor according to claim 1, wherein the vibration sensor is used as a magnetic field sensor.
【請求項3】電流通電導体を磁界発生素子として用いた
請求項1または2記載の非接触式振動センサ。
3. The non-contact vibration sensor according to claim 1, wherein the current-carrying conductor is used as a magnetic field generating element.
【請求項4】永久磁石を磁界発生素子として用いた請求
項1または2記載の非接触式振動センサ。
4. The non-contact vibration sensor according to claim 1, wherein a permanent magnet is used as the magnetic field generating element.
【請求項5】振動体に電流を流して磁界を発生させ、前
記振動体とは非接触で配設した磁界センサの出力から前
記振動体の振動を検出することを特徴とする振動検出方
法。
5. A vibration detecting method comprising: flowing a current through a vibrating body to generate a magnetic field; and detecting the vibration of the vibrating body from an output of a magnetic field sensor disposed in non-contact with the vibrating body.
【請求項6】アモルファス磁性エレメントに電流を流し
該電流によりアモルファス磁性エレメント両端間に発生
する電圧を検出し上記エレメントの軸方向外部磁界を上
記検出電圧の変化から検出する磁気−インピ−ダンス素
子を磁界センサとして用いる請求項5記載の振動検出方
法。
6. A magnetic-impedance element for flowing a current through an amorphous magnetic element, detecting a voltage generated between both ends of the amorphous magnetic element by the current, and detecting an axial external magnetic field of the element from a change in the detected voltage. 6. The vibration detecting method according to claim 5, wherein the method is used as a magnetic field sensor.
JP14836398A 1998-05-13 1998-05-13 Non-contact vibration sensor Expired - Fee Related JP3936470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14836398A JP3936470B2 (en) 1998-05-13 1998-05-13 Non-contact vibration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14836398A JP3936470B2 (en) 1998-05-13 1998-05-13 Non-contact vibration sensor

Publications (2)

Publication Number Publication Date
JPH11326034A true JPH11326034A (en) 1999-11-26
JP3936470B2 JP3936470B2 (en) 2007-06-27

Family

ID=15451098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14836398A Expired - Fee Related JP3936470B2 (en) 1998-05-13 1998-05-13 Non-contact vibration sensor

Country Status (1)

Country Link
JP (1) JP3936470B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391315A (en) * 2002-07-26 2004-02-04 Innovision Res & Tech Plc Detection apparatus and detectable component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163827A (en) * 1981-04-02 1982-10-08 Tdk Corp Oscillation and shock detector
JPS61245002A (en) * 1985-04-22 1986-10-31 Kaneo Mori Non-contact type linear displacement sensor
JPS6438615A (en) * 1987-08-04 1989-02-08 Akai Electric Converter for mechanocardiogram
JPH03243833A (en) * 1990-02-21 1991-10-30 Omron Corp Vibration detector
JPH06283344A (en) * 1992-04-30 1994-10-07 Kaneo Mori Magnetic inductance element
JPH06281712A (en) * 1993-02-12 1994-10-07 Yuzo Yoshida Magnetic field sensor
JPH07181239A (en) * 1993-12-22 1995-07-21 Res Dev Corp Of Japan Magnetic impedance effect element
JPH0815002A (en) * 1994-06-30 1996-01-19 Tokin Corp Vibration sensor
JPH09145808A (en) * 1995-11-21 1997-06-06 Uchihashi Estec Co Ltd Magnetic sensor
JPH10115627A (en) * 1996-08-23 1998-05-06 Canon Electron Inc Method and device for detecting rotation of wheel, method and device for detecting rotation of tire and method for detecting member or rotation of tire
JPH10170355A (en) * 1996-12-06 1998-06-26 Kagaku Gijutsu Shinko Jigyodan High-sensitivity stress detecting apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163827A (en) * 1981-04-02 1982-10-08 Tdk Corp Oscillation and shock detector
JPS61245002A (en) * 1985-04-22 1986-10-31 Kaneo Mori Non-contact type linear displacement sensor
JPS6438615A (en) * 1987-08-04 1989-02-08 Akai Electric Converter for mechanocardiogram
JPH03243833A (en) * 1990-02-21 1991-10-30 Omron Corp Vibration detector
JPH06283344A (en) * 1992-04-30 1994-10-07 Kaneo Mori Magnetic inductance element
JPH06281712A (en) * 1993-02-12 1994-10-07 Yuzo Yoshida Magnetic field sensor
JPH07181239A (en) * 1993-12-22 1995-07-21 Res Dev Corp Of Japan Magnetic impedance effect element
JPH0815002A (en) * 1994-06-30 1996-01-19 Tokin Corp Vibration sensor
JPH09145808A (en) * 1995-11-21 1997-06-06 Uchihashi Estec Co Ltd Magnetic sensor
JPH10115627A (en) * 1996-08-23 1998-05-06 Canon Electron Inc Method and device for detecting rotation of wheel, method and device for detecting rotation of tire and method for detecting member or rotation of tire
JPH10170355A (en) * 1996-12-06 1998-06-26 Kagaku Gijutsu Shinko Jigyodan High-sensitivity stress detecting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391315A (en) * 2002-07-26 2004-02-04 Innovision Res & Tech Plc Detection apparatus and detectable component

Also Published As

Publication number Publication date
JP3936470B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
KR0139904B1 (en) Device for measuring a relative displacement
JP5839527B1 (en) Ultra-sensitive micro magnetic sensor
US4806859A (en) Resonant vibrating structures with driving sensing means for noncontacting position and pick up sensing
KR20010096553A (en) Magnetic field detection device
US4887032A (en) Resonant vibrating structure with electrically driven wire coil and vibration sensor
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
JPH09127218A (en) Magnetism detection element, magnetic sensor, geomagnetism detection-type direction sensor and sensor for attitude control
JPH10267667A (en) Vibration structure gyroscope
JP3645116B2 (en) Magneto-impedance effect micro magnetic sensor
JP2002169614A (en) Vehicle position sensing device
JPH11326034A (en) Noncontact type vibration sensor and vibration detecting method
JPS62184323A (en) Magneto-striction type torque sensor
JP2000284028A (en) Thin-film magnetic-substance mi element
JP3645553B2 (en) Strain sensor
CN215340279U (en) MEMS (micro-electromechanical system) magnetoresistive sensor
JP6370768B2 (en) Magnetic field detection sensor
JP3634281B2 (en) Magneto-impedance effect sensor
JPS6193907A (en) Angular-velocity sensor device
JP2001343438A (en) Magnetic sensor
JP2001027664A (en) Magnetic sensor
JP3607447B2 (en) Magnetic field sensor
JP2008045990A (en) Magnetic detection element and magnetic detection device
JP3752054B2 (en) Magnetic field detection method and magnetic sensor
JP3602235B2 (en) Magnetic sensor
JP4089985B2 (en) Multi-head magnetic field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees