JP3752061B2 - Magnetic field detection method - Google Patents

Magnetic field detection method Download PDF

Info

Publication number
JP3752061B2
JP3752061B2 JP18585297A JP18585297A JP3752061B2 JP 3752061 B2 JP3752061 B2 JP 3752061B2 JP 18585297 A JP18585297 A JP 18585297A JP 18585297 A JP18585297 A JP 18585297A JP 3752061 B2 JP3752061 B2 JP 3752061B2
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
amorphous
electrode
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18585297A
Other languages
Japanese (ja)
Other versions
JPH1114720A (en
Inventor
一実 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP18585297A priority Critical patent/JP3752061B2/en
Publication of JPH1114720A publication Critical patent/JPH1114720A/en
Application granted granted Critical
Publication of JP3752061B2 publication Critical patent/JP3752061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はアモルファス磁性エレメントを用いて外部磁界を検出する方法に関するものである。
【0002】
【従来の技術】
アモルファス合金ワイヤとして、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが開発されている。例えば、Co70.515Si10Fe4.5が開発されている。
【0003】
かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波電流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因し、従って、周方向透磁率μθも同外殻部の円周方向の磁化に依存する。
【0004】
この通電中のアモルファスワイヤにワイヤ軸方向の外部磁界を作用させると、上記通電による円周方向磁束と外部磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。
更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果を無視し得なくなり、表皮深さδ=(2ρ/wμθ)1/2(μθは前記した通り、円周方向透磁率、ρは電気抵抗率、wは角周波数)がμθにより変化し、このμθが前記した通り、外部磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も外部磁界で変動するようになる。
そこで、外部磁界による上記インダクタンス電圧分と抵抗電圧分の双方、すなわち、ワイヤ両端間出力電圧の変動(以下、外部磁界による出力電圧の変動をインピ−ダンス効果という)から外部磁界を検出することが提案されている(特開平7−181239号)。
【0005】
上記零磁歪乃至は負磁歪のアモルファス合金ワイヤのインピ−ダンス効果は、自発磁化の方向が正周方向の磁区と負周方向の磁区とが交互に位置してなる外殻部の磁区が、外部磁界によりある角度(α°)ずらされた周方向交流磁界により回転されて周方向透磁率μθが外部磁界で変化されること、及びその外部磁界で変化される周方向透磁率μθで表皮深さが変動されることとに依存し、上記ずれ角度α°の正負では差異が生じないから、上記ワイヤ軸方向の外部磁界の正負、すなわち+Hexと−Hexとでは出力に差は生じず、対称にパラメ−タ変化が生じる。
このため、バイアス磁界をかけ、線形特性にすることが知られている。
【0006】
【発明が解決しようとする課題】
上記磁界センサにおいては、アモルファス磁性エレメントと電極との電気的・機械的に安定な溶接が不可欠である。
而るに、その溶接には、溶融したアモルファス合金を冷却時、結晶化させないように(アモルファス状態を維持させるように)高度の技術を必要とし、汎用の電極材である銅との溶接は至難である。
そこで、本発明者はアモルファス合金との溶接が可能な材料を鋭意探求したところ、磁性材料の中に、アモルファス合金と比較的容易に溶接できるものが多いことを知った。
その溶接が容易な理由としては、磁性材がFe、Co、Cr等を多量に含み、アモルファス合金組成中の原子と共通する原子を多く含有することによると推定される。
【0007】
本発明の目的は、上記零磁歪乃至は負磁歪のアモルファス磁性ワイヤのバイアス磁界作用下でのインピ−ダンス効果を利用して外部磁界を検出する場合、磁界センサの電極にアモルファス磁性エレメントとの溶接が容易な磁性材を使用し、良好なリニア特性を保持しつつ充分に高感度で検出することを可能とする磁界の検出方法を提供することにある。
【0008】
【課題を解決するための手段】
本願の請求項1に係る磁界の検出方法は、アモルファス磁性エレメントを電極間に溶接し、該エレメントの近傍にコイルを配設した磁界センサのそのエレメントに電流を流し、上記コイルでバイアス磁界を作用させて、外部磁界を上記アモルファス磁性エレメントの両端間電圧の変化から検出する方法において、上記磁界センサの電極に磁性材電極を用い、上記バイアス磁界及び外部磁界による磁性材電極の磁化を抑制するように、該磁性材電極をその磁化に対し反極性で磁化することを特徴とする構成である。
【0009】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明において使用するリニア磁界センサの一例を示している。
図1において、1は絶縁基板、例えば、ガラスエポキシ基板、セラミックス基板等であり、その寸法は、縦及び横とも10mm以下である。2a,2bは磁性材からなる一対のバ−状電極であり、並行配置で先端側を絶縁基板1の片面側に固定してある。これらのバ−状電極2a,2bの後端部は絶縁基板1の外部に引出してある。3はバ−状電極の先端21a,21b間に溶接により接続したアモルファス磁性エレメントとしてのアモルファス磁性ワイヤであり、局在磁気に対する検出範囲を広くするために、一端部を一方の電極の先端21aからはみ出させてもよい。
このアモルファス磁性ワイヤ3には、自発磁化の方向がワイヤ周方向に対し互いに逆方向である磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤを使用してある。
4はアモルファス磁性エレメントの近傍に配設したバイアス磁界発生用コイルであり、発生磁界の方向をアモルファス磁性エレメントの軸方向に一致させるように絶縁基板上に配設してある。
【0010】
図2は請求項1に係る磁界の検出方法を説明するための図面であり、Hexは被検出外部磁界を、Hbはコイルによる発生磁界を示し、高周波電源5を電極2a,2b間に接続し、アモルファス磁性ワイヤ3に高周波電流を流し、ワイヤ両端間出力電圧V
を測定して行く。
図2において、電極が非磁性であると仮定すると、アモルファス磁性エレメント内を軸方向に通過する磁界としては、外部磁界とコイル発生磁界を想定すればよく、既述した通り、外部磁界により出力電圧に変動が生じるのは、自発磁化の方向が正周方向の磁区と負周方向の磁区とが交互に位置してなるアモルファス磁性ワイヤの外殻部の磁区が、外部磁界によりある角度(α°)ずらされた周方向交流磁界で回転されて周方向透磁率μθが外部磁界で変化されること、及びその外部磁界で変化される周方向透磁率μθで表皮深さが変動されること等によるのであり、上記ずれ角度α°の正負のみの相違では出力電圧に差異は生じず、従って、外部磁界が大きさが等しく正負方向のみが相違する場合、バイアス磁界が0であると、出力電圧に差異が生じず、リニア特性にはならない。
【0011】
これに対し、バイアス磁界Hbを作用させると、外部磁界(Hb+Hex)に対する出力電圧値と外部磁界(Hb−Hex)に対する出力電圧値とが相違するから、被検出外部磁界−Hexに対する出力電圧と被検出外部磁界+Hexに対する出力電圧とを異ならし得、被検出外部磁界の極性を判別でき、バイアス磁界Hbを適切に設定することにより、ある外部磁界の範囲内では、リニア特性にできる。
【0012】
ところで、請求項1に係る磁界の検出方法においては、磁界センサの電極に磁性材を使用しているから、上記コイルの発生磁界及び外部磁界による磁気誘導で電極が磁化され、この磁化に基づき磁界H’が発生し、上記アモルファス磁性エレメントを通過する磁界がHb+Hex+H’となる。
しかしながら、請求項1に係る発明においては、上記磁性材電極の磁化を見込み、この磁化と逆極性で予め磁性材電極を磁化して、上記外部磁界及びコイル発生磁界で磁性材電極の磁気分子が配向しても磁化しないようにしてあり、電極が磁化のない非磁性材である場合と同等のリニア特性、感度のもとで外部磁界を検出できる。
【0013】
上記のように、本発明によれば、磁界センサの電極に磁性材を使用しているにもかかわらず、コイルによるバイアス磁界の作用のもとで、電極が銅等の非磁性材である場合と同等のリニア特性、感度で外部磁界を検出できる。
従って、本発明によれば、磁界センサの磁性電極とアモルファス磁性エレメントとの電気的・機械的安定な溶接により、振動下等の過酷な環境のもとでも、外部磁界を良好なリニア特性、感度にて検出できる。
【0014】
上記磁性材には、実施例で使用したもの以外に、次ぎのような硬質磁性体や半硬質磁性体を使用できる。
(1)硬質磁性体
Fe、Co、Cr、Ni−Co合金(Co20重量%,Ni80重量%)、パ−マロイ(Fe10重量%,Ni90重量%)、スパ−マロイ(Fe50重量%,Ni50重量%)、コバ−ル(Co17〜18重量%,Ni28〜29重量%,残部Fe)。
(2)半硬質磁性体
17%Cr鋼(C0.7重量%,Cr2.5重量%,Co17重量%,残部Fe)、36%Co鋼(C0.7重量%,Cr4重量%,Co36重量%,残部Fe)、バイカロイ系合金(V10〜20重量%,Cr10〜20重量%,Co52重量%,残部Fe)、P−6合金(V4重量%,Co45重量%,Ni6重量%,残部Fe)Fe−Ni−Al合金(Al9重量%,Co微量,Cu微量,Ni14〜18重量%)、Fe−Mn−Ti合金(Ti3重量%,Mn12〜13重量%,残部Fe)、Fe−Mn合金(Mn12.5重量%,残部Fe)、Fe−Mn−Cr−N合金(N若干,Cr7重量%,Mn12重量%,Co若干,Mo若干,残部Fe)、マルエ−ジング鋼(Co0.01重量%,Al0.16重量%,Si0.1重量%,P0.007重量%,Ti19.7重量%,Mn0.18重量%,Co12.15重量%,Ni19.74重量%,Mo3.13重量%,残部Fe)、Fe−Cr−Co合金(Si1.5重量%,Cr25〜35重量%,Co10重量%,残部Fe)、Fe−Cr−Mo合金(Co12重量%,Mo8重量%,残部Fe)、Fe−Cr−Ni−Cr合金(Cr6〜9重量%,Co22重量%,Ni14〜11,残部Fe)、炭素鋼(C0.5重量%,残部Fe)、FNC合金(Ni16〜18重量%,Cu6重量%,残部Fe)、Fe−Mn−Co合金(Mn5〜10重量%,Co13〜20重量%,残部Fe)、Fe−Ni−Al−Ti合金(Al3〜4.5重量%,Ti若干,Ni14〜23重量%,残部Fe)、Fe−Co−Ni−Cr−Cu(Co20〜25重量%,Ni12重量%、Cr7〜5重量%,Cu3重量%,残部Fe)、リカロイ(Nb3.1重量%,残部Fe)、Fe−Co−Cu−V合金(V0.9重量%,Co16.3重量%,Cu20.9重量%,残部Fe)、Co−Cr鋼(C0.80〜0.84重量%,Cr4.4〜4.6重量%,Mn0.5〜0.6重量%,Co14〜15重量%,残部Fe)、Co−Fe−Au合金(Fe12重量%,Au6重量%,残部Co)、Co−Fe−Ti合金(Ti3重量%,Fe12重量%,残部Co)、Co−Fe−Be合金(Be1.3重量%,Fe10.2重量%,残部Co)、ニブコロイ(Fe12重量%,Nb3重量%,残部Co)、Fe−Cu合金(Fe60重量%,残部Cu)、Fe−Cu−Mn合金(Mn1.7重量%,Fe80重量%,残部Cu)等。
【0015】
上記アモルファス磁性エレメントとしては、上記アモルファス磁性ワイヤ以外に、基板上に真空蒸着やイオンスパッタリング等により形成したアモルファス磁性薄膜(厚み0.001〜5μm)を使用することもできる。
上記電極は、箔の貼着の外、金属箔積層絶縁基板の金属箔のエッチング、溶射、スパッタリング、蒸着、めっき等により形成できる。
【0016】
本発明において使用する磁界検出装置としては、上記磁界センサをインダクティブ素子とするコルピッツ発振回路を組立て、更に、外部磁界によるこの発振回路の振幅変調を復調する復調回路を接続したもの、出力電圧をフィルタ−に通して抵抗電圧成分に較べ立上りが鋭いインダクタンス電圧成分のみを取り出すもの等を使用できる。
【0017】
【実施例】
使用した磁界センサは次ぎの通りである。
図2において、絶縁基板1には厚み1.0mmセラミックス板を、アモルファス磁性ワイヤには、外径50μmのCo70.515Si10Fe4.5アモルファスワイヤを使用した。電極2a,2b各部の寸法は、a=5.0mm,b=6.0mm、c=10.30mm,d=0.5mm,e=0.3mm,f=0.3mm,g=0.5mm,h=2.3mmとした。バイアスコイルを巻いた外径0.5mmのチュ−ブをアモルファス磁性ワイヤに通し、ワイヤ各端と各電極とを溶接した。
電極には厚み0.1mmのJIS SK-4 表1の半硬質磁性材料(C0.90〜1.00、Si0.35以下、Mn0.50以下、P0.03以下、S0.03以下、Cu0.03以下、Ni0.25以下、Cr0.20以下、残部Fe)を使用した。
比較のため、電極に厚み0.1mmの銅箔を使用した磁界センサも製作したが、全く溶接不可能であったので、やむを得ずはんだ付けでアモルファス磁性ワイヤと電極とを接合した。
【0018】
磁界センサの電極とアモルファス磁性ワイヤとの溶接強度を評価するために、引張り試験を行ったところ、電極が半硬質磁性材料のものでは、アモルファス磁性ワイヤが破断するほど強固な溶接であったが、電極が銅箔のものでは溶接不可能であった。
図3は、磁界センサのアモルファスワイヤの通電電流を約10 mA ,約40 MHz 、外部磁界 Hex −0.8Oe〜+0.8Oe、バイアス磁界約0.5Oe(100m A で0.16Oeに相当)のもとでの出力特性を示している。
【0019】
【発明の効果】
本発明に係る磁界の検出方法によれば、バイアス磁界方式のアモルファス磁界センサの電極にアモルファス磁性エレメントとの強固な溶接を可能な磁性材を用いて従来と同等の特性で磁界検出でき、機械的に過酷な環境のもとでも安定な磁界検出が可能となる。
【図面の簡単な説明】
【図1】 本発明において使用するリニア磁界センサの一例を示す図面である。
【図2】 本発明に係る磁界の検出方法の説明に使用した図面である。
【図3】 本発明の実施例の感度特性を示す図表である。
【符号の説明】
1 絶縁基板
2a 磁性材電極
2b 磁性材電極
3 アモルファス磁性エレメント
4 バイアスコイル
5 高周波電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting an external magnetic field using an amorphous magnetic element.
[0002]
[Prior art]
As an amorphous alloy wire, an amorphous alloy wire having zero magnetostriction or negative magnetostriction has been developed, which has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are separated by a domain wall. Yes. For example, Co 70.5 B 15 Si 10 Fe 4.5 has been developed.
[0003]
The inductance voltage component in the output voltage between both ends of the wire generated when a high frequency current is applied to the zero magnetostrictive or negative magnetostrictive amorphous magnetic wire is easily increased in the circumferential direction by the circumferential magnetic flux generated in the cross section of the wire. This is due to the magnetized outer shell being magnetized in the circumferential direction, and therefore the circumferential permeability μθ also depends on the circumferential magnetization of the outer shell.
[0004]
When an external magnetic field in the wire axial direction is applied to the energized amorphous wire, a magnetic flux acting on the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by combining the circumferential magnetic flux and the external magnetic flux generated by the energization. Is deviated from the circumferential direction and magnetization in the circumferential direction is less likely to occur, the circumferential permeability μθ is changed, and the inductance voltage is changed.
Further, when the frequency of the energization current is in the order of MHz, the high frequency skin effect cannot be ignored, and the skin depth δ = (2ρ / wμθ) 1/2 (μθ is the circumferential permeability, as described above, (ρ is electrical resistivity, w is angular frequency) changes with μθ, and this μθ changes with the external magnetic field as described above, so the resistance voltage component in the output voltage across the wire also changes with the external magnetic field. .
Therefore, it is possible to detect the external magnetic field from both the inductance voltage and the resistance voltage due to the external magnetic field, that is, the fluctuation of the output voltage between both ends of the wire (hereinafter, the fluctuation of the output voltage due to the external magnetic field is referred to as the impedance effect). It has been proposed (Japanese Patent Laid-Open No. 7-181239).
[0005]
The impedance effect of the zero magnetostrictive or negative magnetostrictive amorphous alloy wire is that the magnetic domain of the outer shell portion in which the magnetic domains of the spontaneous magnetization are alternately located in the positive and negative circumferential directions is external Rotated by a circumferential AC magnetic field shifted by an angle (α °) by the magnetic field, the circumferential permeability μθ is changed by an external magnetic field, and the skin depth is changed by the circumferential permeability μθ changed by the external magnetic field Depending on the fluctuation of the angle, the difference between the positive and negative values of the deviation angle α ° does not produce a difference. Therefore, the output between the positive and negative external magnetic fields in the wire axis direction, that is, + Hex and -Hex does not produce a difference. A parameter change occurs.
For this reason, it is known to apply a bias magnetic field to obtain a linear characteristic.
[0006]
[Problems to be solved by the invention]
In the magnetic field sensor, an electrically and mechanically stable welding between the amorphous magnetic element and the electrode is indispensable.
Therefore, the welding requires advanced technology so as not to crystallize the molten amorphous alloy during cooling (to maintain the amorphous state), and welding with copper, which is a general-purpose electrode material, is extremely difficult. It is.
Therefore, the present inventors diligently searched for a material that can be welded to the amorphous alloy, and found that there are many magnetic materials that can be welded to the amorphous alloy relatively easily.
It is estimated that the reason why the welding is easy is that the magnetic material contains a large amount of Fe, Co, Cr and the like and contains many atoms in common with the atoms in the amorphous alloy composition.
[0007]
An object of the present invention is to weld an amorphous magnetic element to an electrode of a magnetic field sensor when an external magnetic field is detected using the impedance effect of the zero magnetic strain or negative magnetostrictive amorphous magnetic wire under the bias magnetic field action. It is an object of the present invention to provide a magnetic field detection method using a magnetic material that is easy to detect and capable of performing detection with sufficiently high sensitivity while maintaining good linear characteristics.
[0008]
[Means for Solving the Problems]
In the magnetic field detection method according to claim 1 of the present application, an amorphous magnetic element is welded between electrodes, a current is applied to the element of a magnetic field sensor in which a coil is disposed in the vicinity of the element, and a bias magnetic field is applied by the coil. Thus, in the method of detecting the external magnetic field from the change in the voltage across the amorphous magnetic element, a magnetic material electrode is used as the electrode of the magnetic field sensor, and the magnetization of the magnetic material electrode due to the bias magnetic field and the external magnetic field is suppressed. Further, the magnetic material electrode is magnetized with a polarity opposite to its magnetization.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a linear magnetic field sensor used in the present invention.
In FIG. 1, 1 is an insulating substrate, for example, a glass epoxy substrate, a ceramic substrate, etc., and the dimension is 10 mm or less in both length and width. Reference numerals 2a and 2b denote a pair of bar-shaped electrodes made of a magnetic material, and the tip side is fixed to one side of the insulating substrate 1 in parallel arrangement. The rear ends of these bar electrodes 2a and 2b are drawn out of the insulating substrate 1. Reference numeral 3 denotes an amorphous magnetic wire as an amorphous magnetic element connected by welding between the tip ends 21a and 21b of the bar-like electrode, and one end portion is extended from the tip end 21a of one electrode in order to widen the detection range for localized magnetism. It may be protruded.
This amorphous magnetic wire 3 has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by a domain wall, and an amorphous alloy wire having zero magnetostriction or negative magnetostriction. Is used.
Reference numeral 4 denotes a bias magnetic field generating coil disposed in the vicinity of the amorphous magnetic element, which is disposed on the insulating substrate so that the direction of the generated magnetic field coincides with the axial direction of the amorphous magnetic element.
[0010]
FIG. 2 is a diagram for explaining a magnetic field detection method according to claim 1, where Hex represents an external magnetic field to be detected, Hb represents a magnetic field generated by a coil, and a high-frequency power source 5 is connected between the electrodes 2 a and 2 b. A high-frequency current is passed through the amorphous magnetic wire 3 and the output voltage V across the wire
Go to measure.
In FIG. 2, assuming that the electrode is non-magnetic, the magnetic field passing through the amorphous magnetic element in the axial direction may be assumed to be an external magnetic field and a coil-generated magnetic field. The fluctuation occurs in the magnetic domain of the outer shell of the amorphous magnetic wire in which the direction of spontaneous magnetization and the magnetic domain in the negative circumferential direction are alternately positioned. ) Rotating with a shifted circumferential AC magnetic field to change the circumferential magnetic permeability μθ with an external magnetic field, and changing the skin depth with the circumferential magnetic permeability μθ changed with the external magnetic field Therefore, there is no difference in the output voltage when the difference of the deviation angle α ° is only positive and negative. Therefore, when the external magnetic field is the same in magnitude and only in the positive and negative directions, the output voltage becomes zero when the bias magnetic field is zero. The difference is Does not occur and does not have linear characteristics.
[0011]
On the other hand, when the bias magnetic field Hb is applied, the output voltage value for the external magnetic field (Hb + Hex) is different from the output voltage value for the external magnetic field (Hb−Hex). The output voltage with respect to the detected external magnetic field + Hex can be made different, the polarity of the detected external magnetic field can be discriminated, and the bias magnetic field Hb can be set appropriately to achieve linear characteristics within the range of a certain external magnetic field.
[0012]
By the way, in the magnetic field detection method according to the first aspect, since the magnetic material is used for the electrode of the magnetic field sensor, the electrode is magnetized by the magnetic induction generated by the coil and the external magnetic field, and the magnetic field is based on the magnetization. H ′ is generated, and the magnetic field passing through the amorphous magnetic element becomes Hb + Hex + H ′.
However, in the invention according to claim 1, the magnetization of the magnetic material electrode is anticipated, the magnetic material electrode is previously magnetized with the opposite polarity to the magnetization, and the magnetic molecules of the magnetic material electrode are caused to generate magnetic fields by the external magnetic field and the coil generation magnetic field. It is designed not to magnetize even if it is oriented, and an external magnetic field can be detected with the same linear characteristics and sensitivity as when the electrode is a non-magnetic material without magnetization.
[0013]
As described above, according to the present invention, when a magnetic material is used for the electrode of the magnetic field sensor, the electrode is a non-magnetic material such as copper under the action of a bias magnetic field by the coil. Can detect an external magnetic field with the same linear characteristics and sensitivity.
Therefore, according to the present invention, the external magnetic field is excellent in linear characteristics and sensitivity even under harsh environments such as under vibration due to stable electrical and mechanical welding between the magnetic electrode of the magnetic field sensor and the amorphous magnetic element. Can be detected.
[0014]
As the magnetic material, in addition to those used in the examples, the following hard magnetic materials and semi-hard magnetic materials can be used.
(1) Hard magnetic material Fe, Co, Cr, Ni—Co alloy (Co 20 wt%, Ni 80 wt%), permalloy (Fe 10 wt%, Ni 90 wt%), supermalloy (Fe 50 wt%, Ni 50 wt%) ), Kovar (Co 17-18 wt%, Ni 28-29 wt%, balance Fe).
(2) Semi-hard magnetic material 17% Cr steel (C 0.7 wt%, Cr 2.5 wt%, Co 17 wt%, balance Fe), 36% Co steel (C 0.7 wt%, Cr 4 wt%, Co 36 wt%) , Balance Fe), bicalloy alloy (V10-20 wt%, Cr10-20 wt%, Co52 wt%, balance Fe), P-6 alloy (V4 wt%, Co45 wt%, Ni6 wt%, balance Fe) Fe -Ni-Al alloy (Al 9 wt%, Co trace, Cu trace, Ni 14-18 wt%), Fe-Mn-Ti alloy (Ti 3 wt%, Mn 12-13 wt%, balance Fe), Fe-Mn alloy (Mn12 .5 wt%, balance Fe), Fe—Mn—Cr—N alloy (N slightly, Cr 7 wt%, Mn 12 wt%, Co slightly, Mo slightly, balance Fe), maraging steel (Co 0.01 wt%, Al 0.16 weight %, Si 0.1% by weight, P 0.007% by weight, Ti 19.7% by weight, Mn 0.18% by weight, Co 12.15% by weight, Ni 19.74% by weight, Mo 3.13% by weight, balance Fe), Fe- Cr—Co alloy (Si 1.5 wt%, Cr 25 to 35 wt%, Co 10 wt%, balance Fe), Fe—Cr—Mo alloy (Co 12 wt%, Mo 8 wt%, balance Fe), Fe—Cr—Ni— Cr alloy (Cr 6-9 wt%, Co 22 wt%, Ni 14-11, balance Fe), carbon steel (C 0.5 wt%, balance Fe), FNC alloy (Ni 16-18 wt%, Cu 6 wt%, balance Fe) Fe-Mn-Co alloy (Mn 5-10 wt%, Co 13-20 wt%, balance Fe), Fe-Ni-Al-Ti alloy (Al 3-4.5 wt%, Ti slightly, Ni 14-23 wt%, Remaining Fe) Fe—Co—Ni—Cr—Cu (Co 20 to 25 wt%, Ni 12 wt%, Cr 7 to 5 wt%, Cu 3 wt%, balance Fe), Licalloy (Nb 3.1 wt%, balance Fe), Fe—Co— Cu—V alloy (V 0.9 wt%, Co 16.3 wt%, Cu 20.9 wt%, balance Fe), Co—Cr steel (C 0.80 to 0.84 wt%, Cr 4.4 to 4.6 wt%) %, Mn 0.5 to 0.6 wt%, Co 14 to 15 wt%, balance Fe), Co—Fe—Au alloy (Fe 12 wt%, Au 6 wt%, balance Co), Co—Fe—Ti alloy (Ti 3 wt%) %, Fe 12 wt%, balance Co), Co—Fe—Be alloy (Be 1.3 wt%, Fe 10.2 wt%, balance Co), Nibucolloy (Fe 12 wt%, Nb 3 wt%, balance Co), Fe—Cu Alloy (Fe 60% by weight, balance u), Fe-Cu-Mn alloy (Mn 1.7 wt%, FE80 wt%, balance Cu) or the like.
[0015]
As the amorphous magnetic element, in addition to the amorphous magnetic wire, an amorphous magnetic thin film (thickness 0.001 to 5 μm) formed on a substrate by vacuum deposition, ion sputtering, or the like can be used.
The electrode can be formed by sticking the foil, etching, spraying, sputtering, vapor deposition, plating, or the like of the metal foil of the metal foil laminated insulating substrate.
[0016]
As a magnetic field detection device used in the present invention, a Colpitts oscillation circuit having the magnetic field sensor as an inductive element is assembled, and a demodulation circuit for demodulating the amplitude modulation of the oscillation circuit by an external magnetic field is connected. It is possible to use the one that extracts only the inductance voltage component having a sharp rise compared to the resistance voltage component through −.
[0017]
【Example】
The magnetic field sensors used are as follows.
In FIG. 2, a 1.0 mm thick ceramic plate was used for the insulating substrate 1 and a Co 70.5 B 15 Si 10 Fe 4.5 amorphous wire having an outer diameter of 50 μm was used for the amorphous magnetic wire. The dimensions of each part of the electrodes 2a and 2b are as follows: a = 5.0 mm, b = 6.0 mm, c = 10.30 mm, d = 0.5 mm, e = 0.3 mm, f = 0.3 mm, g = 0.5 mm H = 2.3 mm. A tube with an outer diameter of 0.5 mm wound with a bias coil was passed through the amorphous magnetic wire, and each end of the wire and each electrode were welded.
The electrode has a 0.1 mm thick JIS SK-4 semi-hard magnetic material of Table 1 (C 0.90 to 1.00, Si 0.35 or less, Mn 0.50 or less, P 0.03 or less, S 0.03 or less, Cu 0. 03 or less, Ni 0.25 or less, Cr 0.20 or less, and the balance Fe).
For comparison, a magnetic field sensor using a 0.1 mm thick copper foil as an electrode was also manufactured. However, since welding was impossible, the amorphous magnetic wire and the electrode were inevitably joined by soldering.
[0018]
In order to evaluate the welding strength between the magnetic field sensor electrode and the amorphous magnetic wire, a tensile test was performed. When the electrode was made of a semi-rigid magnetic material, the amorphous magnetic wire was strong enough to break. If the electrode was a copper foil, welding was impossible.
3, the magnetic field sensor energizing current of about 10 mA of amorphous wire, about 40 MHz, the external magnetic field Hex -0.8Oe~ + 0.8Oe, bias magnetic field of about 0.5 Oe (corresponding to 0.16Oe at 100 m A) The original output characteristics are shown.
[0019]
【The invention's effect】
According to the magnetic field detection method of the present invention, the magnetic field can be detected with the same characteristics as the conventional one using a magnetic material capable of being firmly welded to the amorphous magnetic element for the electrode of the bias magnetic field type amorphous magnetic field sensor. Even in harsh environments, stable magnetic field detection is possible.
[Brief description of the drawings]
FIG. 1 is a drawing showing an example of a linear magnetic field sensor used in the present invention.
FIG. 2 is a drawing used to explain a magnetic field detection method according to the present invention.
FIG. 3 is a chart showing sensitivity characteristics of an example of the present invention.
[Explanation of symbols]
1 Insulating substrate 2a Magnetic material electrode 2b Magnetic material electrode 3 Amorphous magnetic element 4 Bias coil 5 High frequency power supply

Claims (2)

アモルファス磁性エレメントを電極間に溶接し、該エレメントの近傍にコイルを配設した磁界センサのそのエレメントに電流を流し、上記コイルでバイアス磁界を作用させて、外部磁界を上記アモルファス磁性エレメントの両端間電圧の変化から検出する方法において、上記磁界センサの電極に磁性材電極を使用し、バイアス磁界及び外部磁界による磁性材電極の磁化を抑制するように、該電極をその磁化に対して反極性に磁化しておくことを特徴とする磁界の検出方法。 An amorphous magnetic element is welded between electrodes, a current is passed through the element of a magnetic field sensor in which a coil is disposed in the vicinity of the element, a bias magnetic field is applied by the coil, and an external magnetic field is applied between both ends of the amorphous magnetic element. In the method of detecting from a change in voltage, a magnetic material electrode is used as the electrode of the magnetic field sensor, and the electrode is made to have a polarity opposite to the magnetization so as to suppress the magnetization of the magnetic material electrode due to a bias magnetic field and an external magnetic field. A magnetic field detection method characterized by magnetizing. 磁性材電極が硬質磁性材料または半硬質磁性材料である請求項記載の磁界の検出方法。Magnetic field detection method according to claim 1, wherein the magnetic material electrode is a hard magnetic material or a semi-hard magnetic material.
JP18585297A 1997-06-26 1997-06-26 Magnetic field detection method Expired - Fee Related JP3752061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18585297A JP3752061B2 (en) 1997-06-26 1997-06-26 Magnetic field detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18585297A JP3752061B2 (en) 1997-06-26 1997-06-26 Magnetic field detection method

Publications (2)

Publication Number Publication Date
JPH1114720A JPH1114720A (en) 1999-01-22
JP3752061B2 true JP3752061B2 (en) 2006-03-08

Family

ID=16178015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18585297A Expired - Fee Related JP3752061B2 (en) 1997-06-26 1997-06-26 Magnetic field detection method

Country Status (1)

Country Link
JP (1) JP3752061B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856354B (en) * 2019-04-26 2024-01-19 中国科学院宁波材料技术与工程研究所 Magnetic sensor with wide range and high sensitivity, and preparation method and use method thereof

Also Published As

Publication number Publication date
JPH1114720A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
US6380735B1 (en) Orthogonal flux-gate type magnetic sensor
US4309655A (en) Measuring transformer
JPS63109338A (en) Device for electrically measuring torque in shaft indirectly in noncontact manner
JP2001281308A (en) Magnetic sensor and position detector
JP3431471B2 (en) Pulse signal generator
JP2001280908A (en) Position detector
JP4307695B2 (en) Magnetic detection device and magnetic field detection method
JP3752061B2 (en) Magnetic field detection method
KR20180016538A (en) Electromagnetic field measurement through frequency conversion
JP2002277522A (en) Magnetic field sensor
JP3777024B2 (en) Magnetic field detection method
JP2002022706A (en) Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JPS62184323A (en) Magneto-striction type torque sensor
JP2001041704A (en) Position detection device
JP3607447B2 (en) Magnetic field sensor
JPH02167478A (en) Current sensor
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP4089985B2 (en) Multi-head magnetic field sensor
JP4722717B2 (en) Current sensor
JP3752054B2 (en) Magnetic field detection method and magnetic sensor
Ishikawa et al. Torque sensor using perpendicularly magnetizing coils
JPH0476422B2 (en)
JP5241200B2 (en) Magnetic detection method
JP4619864B2 (en) Defect detection method for metal body and scanning magnetic detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees