JPH07181239A - Magnetic impedance effect element - Google Patents

Magnetic impedance effect element

Info

Publication number
JPH07181239A
JPH07181239A JP5323816A JP32381693A JPH07181239A JP H07181239 A JPH07181239 A JP H07181239A JP 5323816 A JP5323816 A JP 5323816A JP 32381693 A JP32381693 A JP 32381693A JP H07181239 A JPH07181239 A JP H07181239A
Authority
JP
Japan
Prior art keywords
magnetic
wire
magnetic line
magnetic wire
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5323816A
Other languages
Japanese (ja)
Other versions
JP3197414B2 (en
Inventor
Kaneo Mori
佳年雄 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP32381693A priority Critical patent/JP3197414B2/en
Publication of JPH07181239A publication Critical patent/JPH07181239A/en
Application granted granted Critical
Publication of JP3197414B2 publication Critical patent/JP3197414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain the same degree of sensitivity as a flux gage sensor in the same degree of minute size as a magnetic resistance element by making a high-frequency wave of time changing current of a magnetic element changed with an externally applied magnetic field. CONSTITUTION:Constitution is performed in that an electrical circuit allows alternating current iw to flow in a magnetic line, an external magnetic field (Hext) is applied from the parallel direction of the magnetic line and an amplitude of alternating voltage of both the ends of the magnetic line is measured. An electric resistor R is made a large resistant value of several times or more as large as impedance of the magnetic line and waveform of the current iw allowed to flow in the magnetic line is similarly equal to that of voltage eac of the alternating voltage. The magnetic line such as an amorphous magnetic line having magnetization facility magnetic line is used in a circumference direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、磁気インピーダンス
効果素子に関するものである。さらに詳しくは、この発
明は、オーディオテープレコーダ、ビデオテープレコー
ダ、コンピュータ、計測制御機器であるロータリエンコ
ーダ、数値制御機器の磁気スケールなどに用いられてい
る磁気ヘッドや各種の磁気センサ等として有用な磁気イ
ンピーダンス効果素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-impedance effect element. More specifically, the present invention is useful as a magnetic head and various magnetic sensors used in audio tape recorders, video tape recorders, computers, rotary encoders that are measurement control devices, magnetic scales of numerical control devices, and various magnetic sensors. The present invention relates to an impedance effect element.

【0002】[0002]

【従来の技術とその課題】マイクロエレクトロニクス技
術の発展にともなって、AV機器、コンピュータ、計測
制御機器、数値制御機器等の小型高性能化が急速に進ん
でいる。特にコンピュータ関連機器に関してはそれが顕
著であり、たとえば、コンピュータ用外部記憶媒体であ
るフロッピーディスクについてみると、直径が5インチ
のものから、さらに小型化が進み、今や2.8インチ時
代を迎えようとしている。また、ハードディスクでは1
インチ径のものに移行しようとしている。
2. Description of the Related Art With the development of microelectronics technology, miniaturization and high performance of AV equipments, computers, measurement control equipments, numerical control equipments, etc. are rapidly advancing. This is especially the case with computer-related equipment. For example, when it comes to floppy disks, which are external storage media for computers, those with a diameter of 5 inches are becoming smaller, and the 2.8-inch era will now be reached. I am trying. Also, for hard disks, 1
I am trying to shift to the inch diameter one.

【0003】しかしながら、これらの各機器を小型化す
るには、その心臓部である磁気ヘッドを小型化する必要
があるが、この磁気ヘッドの小型化は必ずしも容易では
なく、これを妨げる要因がある。ひとつの要因は、磁気
ヘッド自体の大きさの問題である。つまり、従来の磁気
ヘッドはコイルの巻線が必要であり、磁気ヘッド自体は
どうしても大型化してしまう。もうひとつは、検出感度
の問題である。つまり、小型化されると磁気ヘッドと記
憶媒体の相対速度が低下して検出速度が小さくなり、し
たがって、検出感度が著しく低下してしまうということ
である。
However, in order to miniaturize each of these devices, it is necessary to miniaturize the magnetic head, which is the heart of the equipment. However, miniaturization of the magnetic head is not always easy and there are factors that hinder this. . One factor is the size of the magnetic head itself. That is, the conventional magnetic head requires the winding of the coil, and the magnetic head itself inevitably becomes large. The other is the problem of detection sensitivity. In other words, when the size is reduced, the relative speed between the magnetic head and the storage medium is reduced and the detection speed is reduced, and therefore the detection sensitivity is significantly reduced.

【0004】そこで、最近になって、従来の磁気ヘッド
では検出電圧が不足してくるため、磁束の時間変化でな
く磁束そのものを検出する磁気抵抗素子をヘッドとして
使用する動きが見られるようになってきた。これによ
り、小型化が一層押し進められてきた。ところが、現在
の磁気抵抗素子は電気抵抗の変化率が最大6%以下と非
常に小さく、また、数%の磁気抵抗変化を生じさせるの
に必要な外部磁界は、20ガウス以上と大きい。このた
め、磁気抵抗感度は、0.1%/G以下の低感度であ
り、このため信号対雑音比(S/N比)も非常に悪い。
Therefore, recently, since the detection voltage becomes insufficient in the conventional magnetic head, there is a tendency to use a magnetoresistive element for detecting the magnetic flux itself as a head instead of the time change of the magnetic flux. Came. This has promoted further miniaturization. However, the current magnetoresistive element has a very small change rate of the electric resistance of 6% or less at the maximum, and the external magnetic field required to cause the change of the magnetic resistance of several% is as large as 20 gauss or more. Therefore, the magnetoresistive sensitivity is as low as 0.1% / G or less, and therefore the signal-to-noise ratio (S / N ratio) is also very poor.

【0005】従って、磁気抵抗素子はブリッジ回路で抵
抗変化のみを検出できるようにした上で着磁体に十分近
接させて用いる必要があるが、実際には、たとえば、ス
ピンドルモータなどのロータリエンコーダにおいては、
ギャップマージンが数十ミクロン程度しかなく、細かい
ゴミの侵入によってもモータが停止するといった故障が
生じ易い状態となっている。 このような磁気抵抗素子
に対し、最近になって、巨大磁気抵抗効果とよばれる現
象が磁性人工格子を用いる場合に見出されているが、こ
の場合には、実際のところ、数十%の電気抵抗変化を得
るのに数百ガウスもの大きな磁界が必要であり、さら
に、ヒステリシスの問題もあり、小型化を指向する製品
にはこの技術は適していない。
Therefore, it is necessary to use the magnetoresistive element in such a manner that only the resistance change can be detected by the bridge circuit and it is used sufficiently close to the magnetized body. However, in practice, for example, in a rotary encoder such as a spindle motor. ,
Since the gap margin is only about several tens of microns, the motor is likely to stop due to the intrusion of fine dust, which causes a failure. For such a magnetoresistive element, a phenomenon called a giant magnetoresistive effect has recently been found in the case where a magnetic artificial lattice is used. A large magnetic field of several hundred gauss is required to obtain the change in electric resistance, and there is a problem of hysteresis, and this technique is not suitable for products aiming at miniaturization.

【0006】そこで、このような従来の磁性抵抗素子や
巨大抵抗効果を用いた素子の欠点を克服することのでき
る新しい素子をこの発明の発明者はすでに提案してい
る。すなわち、まず、一般的に、磁性を持つ導線に交流
電流などの時間的に変化する電流を流すと、導線の両端
には二種類の電圧の和が現われる。それらは導線の電気
抵抗と電流との積による電圧と、円周磁束の時間変化に
よる電圧である。つまり、磁性線両端間の交流電圧ew
は一般に磁性線の電気抵抗Rによるオーミック電圧eR
=R・iw と磁性線円周方向磁束φθの時間変化dφθ
/dtによる誘電電圧eL =dφB /dtの2つの成分
の和 eW =eR +eL で表わせられる。通常後者の電圧は非常に小さいので、
この電圧を利用することは、現在まで工学的にほとんど
なかった。
Therefore, the inventor of the present invention has already proposed a new element capable of overcoming the drawbacks of the conventional magnetoresistive element and the element using the giant resistance effect. That is, generally, when a time-varying current such as an alternating current is passed through a magnetic conducting wire, a sum of two kinds of voltages appears at both ends of the conducting wire. They are the voltage due to the product of the electrical resistance of the conductor and the current, and the voltage due to the temporal change of the circumferential magnetic flux. That is, the AC voltage ew across the magnetic wire
Is generally the ohmic voltage eR due to the electrical resistance R of the magnetic wire
= R · iw and magnetic flux circumferential direction magnetic flux φθ change with time dφθ
The sum of the two components of the dielectric voltage eL = d.phi.B / dt due to / dt is represented by eW = eR + eL. The latter voltage is usually very small, so
Until now, there has been almost no engineering use of this voltage.

【0007】そこで、すでに発明者が提案した新しい素
子は、時間的に変化する電流を磁性線に印加することに
よって生じる円周磁束の時間変化に対する電圧のみを、
外部印加磁界による変化として検出することを基本的な
原理としている磁気インダクタンス素子である。この磁
気インダクタンス素子は、磁性線と、その磁性線の円周
磁束の時間変化に対する電圧のみを取出す電気抵抗回路
とからなる。図1はその磁気インダクタンス素子の例を
示したものである。この図1の回路内の磁性線として、
図2に示すように、FeCoSiB 等からなる零磁歪アモルフ
ァス細線等を折り曲げたものや直線状のものを用いるこ
ともできる。
Therefore, in the new element already proposed by the inventor, only the voltage with respect to the time change of the circumferential magnetic flux generated by applying a time-varying current to the magnetic wire,
It is a magnetic inductance element whose basic principle is to detect it as a change due to an externally applied magnetic field. This magnetic inductance element is composed of a magnetic wire and an electric resistance circuit that extracts only the voltage with respect to the time change of the circumferential magnetic flux of the magnetic wire. FIG. 1 shows an example of the magnetic inductance element. As the magnetic wire in the circuit of FIG. 1,
As shown in FIG. 2, a zero magnetostrictive amorphous thin wire made of FeCoSiB or the like may be bent or linear.

【0008】このような磁気インダクタンス素子内の回
路により、磁性線に交流電流などの時間的に変化する電
流(Iw)を印加し、電気抵抗分による電圧(オーミック
電圧)を相殺することでインダクタンス分電圧(eL )
を得ることができる。この磁気インダクタンス素子の磁
性線に、外部から、たとえば、永久磁石やその他の手段
で発生される一般的な直流磁界や交流磁界を印加するこ
とによって、eL の振幅 |eL | が減少し、外部印加磁界を検知することができる。
By the circuit in the magnetic inductance element as described above, a time-varying current (Iw) such as an alternating current is applied to the magnetic wire and the voltage (ohmic voltage) due to the electric resistance is canceled to cancel the inductance. Voltage (eL)
Can be obtained. By applying a general direct-current magnetic field or alternating-current magnetic field generated by, for example, a permanent magnet or other means to the magnetic wire of this magnetic inductance element from the outside, the amplitude | eL | of eL decreases and the external application A magnetic field can be detected.

【0009】この磁気インダクタンス素子において、た
とえば、磁性線としてFeCoSiB からなるas-cast の零磁
歪a−ワイヤを用い、磁性線に平行方向に印加した外部
磁界H1 と、ワイヤの長さを変化させて、各インダクタ
ンス分電圧eL の振幅 |eL | を測定すると、図3に示すようになる。
In this magnetic inductance element, for example, an as-cast zero magnetostrictive a-wire made of FeCoSiB is used as the magnetic wire, and the external magnetic field H1 applied in the direction parallel to the magnetic wire and the length of the wire are changed. When the amplitude | eL | of each inductance component voltage eL is measured, it becomes as shown in FIG.

【0010】この図3において、(a)はワイヤの長さ
が30mm、(b)はワイヤの長さが10mm、(c)はワ
イヤの長さが5mm、(d)はワイヤの長さが2mmの磁気
インダクタンス素子について、各 |eL | を測定したものである。
In FIG. 3, (a) shows a wire length of 30 mm, (b) shows a wire length of 10 mm, (c) shows a wire length of 5 mm, and (d) shows a wire length. Each | eL | was measured for a 2 mm magnetic inductance element.

【0011】たとえば、図3(a)に示したように、3
0mm長のa−ワイヤではH1 が約1(Oe) における |eL | は、H1 が0(Oe) における |eL0| に対して、約50%減少しており、従来のフラックスゲ
ート形磁界センサと同程度の高感度を示している。この
とき、ワイヤの長さ方向に対して垂直方向のH2を印加
すると |eL | はほとんど変化しない。すなわち、磁気インダクタンス
素子は強い指向性を持っており、被検出信号磁界のみを
選択的に検出するので方位センサなどに適用する場合、
S/N比は著しく高くなる。また、張力アニールを施し
たアモルファスワイヤでは1〜2mmの長さでも図3
(a)のような高感度の電圧変化特性も見出した。
For example, as shown in FIG.
In the 0 mm long a-wire, | eL | at H1 of about 1 (Oe) is about 50% less than that of | eL0 | at H1 of 0 (Oe), which is lower than that of the conventional fluxgate type magnetic field sensor. It shows the same high sensitivity. At this time, when H2 in the direction perpendicular to the length direction of the wire is applied, | eL | hardly changes. That is, since the magnetic inductance element has a strong directivity and selectively detects only the detected signal magnetic field, when applied to a direction sensor or the like,
The S / N ratio becomes extremely high. In addition, even if the amorphous wire subjected to tension annealing has a length of 1 to 2 mm,
The high-sensitivity voltage change characteristic as shown in (a) was also found.

【0012】しかしながら、その後のこの発明の発明者
の検討により、この新しい素子にも、改善すべき点が存
在することがわかってきた。それは、この磁気インダク
タンス素子においは、磁気抵抗素子を用いる場合と同様
にブリッジ回路という補償回路が必要であり、そのため
に小型化にはおのずと限界があったからである。また、
補償回路の調整に手間がかかり、操作性に難点があっ
た。
However, subsequent studies by the inventor of the present invention have revealed that this new device also has some points to be improved. This is because this magnetic inductance element requires a compensating circuit called a bridge circuit as in the case of using a magnetic resistance element, and therefore there was a natural limit to miniaturization. Also,
Adjustment of the compensation circuit was troublesome, and there was a difficulty in operability.

【0013】この発明は、以上の通りの事情に鑑みてな
されたものであり、従来の磁気抵抗素子の欠点を克服
し、磁気抵抗素子と同程度の微小寸法でフラックスゲー
トセンサと同程度の高感度をもつ新しいマイクロ磁気素
子を提供することを目的としている。
The present invention has been made in view of the circumstances as described above, overcomes the drawbacks of the conventional magnetoresistive element, and has a minute size comparable to that of the magnetoresistive element and a height comparable to that of the fluxgate sensor. The object is to provide a new micro magnetic element with sensitivity.

【0014】[0014]

【課題を解決するための手段】この発明は、上記の課題
を解決するための手段として、時間的に変化する電流を
磁性線に印加することによって生じる円周磁束の時間変
化に対する電圧を外部印加磁界によって変化させる磁気
素子において、時間的に変化する電流を高周波とする磁
気インピーダンス効果素子を提供する。
As a means for solving the above-mentioned problems, the present invention externally applies a voltage with respect to a time change of a circumferential magnetic flux generated by applying a time-varying current to a magnetic wire. Provided is a magneto-impedance effect element in which a time-varying current has a high frequency in a magnetic element changed by a magnetic field.

【0015】[0015]

【作用】つまり、この発明においは、従来の磁気インダ
クタンス素子における通電電流を高周波化することによ
り、ブリッジ回路を不要としたことに大きな特徴があ
る。例えば、図4はこの発明を実現するための最も単純
な電気回路であり、磁性線に交流電流iw を通電して、
磁性線の平行方向から外部磁界(Hext )を印加し、磁
性線の両端間の交流電圧の振幅|ew |を測定する構成
をなしている。
That is, the present invention is characterized in that the bridge circuit becomes unnecessary by increasing the frequency of the current flowing through the conventional magnetic inductance element. For example, FIG. 4 shows the simplest electric circuit for realizing the present invention, in which an alternating current iw is applied to a magnetic wire,
An external magnetic field (Hext) is applied from the direction parallel to the magnetic wire, and the amplitude | ew | of the AC voltage across the magnetic wire is measured.

【0016】この発明においては、例えば図4におい
て、電気抵抗Rに磁性線のインピーダンスの数倍以上の
大きな抵抗値を持たせ、磁性線に通電した交流電流iw
の波形が交流電圧源の電圧eacの波形にほぼ等しくなる
ようにすることが望ましい。この発明においては、磁性
線としてアモルファス磁性線を使用することを特徴とす
る磁気インピーダンス効果素子を用いてもよく、さら
に、そのアモルファス磁性線として、円周方向に磁化容
易方向をもつアモルファス磁性線を用いてもよい。また
さらに、そのアモルファス磁性線として、正磁歪をもつ
アモルファス磁性線には長さ方向に圧縮力、負磁歪をも
つアモルファス磁性線には長さ方向に張力を印加して熱
処理を施したアモルファス磁性線を用いてもよい。
In the present invention, for example, in FIG. 4, the electric resistance R is given a large resistance value which is several times or more the impedance of the magnetic wire, and the alternating current iw passed through the magnetic wire.
It is desirable that the waveform of is almost equal to the waveform of the voltage eac of the AC voltage source. In the present invention, a magneto-impedance effect element characterized by using an amorphous magnetic wire as the magnetic wire may be used. Furthermore, as the amorphous magnetic wire, an amorphous magnetic wire having an easy magnetization direction in the circumferential direction may be used. You may use. Further, as the amorphous magnetic wire, an amorphous magnetic wire having a positive magnetostriction is subjected to a heat treatment by applying a compressive force in the length direction and an amorphous magnetic wire having a negative magnetostriction is applied with a tension in the length direction. May be used.

【0017】以下実施例を示しさらに詳しくこの発明に
ついて説明する。
The present invention will be described in more detail with reference to the following examples.

【0018】[0018]

【実施例】【Example】

実施例1 実際にこの発明の磁気インピーダンス効果素子につい
て、アモルファス磁性線を高周波電流iw で通電励磁
し、外部磁界を印加した場合の、オーミック電圧er と
誘電圧eL との和ew の振幅|ew |の値を測定した。
Example 1 In the magneto-impedance effect element of the present invention, the amplitude | ew | The value of was measured.

【0019】例えば図5は、直径が30μm、長さ5.
5mmのアモルファス磁性線を100kHz以上のiw
で通電励磁し、Hext =0(Oe)と、Hext =10(Oe)
(800A/m)の外部磁界を印加した場合の、オーミ
ック電圧er と誘電圧eL との和ew の振幅|ew |の
値を示した結果である。この図5において、実線はHex
t =0(Oe)の場合、点線はHext =10(Oe)(800
A/m)の場合である。このアモルファス磁性線は、2
Kg/mm2の張力を印加し475℃、1min のアニールをア
ニールを施している。
For example, in FIG. 5, the diameter is 30 μm and the length is 5.
5mm amorphous magnetic wire with iw of 100kHz or more
Energized and excited at Hext = 0 (Oe) and Hext = 10 (Oe)
It is the result of showing the value of amplitude | ew | of sum ew of ohmic voltage er and dielectric pressure eL when an external magnetic field of (800 A / m) is applied. In FIG. 5, the solid line is Hex
When t = 0 (Oe), the dotted line is Hext = 10 (Oe) (800
A / m). This amorphous magnetic wire is 2
Annealing is performed for 1 min at 475 ° C. by applying a tension of Kg / mm 2 .

【0020】この図5に例示したように、|ew |のH
ext の印加による変化は、f>200kHzで出現し、
f=1〜2MHzでは、Hext =10(Oe)の外部磁界
を印加した場合、|ew |は約50%の減少を示してい
る。このような現象はこれまでの磁性体ではみられなか
った現象であり、とくにMR効果が小さい(1%以下)
アモルファス磁性線で現われたことはこれまでまったく
予想されなかったことである。 図6は図5のf=1M
Hz,iw =15mAにおける、iW ,ew(Hext =
0) およびew(Hext =10(Oe)) の波形の写真であ
る。この図6に例示したように、正弦波電流に対して、
eW(Hext =0) の波形は角のある波形であり、ew(H
ext =10(Oe)) の波形はiw の波形とほとんど同じで
ある。このew (Hert =0)の波形は正弦波から著し
くかけ離れた波形ではないのでew とiw を正弦波と考
えた場合、磁性線インピーダンスをZとすると|ew |
のHext に対する変化は|Z|の変化とみなすことがで
きる。従って、この発明の磁気素子を磁気インピーダン
ス効果素子(Magneto-Impencance素子;MI素子)と呼
ぶことにした。実施例2 この発明の磁気インピーダンス効果素子について、アモ
ルファス磁性線を高周波電流iw で通電励磁し、外部印
加磁界の変化と|ew |との関係である磁気インピーダ
ンス特性を調べた。
As illustrated in FIG. 5, H of | ew |
The change due to the application of ext appears at f> 200 kHz,
At f = 1 to 2 MHz, when an external magnetic field of Hext = 10 (Oe) is applied, | ew | shows a decrease of about 50%. Such a phenomenon is a phenomenon that has not been observed in magnetic materials up to now, and the MR effect is particularly small (1% or less).
The appearance of amorphous magnetic wires has never been expected. FIG. 6 shows f = 1M of FIG.
IW, ew (Hext = 15 Hz, iw = 15 mA)
0) and ew (Hext = 10 (Oe)). As illustrated in FIG. 6, for sinusoidal current,
The waveform of ew (Hext = 0) is a waveform with corners, and ew (H
The waveform of ext = 10 (Oe)) is almost the same as the waveform of iw. Since the waveform of ew (Hert = 0) is not a waveform that is significantly different from the sine wave, assuming that ew and iw are sine waves, assuming that the magnetic wire impedance is Z, then | ew |
Can be regarded as a change in | Z |. Therefore, the magnetic element of the present invention is called a magneto-impedance effect element (Magneto-Impencance element; MI element). Example 2 With respect to the magneto-impedance effect element of the present invention, the amorphous magnetic wire was energized and excited by the high frequency current iw, and the magneto-impedance characteristic which is the relationship between the change of the externally applied magnetic field and | ew | was investigated.

【0021】図7は実施例1で用いたアモルファス磁性
線の磁気インピーダンス特性であり、f=1MHzにお
いて、iw =7.5mAおよび15mAの場合を測定し
た結果である。この図7に例示したように、|ew |は
Hext =5(Oe)で約50%減少しており、例えば図2
に例示した交流電流を通電した磁性線に両端間の電圧を
検出するだけのもっとも単純な回路を用いても、従来の
フラックスゲートセンサに匹敵する非常に高感度の磁束
検出素子を得ることが可能である。実施例3 アモルファスの磁性線の径を変化させた場合のΔ|ew
|/|ew |の周波数特性を調べた。
FIG. 7 shows the magnetic impedance characteristics of the amorphous magnetic wire used in Example 1, which is the result of measurement at i = 1 = 7.5 mA and 15 mA at f = 1 MHz. As illustrated in FIG. 7, | ew | is reduced by about 50% at Hext = 5 (Oe).
Even with the simplest circuit that detects the voltage across both ends of a magnetic wire that has been energized with an alternating current, the extremely sensitive magnetic flux detection element comparable to conventional flux gate sensors can be obtained. Is. Example 3 Δ | ew when the diameter of the amorphous magnetic wire was changed
The frequency characteristic of | / | ew | was investigated.

【0022】図8は実施例1で用いたアモルファスの磁
性線を変化させた場合のΔ|ew |/|ew |の周波数
特性である。この図8に例示したように、124μm径
の磁性線および50μm径の磁性線では、それぞれf=
200KHzおよび600kHz近傍で変化率は最大を
示した。特に、50μm径の磁性線を用いた場合の変化
率は、この3つの中で最も大きくその値は約60%を示
した。
FIG. 8 shows the frequency characteristics of Δ | ew | / | ew | when the amorphous magnetic wire used in Example 1 was changed. As illustrated in FIG. 8, in the magnetic wire having a diameter of 124 μm and the magnetic wire having a diameter of 50 μm, f =
The maximum rate of change was shown near 200 kHz and 600 kHz. In particular, the rate of change when a magnetic wire with a diameter of 50 μm was used was the largest among these three values, and the value was about 60%.

【0023】この磁気インピーダンス効果の起源は図5
に示した2曲線から考察すると磁性線の内部インダクタ
ンスLi の変化と同時に磁性線の電気抵抗Rw が表皮効
果により変化するためと考えられる。すなわち、表皮効
果が強い場合(図5の実線ではf>200KHZ)には
インピーダンスZは、δを表皮厚さ、aを磁性線直径と
すると、
The origin of this magneto-impedance effect is shown in FIG.
Considering from the two curves shown in FIG. 2, it is considered that the electric resistance Rw of the magnetic wire changes due to the skin effect at the same time as the internal inductance Li of the magnetic wire changes. That is, when the skin effect is strong (f> 200 KHZ in the solid line of FIG. 5), the impedance Z is given by δ, where a is the skin thickness, and a is the diameter of the magnetic wire.

【0024】[0024]

【数1】 [Equation 1]

【0025】となり、Then,

【0026】[0026]

【数2】 [Equation 2]

【0027】(μ0 :円周透磁率)となるのでHexで
μ0 が減少し、|Z|が大幅に減少する。実施例4 この発明の磁気インピーダンス素子を磁界センサに用い
た。図9はMI素子・FET組合せによる共振型マルチ
バイブレータの例である。この共振型マルチバイブレー
タにおいては、30μm径1mm長の微細なアモルファス
磁性線を用いて、220MHzの自己発振を生じさせる
ことができ、±2(Oe)までの外部印加磁界において、
直線性の良好な磁界検出特性を得ることができた。共振
は磁性線のインダクタンスとFETのソース・ドレイン
間の内部キャパシタンスで生じている。この共振型マル
チバイブレータにおいては、消費電力は非常に小さく8
mWであった。
Since (μ 0 : circumferential magnetic permeability), μ 0 decreases with Hex, and | Z | significantly decreases. Example 4 The magnetic impedance element of the present invention was used for a magnetic field sensor. FIG. 9 shows an example of a resonance type multivibrator using a combination of MI element and FET. In this resonance type multivibrator, a fine amorphous magnetic wire with a diameter of 30 μm and a length of 1 mm can be used to generate self-oscillation of 220 MHz, and in an externally applied magnetic field of up to ± 2 (Oe),
It was possible to obtain magnetic field detection characteristics with good linearity. The resonance is caused by the inductance of the magnetic wire and the internal capacitance between the source and drain of the FET. In this resonance type multivibrator, the power consumption is very small.
It was mW.

【0028】このMI素子・FET組合せによる共振型
マルチバイブレータの基本的な構造となるMI素子の特
性は、例えば、図10に示した通りとなる。このMI素
子は2個のMI素子に互いに逆のバイアス直流磁界Hb
を印加して、各々のeW の差が外部印加磁界Hexに正比
例する。図11は図7の自己発振回路のMI素子にはH
b を印加せず、1個のMI素子の先端のみをフロッピー
ディスク駆動スピンドルモータのロータリエンコーダ用
30mm径512極着磁のリング磁石表面0.5mmの位置
に置いた場合の磁極磁界検出結果である。この場合磁極
間隔は150μmであった。磁気抵抗素子を用いた場合
の数倍のギャップマージンで明瞭な磁極磁界が検出され
た。
The characteristics of the MI element, which is the basic structure of the resonance type multivibrator by this MI element / FET combination, are as shown in FIG. 10, for example. This MI device has two biased DC magnetic fields Hb
Is applied, and the difference in each eW is directly proportional to the externally applied magnetic field Hex. FIG. 11 shows that the MI element of the self-oscillation circuit of FIG.
It is the magnetic pole magnetic field detection result when b is not applied and only the tip of one MI element is placed at the position of the ring magnet surface of the 30 mm diameter 512 pole magnetized ring magnet for the rotary encoder of the floppy disk drive spindle motor. . In this case, the magnetic pole spacing was 150 μm. A clear magnetic pole magnetic field was detected with a gap margin several times that when a magnetoresistive element was used.

【0029】[0029]

【発明の効果】以上詳しく説明した通り、この発明によ
って、通電電流を高周波化させることによって、ブリッ
ジ回路を用いる必要がなくなり、数ガウスの磁界で50
%以上のインピーダンス変化を得る非常に感度のよい小
型の磁気インピーダンス効果素子が提供される。さらに
このインピーダンス効果素子を用いることによって、非
常に感度がよく小型の磁気ヘッドが提供される。
As described above in detail, according to the present invention, by making the energizing current have a high frequency, it becomes unnecessary to use a bridge circuit, and a magnetic field of several Gauss can be applied.
Provided is a very sensitive and compact magneto-impedance effect element that obtains an impedance change of more than%. Further, by using this impedance effect element, a magnetic head having a very high sensitivity and a small size can be provided.

【0030】この発明の磁気インピーダンス効果素子を
例えば磁界センサに用いた場合、従来のホール素子の感
度を約100倍向上させることが可能であり、さらに、
ヘッドの使用温度は従来のホール素子の場合が70℃程
度で破壊されるのに対して、約200℃まで増大するこ
とが可能となる。 またさらに、この発明の磁気インピ
ーダンス効果素子をロータリエンコーダヘッドに用いる
と、従来のMR素子に対して約100倍以上の高感度を
実現し、ヘッドと磁石表面のギャップを0.5mm程度に
離すことができ、ごみの侵入による故障事故などをこと
が可能となる。この発明の磁気インピーダンス効果素子
を用いれば非常に小型の地磁気利用電子方位素子やマイ
クロマシン用のマイクロ磁気センサ、高感度の磁気探傷
センサアレイ、生体磁気センサなど各種の高感度マイク
ロ磁気センサが可能となる。
When the magneto-impedance effect element of the present invention is used in, for example, a magnetic field sensor, it is possible to improve the sensitivity of the conventional Hall element by about 100 times.
The operating temperature of the head can be increased up to about 200 ° C., whereas the conventional Hall element is destroyed at about 70 ° C. Furthermore, when the magneto-impedance effect element of the present invention is used in a rotary encoder head, a high sensitivity of about 100 times or more that of a conventional MR element is realized, and the gap between the head and the magnet surface is separated by about 0.5 mm. It is possible to prevent accidents due to the intrusion of dust. The use of the magneto-impedance effect element of the present invention enables various types of high-sensitivity micro-magnetic sensors such as very small geomagnetically utilizing electronic orientation elements, micro-magnetic sensors for micro-machines, high-sensitivity magnetic flaw detection sensor arrays, and bio-magnetic sensors. .

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の磁気インダクタンス素子を示した概略図
である。
FIG. 1 is a schematic view showing a conventional magnetic inductance element.

【図2】従来の磁気インダクタンス素子の磁性線を示し
た平面図である。
FIG. 2 is a plan view showing a magnetic wire of a conventional magnetic inductance element.

【図3】(a)(b)(c)(d)は、各々、従来の磁
気インダクタンス素子を用いた磁気インダクタンスの波
形を示した波形図である。
3 (a), (b), (c), and (d) are waveform charts each showing a waveform of a magnetic inductance using a conventional magnetic inductance element.

【図4】この発明の磁気インピーダンス素子を示した概
略図である。
FIG. 4 is a schematic diagram showing a magneto-impedance element of the present invention.

【図5】磁性線両端間の電圧と高周波電流の周波数との
関係を示した相関図である。
FIG. 5 is a correlation diagram showing the relationship between the voltage across the magnetic wire and the frequency of the high frequency current.

【図6】この発明における出力波形を示す波形図であ
る。
FIG. 6 is a waveform diagram showing an output waveform in the present invention.

【図7】磁性線両端間の電圧と外部印加磁界との関係を
示した相関図である。
FIG. 7 is a correlation diagram showing the relationship between the voltage across the magnetic wire and the externally applied magnetic field.

【図8】磁性線両端間の電圧の変化率と高周波電流周波
数との関係を示した相関図である。
FIG. 8 is a correlation diagram showing the relationship between the rate of change in voltage across the magnetic wire and the high frequency current frequency.

【図9】この発明の磁気インピーダンス素子を磁界セン
サに用いた場合の概略図である。
FIG. 9 is a schematic view when the magneto-impedance element of the present invention is used in a magnetic field sensor.

【図10】この発明の磁気インピーダンス素子を磁界セ
ンサに用いた場合の磁性線両端間の電圧と外部印加磁界
との関係を示した相関図である。
FIG. 10 is a correlation diagram showing the relationship between the voltage across the magnetic wire and the externally applied magnetic field when the magnetic impedance element of the present invention is used in a magnetic field sensor.

【図11】磁極磁界検出結果を示した波形図である。FIG. 11 is a waveform diagram showing a magnetic pole magnetic field detection result.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/153 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 1/153

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 時間的に変化する電流を磁性線に印加す
ることによって生じる円周磁束の時間変化に対する電圧
を、外部印加磁界によって変化させる磁気素子におい
て、印加電流を時間的に変化する電流を高周波とする磁
気インピーダンス効果素子。
1. A magnetic element for changing a voltage with respect to time change of a circumferential magnetic flux generated by applying a time-varying current to a magnetic wire by an externally applied magnetic field, Magneto-impedance effect element with high frequency.
【請求項2】 請求項1の磁性線が、アモルファス磁性
線である磁気インピーダンス効果素子。
2. The magneto-impedance effect element according to claim 1, wherein the magnetic wire is an amorphous magnetic wire.
【請求項3】 請求項2のアモルファス磁性線が、円周
方向に磁化容易方向をもつアモルファス磁性線である磁
気インピーダンス効果素子。
3. The magneto-impedance effect element according to claim 2, wherein the amorphous magnetic wire is an amorphous magnetic wire having an easy magnetization direction in a circumferential direction.
【請求項4】 請求項2または3のアモルファス磁性線
が、正磁歪をもつアモルファス磁性線としては長さ方向
に圧縮力、負磁歪をもつアモルファス磁性線としては長
さ方向に張力を印加して熱処理を施したアモルファス磁
性線である磁気インピーダンス効果素子。
4. The amorphous magnetic wire according to claim 2 or 3, wherein a compressive force is applied in the length direction as an amorphous magnetic wire having positive magnetostriction, and a tension is applied in the length direction as an amorphous magnetic wire having negative magnetostriction. A magneto-impedance effect element that is a heat-treated amorphous magnetic wire.
JP32381693A 1993-12-22 1993-12-22 Magnetic impedance effect element Expired - Lifetime JP3197414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32381693A JP3197414B2 (en) 1993-12-22 1993-12-22 Magnetic impedance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32381693A JP3197414B2 (en) 1993-12-22 1993-12-22 Magnetic impedance effect element

Publications (2)

Publication Number Publication Date
JPH07181239A true JPH07181239A (en) 1995-07-21
JP3197414B2 JP3197414B2 (en) 2001-08-13

Family

ID=18158926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32381693A Expired - Lifetime JP3197414B2 (en) 1993-12-22 1993-12-22 Magnetic impedance effect element

Country Status (1)

Country Link
JP (1) JP3197414B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773449A2 (en) * 1995-11-09 1997-05-14 Research Development Corporation Of Japan Magnetic field sensor
EP0777127A2 (en) * 1995-11-02 1997-06-04 Canon Denshi Kabushiki Kaisha Magnetism detecting device, magnetism sensor, terrestrial-magnetism detecting azimuth sensor, and attitude controlling sensor
EP0806762A2 (en) * 1996-05-10 1997-11-12 Canon Denshi Kabushiki Kaisha Magnetic head
JPH1010215A (en) * 1996-06-25 1998-01-16 Unitika Ltd Magnet impedance effect element
EP0828161A2 (en) * 1996-08-23 1998-03-11 Canon Denshi Kabushiki Kaisha Wheel revolution detection method and apparatus, tire revolution detection method and apparatus, and tire revolution speed detection method
JPH10162189A (en) * 1996-11-27 1998-06-19 Canon Electron Inc Coin discriminating device
JPH10170355A (en) * 1996-12-06 1998-06-26 Kagaku Gijutsu Shinko Jigyodan High-sensitivity stress detecting apparatus
JPH10234694A (en) * 1997-02-27 1998-09-08 Kagaku Gijutsu Shinko Jigyodan Method of and device for detecting position of brain tumor
JPH10300831A (en) * 1997-04-22 1998-11-13 Uchihashi Estec Co Ltd Magnetic sensor
JPH10334300A (en) * 1997-06-05 1998-12-18 Nippon Conlux Co Ltd Method and device for checking authentication of paper money
JPH1138108A (en) * 1997-07-17 1999-02-12 Uchihashi Estec Co Ltd Multihead magnetic field sensor
US5982175A (en) * 1996-06-11 1999-11-09 Japan Science And Technology Corporation Magnetic sensor with CMOS multivibrator
JPH11326034A (en) * 1998-05-13 1999-11-26 Uchihashi Estec Co Ltd Noncontact type vibration sensor and vibration detecting method
US5994899A (en) * 1995-09-14 1999-11-30 Research Development Corporation Of Japan Asymmetrical magneto-impedance element having a thin magnetic wire with a spiral magnetic anisotropy
EP0977015A2 (en) * 1998-07-28 2000-02-02 Canon Denshi Kabushiki Kaisha Magnetic sensor, signal processing method for magnetic sensors, and detecting apparatus
US6098468A (en) * 1997-09-29 2000-08-08 Toyota Jidosha Kabushiki Kaisha Torque measuring device by integral shaft based upon inverse magnetostriction
US6111407A (en) * 1997-02-26 2000-08-29 Securiton General Control Systems Gesellschaft M.B.H. Method of producing a magnetic field sensor, and sensor with a sensor wire press-fitted into spaced-apart conductors
US6121770A (en) * 1997-07-14 2000-09-19 Frontec Incorporated Magnetic sensor using magnetic impedance of magnetic wire within biasing coil
US6183889B1 (en) 1997-08-28 2001-02-06 Alps Electric Co., Ltd. Magneto-impedance element, and magnetic head, thin film magnetic head, azimuth sensor and autocanceler using the same
US6229307B1 (en) 1998-08-12 2001-05-08 Minebea Co., Ltd. Magnetic sensor
US6239594B1 (en) 1998-09-25 2001-05-29 Alps Electric Co., Ltd. Mageto-impedance effect element
JP2001174473A (en) * 1999-12-16 2001-06-29 Japan Science & Technology Corp Motor vehicle traffic measuring device
US6380735B1 (en) 1999-04-30 2002-04-30 Sumitomo Special Metals Co., Ltd. Orthogonal flux-gate type magnetic sensor
JP2002169614A (en) * 2000-11-30 2002-06-14 Aichi Steel Works Ltd Vehicle position sensing device
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
JP2002289940A (en) * 2001-03-28 2002-10-04 Uchihashi Estec Co Ltd Magnetic impedance effect sensor
US6472868B1 (en) 1998-08-05 2002-10-29 Minebea Co., Ltd. Magnetic impedance element having at least two thin film-magnetic cores
JP2003322640A (en) * 2002-05-07 2003-11-14 Nippon Steel Corp Surface scratch detecting apparatus for steel material
JP2004125640A (en) * 2002-10-03 2004-04-22 Uchihashi Estec Co Ltd Magnetic field detection circuit
KR100743384B1 (en) * 2003-07-18 2007-07-30 아이치 세이코우 가부시키가이샤 Three-dimensional magnetic bearing sensor and magneto-impedance sensor element
JP2007205888A (en) * 2006-02-02 2007-08-16 Uchihashi Estec Co Ltd Inspection method of iron-based structure, and magnetic impedance effect sensor
JP2008530541A (en) * 2005-02-08 2008-08-07 コンティネンタル オートモーティヴ フランス Use of magneto-impedance in non-contact position sensors and related sensors
JP2008224650A (en) * 2007-03-14 2008-09-25 Aichi Micro Intelligent Corp Elevated road traveling detection system
WO2009119081A1 (en) 2008-03-28 2009-10-01 愛知製鋼株式会社 Magneto-sensitive wire, magneto-impedance element and magneto-impedance sensor
WO2009154096A1 (en) 2008-06-16 2009-12-23 独立行政法人石油天然ガス・金属鉱物資源機構 Underground electromagnetic exploration method
WO2009154095A1 (en) 2008-06-16 2009-12-23 独立行政法人石油天然ガス・金属鉱物資源機構 Magnetic field sensor device
JP2011064607A (en) * 2009-09-18 2011-03-31 Hioki Ee Corp Magnetic detection sensor
EP2423697A1 (en) * 2009-04-23 2012-02-29 Aichi Steel Corporation Ultra-sensitive magnetoimpedance sensor
JP2013044561A (en) * 2011-08-22 2013-03-04 Hioki Ee Corp Magnetic field detecting apparatus
JP2016183903A (en) * 2015-03-26 2016-10-20 愛知製鋼株式会社 Magnetic impedance sensor
JP2018081057A (en) * 2016-11-18 2018-05-24 矢崎総業株式会社 Magnetic-field detection sensor
JPWO2017213127A1 (en) * 2016-06-08 2019-07-11 国立大学法人 東京医科歯科大学 Muscle activity measuring device and muscle activity measuring method
CN114061434A (en) * 2021-11-15 2022-02-18 浙江大学 Structural health monitoring system and method for magnetic fiber composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839527B1 (en) 2015-02-16 2016-01-06 マグネデザイン株式会社 Ultra-sensitive micro magnetic sensor

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5994899A (en) * 1995-09-14 1999-11-30 Research Development Corporation Of Japan Asymmetrical magneto-impedance element having a thin magnetic wire with a spiral magnetic anisotropy
EP0777127A2 (en) * 1995-11-02 1997-06-04 Canon Denshi Kabushiki Kaisha Magnetism detecting device, magnetism sensor, terrestrial-magnetism detecting azimuth sensor, and attitude controlling sensor
EP0777127A3 (en) * 1995-11-02 1999-08-18 Canon Denshi Kabushiki Kaisha Magnetism detecting device, magnetism sensor, terrestrial-magnetism detecting azimuth sensor, and attitude controlling sensor
EP0773449A2 (en) * 1995-11-09 1997-05-14 Research Development Corporation Of Japan Magnetic field sensor
JPH09133742A (en) * 1995-11-09 1997-05-20 Kagaku Gijutsu Shinko Jigyodan Magnetic field sensor
EP0773449A3 (en) * 1995-11-09 1998-11-25 Research Development Corporation Of Japan Magnetic field sensor
US5831432A (en) * 1995-11-09 1998-11-03 Research Development Corporation Of Japan Differential magneto-impedance magnetic field sensor
EP0806762A2 (en) * 1996-05-10 1997-11-12 Canon Denshi Kabushiki Kaisha Magnetic head
JPH1027317A (en) * 1996-05-10 1998-01-27 Canon Electron Inc Magnetic head
US5903414A (en) * 1996-05-10 1999-05-11 Canon Denshi Kabushiki Kaisha Magnetic head utilizing magnetic impedance effect
EP0806762A3 (en) * 1996-05-10 1998-07-08 Canon Denshi Kabushiki Kaisha Magnetic head
US5982175A (en) * 1996-06-11 1999-11-09 Japan Science And Technology Corporation Magnetic sensor with CMOS multivibrator
JPH1010215A (en) * 1996-06-25 1998-01-16 Unitika Ltd Magnet impedance effect element
US6246226B1 (en) 1996-08-23 2001-06-12 Canon Kabushiki Kaisha Method and apparatus for detecting tire revolution using magnetic field
EP0828161A3 (en) * 1996-08-23 1998-12-16 Canon Denshi Kabushiki Kaisha Wheel revolution detection method and apparatus, tire revolution detection method and apparatus, and tire revolution speed detection method
US6232767B1 (en) 1996-08-23 2001-05-15 Canon Kabushiki Kaisha Method and apparatus for detecting wheel revolution using magnetic field
EP0828161A2 (en) * 1996-08-23 1998-03-11 Canon Denshi Kabushiki Kaisha Wheel revolution detection method and apparatus, tire revolution detection method and apparatus, and tire revolution speed detection method
JPH10162189A (en) * 1996-11-27 1998-06-19 Canon Electron Inc Coin discriminating device
JPH10170355A (en) * 1996-12-06 1998-06-26 Kagaku Gijutsu Shinko Jigyodan High-sensitivity stress detecting apparatus
US6111407A (en) * 1997-02-26 2000-08-29 Securiton General Control Systems Gesellschaft M.B.H. Method of producing a magnetic field sensor, and sensor with a sensor wire press-fitted into spaced-apart conductors
JPH10234694A (en) * 1997-02-27 1998-09-08 Kagaku Gijutsu Shinko Jigyodan Method of and device for detecting position of brain tumor
JPH10300831A (en) * 1997-04-22 1998-11-13 Uchihashi Estec Co Ltd Magnetic sensor
JPH10334300A (en) * 1997-06-05 1998-12-18 Nippon Conlux Co Ltd Method and device for checking authentication of paper money
US6121770A (en) * 1997-07-14 2000-09-19 Frontec Incorporated Magnetic sensor using magnetic impedance of magnetic wire within biasing coil
JPH1138108A (en) * 1997-07-17 1999-02-12 Uchihashi Estec Co Ltd Multihead magnetic field sensor
US6183889B1 (en) 1997-08-28 2001-02-06 Alps Electric Co., Ltd. Magneto-impedance element, and magnetic head, thin film magnetic head, azimuth sensor and autocanceler using the same
US6098468A (en) * 1997-09-29 2000-08-08 Toyota Jidosha Kabushiki Kaisha Torque measuring device by integral shaft based upon inverse magnetostriction
JPH11326034A (en) * 1998-05-13 1999-11-26 Uchihashi Estec Co Ltd Noncontact type vibration sensor and vibration detecting method
EP0977015A2 (en) * 1998-07-28 2000-02-02 Canon Denshi Kabushiki Kaisha Magnetic sensor, signal processing method for magnetic sensors, and detecting apparatus
EP0977015A3 (en) * 1998-07-28 2006-03-01 Canon Denshi Kabushiki Kaisha Magnetic sensor, signal processing method for magnetic sensors, and detecting apparatus
US6472868B1 (en) 1998-08-05 2002-10-29 Minebea Co., Ltd. Magnetic impedance element having at least two thin film-magnetic cores
US6650112B2 (en) 1998-08-05 2003-11-18 Minebea Co., Ltd. Magnetics impedance element having a thin film magnetics core
US6229307B1 (en) 1998-08-12 2001-05-08 Minebea Co., Ltd. Magnetic sensor
US6239594B1 (en) 1998-09-25 2001-05-29 Alps Electric Co., Ltd. Mageto-impedance effect element
US6380735B1 (en) 1999-04-30 2002-04-30 Sumitomo Special Metals Co., Ltd. Orthogonal flux-gate type magnetic sensor
US6715198B2 (en) 1999-04-30 2004-04-06 Sumitomo Special Metals Co., Ltd. Method of manufacturing a magnetic sensor
JP2001174473A (en) * 1999-12-16 2001-06-29 Japan Science & Technology Corp Motor vehicle traffic measuring device
JP2002169614A (en) * 2000-11-30 2002-06-14 Aichi Steel Works Ltd Vehicle position sensing device
JP2002252115A (en) * 2001-02-26 2002-09-06 Alps Electric Co Ltd Impedance element and its manufacturing method
JP2002289940A (en) * 2001-03-28 2002-10-04 Uchihashi Estec Co Ltd Magnetic impedance effect sensor
JP2003322640A (en) * 2002-05-07 2003-11-14 Nippon Steel Corp Surface scratch detecting apparatus for steel material
JP2004125640A (en) * 2002-10-03 2004-04-22 Uchihashi Estec Co Ltd Magnetic field detection circuit
KR100743384B1 (en) * 2003-07-18 2007-07-30 아이치 세이코우 가부시키가이샤 Three-dimensional magnetic bearing sensor and magneto-impedance sensor element
US7298140B2 (en) 2003-07-18 2007-11-20 Aichi Steel Corporation Three-dimensional magnetic direction sensor, and magneto-impedance sensor element
JP2008530541A (en) * 2005-02-08 2008-08-07 コンティネンタル オートモーティヴ フランス Use of magneto-impedance in non-contact position sensors and related sensors
JP2007205888A (en) * 2006-02-02 2007-08-16 Uchihashi Estec Co Ltd Inspection method of iron-based structure, and magnetic impedance effect sensor
JP2008224650A (en) * 2007-03-14 2008-09-25 Aichi Micro Intelligent Corp Elevated road traveling detection system
WO2009119081A1 (en) 2008-03-28 2009-10-01 愛知製鋼株式会社 Magneto-sensitive wire, magneto-impedance element and magneto-impedance sensor
US8610427B2 (en) 2008-03-28 2013-12-17 Aichi Steel Corporation Magneto-sensitive wire, magneto-impedance element and magneto-impedance sensor
WO2009154096A1 (en) 2008-06-16 2009-12-23 独立行政法人石油天然ガス・金属鉱物資源機構 Underground electromagnetic exploration method
US8581593B2 (en) 2008-06-16 2013-11-12 Japan Oil, Gas And Metals National Corporation Underground electromagnetic exploration method
US8610429B2 (en) 2008-06-16 2013-12-17 Japan Oil, Gas And Metals National Corporation Magnetic field sensor device
WO2009154095A1 (en) 2008-06-16 2009-12-23 独立行政法人石油天然ガス・金属鉱物資源機構 Magnetic field sensor device
EP2423697A4 (en) * 2009-04-23 2014-04-02 Aichi Steel Corp Ultra-sensitive magnetoimpedance sensor
EP2423697A1 (en) * 2009-04-23 2012-02-29 Aichi Steel Corporation Ultra-sensitive magnetoimpedance sensor
JP2011064607A (en) * 2009-09-18 2011-03-31 Hioki Ee Corp Magnetic detection sensor
JP2013044561A (en) * 2011-08-22 2013-03-04 Hioki Ee Corp Magnetic field detecting apparatus
JP2016183903A (en) * 2015-03-26 2016-10-20 愛知製鋼株式会社 Magnetic impedance sensor
US10120040B2 (en) 2015-03-26 2018-11-06 Aichi Steel Corporation Magnetic impedance sensor
JPWO2017213127A1 (en) * 2016-06-08 2019-07-11 国立大学法人 東京医科歯科大学 Muscle activity measuring device and muscle activity measuring method
US11412945B2 (en) 2016-06-08 2022-08-16 National University Corporation Tokyo Medical And Dental University Muscle activity measurement device and muscle activity measurement method
JP2018081057A (en) * 2016-11-18 2018-05-24 矢崎総業株式会社 Magnetic-field detection sensor
CN114061434A (en) * 2021-11-15 2022-02-18 浙江大学 Structural health monitoring system and method for magnetic fiber composite material

Also Published As

Publication number Publication date
JP3197414B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JPH07181239A (en) Magnetic impedance effect element
JP3091398B2 (en) Magnetic-impedance element and method of manufacturing the same
Mohri et al. Magneto-impedance element
Mohri et al. Sensitive and quick response micro magnetic sensor utilizing magneto-impedance in Co-rich amorphous wires
JP2000055999A (en) Magnetic sensor device and current sensor device
JP2785839B2 (en) Soft magnetic film bias type magnetoresistive sensor
JP3645116B2 (en) Magneto-impedance effect micro magnetic sensor
US5708407A (en) Current sensor comprising a magnetoresistive tape and its production process
JPH0875835A (en) Magnetic impedance element and magnetic detection circuit
JP4565072B2 (en) Magnetic field sensor
US7271587B2 (en) High resolution and low power magnetometer using magnetoresistive sensors
JP4209114B2 (en) Magnetic field sensor
JP3272423B2 (en) Method of manufacturing magnetic inductance element, magnetic inductance element, magnetic field sensor, and magnetic switch hybrid IC device
JP3272397B2 (en) Magnetic inductance element
JP2001281313A (en) Magnetic field sensor, magnetic encoder using it, and magnetic head
JP3764834B2 (en) Current sensor and current detection device
JP4418986B2 (en) Magnetic field detection element and magnetic field detection method using the same
JP2000055998A (en) Magnetic sensor device and current sensor device
JP3341036B2 (en) Magnetic sensor
Takayama et al. Integrated thin film magneto-impedance sensor head using plating process
JP4026050B2 (en) Magnetic field detection element
JP3639727B2 (en) Magnetic sensor
JP4233161B2 (en) Magnetic sensor
Ueda et al. AC bias type magnetoresistive sensor
JP3607447B2 (en) Magnetic field sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

EXPY Cancellation because of completion of term