JPH11322425A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH11322425A
JPH11322425A JP10139616A JP13961698A JPH11322425A JP H11322425 A JPH11322425 A JP H11322425A JP 10139616 A JP10139616 A JP 10139616A JP 13961698 A JP13961698 A JP 13961698A JP H11322425 A JPH11322425 A JP H11322425A
Authority
JP
Japan
Prior art keywords
dielectric
composition
mol
temperature
dielectric porcelain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10139616A
Other languages
Japanese (ja)
Inventor
Kazuya Akiyama
和也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10139616A priority Critical patent/JPH11322425A/en
Publication of JPH11322425A publication Critical patent/JPH11322425A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric porcelain composition having a high relative dielectric constant εr , in which a temperature factor τf of a resonance frequency is as close to zero as possible and having great Q×f value, and furthermore which can be simultaneously sintered even if low melting temperature Au, Ag, Cu and their alloy or the like are used for an inner electrode material. SOLUTION: The objective composition is expressed by the formula aBiO3/2 -b(Sr1-x-y Mgx Bay )O-cNbO5/2 (wherein unit of (a), (b) and (c) is mol.%) and is in a range of 41.0<=a<=51.0, 17.0<=b<=25.0, 29.0<=c<=39.0 (a+b+c=100 mol.%), 0<=x<=0.4 and 0<=y<=0.4. At least one oxide selected from B2 O3 , SiO2 , GeO2 and SnO2 is preferably added <=2.0 pts.wt. to the dielectric porcelain component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主にマイクロ波帯
域用の通信や放送機器に使用される誘電体磁器組成物に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition mainly used for communication and broadcasting equipment for a microwave band.

【0002】[0002]

【従来の技術】近年、通信技術の進歩により、自動車電
話や携帯電話、PHSなどの移動体通信システム,GP
S(Global Positioning System )が急速に普及してい
る。そのため通信に利用される周波数帯域が拡大し、マ
イクロ波帯域での利用が盛んになっている。古くは、こ
のマイクロ波帯域で使用される回路には、空洞共振器,
アンテナ等が用いられていた。しかし、これら部品は、
マイクロ波の波長と同程度の大きさになるため、自動車
用電話機,携帯電話機,小型GPS装置等に適用できる
ような部品の小型化は不可能であつた。
2. Description of the Related Art In recent years, with the progress of communication technology, mobile communication systems such as car phones, mobile phones, and PHS,
S (Global Positioning System) is rapidly spreading. For this reason, the frequency band used for communication has been expanded, and the use in the microwave band has become active. Traditionally, circuits used in this microwave band include cavity resonators,
Antennas and the like were used. However, these parts
Since the size is about the same as the wavelength of microwaves, it has not been possible to reduce the size of components that can be applied to automobile telephones, mobile telephones, small GPS devices, and the like.

【0003】これに対し、近年マイクロ波フィルタや発
信器の周波数安定化回路に誘電体共振器を用いることに
よつて、回路部品の小型化が盛んにおこなわれ、一般化
しつつある。このような誘電体共振器に用いられる誘電
体材料の要求特性は、使用周波数帯域における比誘電率
εr が大きいこと、共振周波数の温度係数τf ができる
だけ零に近いこと、マイクロ波帯域での誘電損失tan
δ(=1/Q)が小さいことが挙げられる。尚、マイク
ロ波帯域での誘電損失tanδの大小は、一般的にQ×
fの形で表現される(fはそのときの共振周波数)。そ
のため、以下Q×fの表現を用いる。
On the other hand, in recent years, the use of dielectric resonators in microwave filters and frequency stabilizing circuits of oscillators has made vigorous miniaturization of circuit components and is becoming popular. Required characteristics of the dielectric material used in such a dielectric resonator, relative dielectric constant epsilon r in the use frequency band is large, the temperature coefficient tau f of resonance frequency is as close as possible to zero, in the microwave band Dielectric loss tan
δ (= 1 / Q) is small. Incidentally, the magnitude of the dielectric loss tan δ in the microwave band is generally Q ×
It is expressed in the form of f (f is the resonance frequency at that time). Therefore, the expression of Q × f is used below.

【0004】これまで、マイクロ波用、或いは温度補償
用コンデンサの誘電体磁器組成物としては、Ba(Zn
1/3 Ta2/3 )O3 系,BaO−TiO2 系,ZrO2
−SnO2 −TiO2 系,BaO−希士類酸化物−Ti
2 系,(Pb,Ca)ZrO3 等の材料が知られてい
る。
Hitherto, Ba (Zn) has been used as a dielectric ceramic composition for a microwave or temperature compensating capacitor.
1/3 Ta 2/3 ) O 3 system, BaO-TiO 2 system, ZrO 2
—SnO 2 —TiO 2 , BaO—Noble oxide—Ti
Materials such as O 2 -based and (Pb, Ca) ZrO 3 are known.

【0005】しかし、これまでに開示されている組成の
材料では、マイクロ波帯域において、比誘電率εr が大
きいほどQ×fが小さいという傾向があった。その欠点
を解決するために本発明者らは、比誘電率εr が110
以上で、共振周波数の温度係数の絶対値|τf |が小さ
く、Q×fが十分大きい組成として、BaO−La2
3 −Sm2 3 −Bi2 3 −TiO2 を、提案した
(特開平7−172912号公報、参照)。
However, the material of the composition has been previously disclosed, in the microwave band, the relative permittivity ε as r greater Q × f there was a tendency that small. In order to solve the drawback, the present inventors set the relative permittivity ε r to 110
Above, as a composition having a small absolute value | τ f | of the temperature coefficient of the resonance frequency and a sufficiently large Q × f, BaO-La 2 O
The 3 -Sm 2 O 3 -Bi 2 O 3 -TiO 2, proposed (Japanese Patent Laid-Open 7-172912, JP-reference).

【0006】ところで、マイクロ波回路のより一層の小
型,高機能,低コスト化を図るためには、導体と誘電体
磁器を積層構造にする方法が有効であり、これは、既に
実用化されているセラミック積層技術を適用することに
よつて実現できる。
In order to further reduce the size, function and cost of a microwave circuit, it is effective to use a laminated structure of a conductor and a dielectric ceramic, which has already been put to practical use. It can be realized by applying a ceramic lamination technology.

【0007】しかし、マイクロ波帯域で使用される素子
の導体には、一般に、導電性のよいAu,Ag,Cu,
或いはそれらの合金等が用いられており、上記の積層デ
バイスを得るには、これらのような比較的融点の低い導
体金属と誘電体材料が同時焼結できることが必要であ
る。これを目的として、種々の低温焼成セラミックスが
提案されている。
However, conductors of elements used in the microwave band generally include Au, Ag, Cu,
Alternatively, their alloys and the like are used, and in order to obtain the above-described laminated device, it is necessary that a conductor metal having a relatively low melting point and a dielectric material can be simultaneously sintered. For this purpose, various low-temperature fired ceramics have been proposed.

【0008】例えば、特開平5−97508号ではBa
0−Ti02 −R2 3 −PbO−Bi2 3 にB2
3 ,SiO2 ,ZnOを添加した低温焼成材料が提案さ
れている。また、特開平5−234420号には、Ba
O−TiO2 −Nd2 3 にBi2 3 ,MnO,Pb
O,ZnO,Al2 3 を添加した低温焼成材料が提案
されている。また、特開平3−290358〜2903
59号,特開平3−295854〜295856号で
は、BaO−Nd2 3 −Sm2 3 −TiO2−Bi
2 3 −PbOにGeO2 ,CuO,B2 3 ,SiO
2 ,ZnOを添加した低温焼成材料が提案されている。
For example, in Japanese Patent Application Laid-Open No. 5-97508, Ba
0-Ti0 2 -R 2 O 3 in -PbO-Bi 2 O 3 B 2 O
A low-temperature fired material to which 3 , SiO 2 and ZnO are added has been proposed. Also, Japanese Patent Application Laid-Open No. Hei 5-234420 discloses that Ba
O-TiO 2 -Nd 2 O 3 in the Bi 2 O 3, MnO, Pb
Low-temperature firing materials to which O, ZnO, and Al 2 O 3 are added have been proposed. Also, JP-A-3-290358-2903
59 No., in JP-A-3-295854~295856, BaO-Nd 2 O 3 -Sm 2 O 3 -TiO 2 -Bi
GeO 2, CuO in 2 O 3 -PbO, B 2 O 3, SiO
2 , low-temperature firing materials to which ZnO is added have been proposed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、それら
が提案している低温焼成材料では、比誘電率εr が70
以上、かつ共振周波数の温度係数の絶対値|τf |が1
0ppm/℃以下であるような材料を得ることができな
い。
However, in the low-temperature sintering materials proposed by them, the relative dielectric constant ε r is 70%.
Above, and the absolute value of the temperature coefficient of the resonance frequency | τ f |
A material having a concentration of 0 ppm / ° C. or less cannot be obtained.

【0010】そこで、本発明の技術的課題は、比誘電率
εr が大きく、共振周波数の温度係数τf ができるだけ
零に近く、Q×f値が大きく、しかも、融点の低いA
u,Ag,Cu,及びそれらの合金等を内部電極材料に
使用しても同時焼結できる誘電体磁器組成物を提供する
ことにある。
[0010] Therefore, the technical problem of the present invention, the dielectric constant epsilon r is large, close to the temperature coefficient tau f it is possible zero resonant frequency, Q × f value is large and a low melting point A
It is an object of the present invention to provide a dielectric ceramic composition which can be simultaneously sintered even when u, Ag, Cu, an alloy thereof, or the like is used as an internal electrode material.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明者らは、Bi2 3 −(Sr,Mg,B
a)O−Nb2 5 系にて、または前記組成系にB2
3 ,SiO2 ,GeO22,SnO2 を添加して、比誘
電率εr が大きく、共振周波数の温度係数τf が零に近
く、Q×f値が大きく、しかも、融点の低いAu,A
g,Cu,及びそれらの合金等を内部電極材料に使用し
ても同時焼結できる誘電体磁器材料が得られることを見
出した。
In order to solve the above-mentioned problems, the present inventors have proposed Bi 2 O 3- (Sr, Mg, B
a) In an O—Nb 2 O 5 system or in the above-mentioned composition system, B 2 O
3 , SiO 2 , GeO 2 , and SnO 2 are added to increase the relative dielectric constant ε r , the temperature coefficient τ f of the resonance frequency is close to zero, the Q × f value is large, and the Au and the melting point are low. A
It has been found that a dielectric porcelain material that can be simultaneously sintered even when g, Cu, their alloys, etc. are used as the internal electrode material can be obtained.

【0012】即ち、本発明によれば、一般式が、aBi
3/2 −b(Sr1-x-y Mgx Bay )O−cNbO
5/2 (ただし、a,b,及びcの単位はモル%)で、4
1.0≦a≦51.0、17.0≦b≦25.0、2
9.0≦c≦39.0(a+b+c=100モル%)、
0≦x≦0.4、0≦y≦0.4の範囲にあることを特
徴とする誘電体磁器組成物が得られる。
That is, according to the present invention, the general formula is aBi
O 3/2 -b (Sr 1-xy Mg x Ba y) O-cNbO
5/2 (where the units of a, b and c are mol%)
1.0 ≦ a ≦ 51.0, 17.0 ≦ b ≦ 25.0, 2
9.0 ≦ c ≦ 39.0 (a + b + c = 100 mol%),
A dielectric porcelain composition characterized by being in the range of 0 ≦ x ≦ 0.4 and 0 ≦ y ≦ 0.4 is obtained.

【0013】また、本発明によれば、前記誘電体磁器組
成物に対して、B2 3 ,SiO2,GeO2 ,SnO
2 の内から選択された少なくと一種の酸化物を2.0重
量部以下添加したことを特徴とする誘電体磁器組成物が
得られる。
Further, according to the present invention, B 2 O 3 , SiO 2 , GeO 2 , SnO is used for the dielectric ceramic composition.
2. A dielectric porcelain composition characterized by adding at least 2.0 parts by weight of at least one oxide selected from 2 ).

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の誘電体磁器組成物の主成分
であるBiO3/2 ,(Sr,Mg,Ba)O,及びNb
5/2 の範囲を示す図である。図1に示すように、本発
明の誘電体磁器組成物の主成分は、一般式が、aBiO
3/2 −b(Sr1-x-y MgxBay )O−cNbO5/2
(ただし、a,b,及びcの単位はモル%)で、41.
0≦a≦51.0、17.0≦b≦25.0、29.0
≦c≦39.0(a+b+c=100モル%)、0≦x
≦0.4、0≦y≦0.4の範囲にあり、その範囲は斜
線1で示される境界線も含む領域内である。
FIG. 1 shows BiO 3/2 , (Sr, Mg, Ba) O and Nb, which are the main components of the dielectric ceramic composition of the present invention.
It is a figure which shows the range of O5 / 2 . As shown in FIG. 1, the main component of the dielectric porcelain composition of the present invention has a general formula of aBiO
3/2 -b (Sr 1-xy Mg x Ba y) O-cNbO 5/2
(However, the units of a, b, and c are mol%).
0 ≦ a ≦ 51.0, 17.0 ≦ b ≦ 25.0, 29.0
≦ c ≦ 39.0 (a + b + c = 100 mol%), 0 ≦ x
≦ 0.4, 0 ≦ y ≦ 0.4, and the range is a region including the boundary line indicated by oblique line 1.

【0016】このように、本発明においては、Bi2
3 −(Sr,Mg,Ba)O−Nb2 O,系にて、比誘
電率εr が大きく、共振周波数の温度係数τf が零に近
く、Q×f値が大きく、しかも、融点の低いAu,A
g,Cu,及びそれらの合金等を内部電極材料に使用し
ても同時焼結できる誘電体磁器材料が得られる。
As described above, according to the present invention, Bi 2 O
In the 3- (Sr, Mg, Ba) O-Nb 2 O, system, the relative permittivity ε r is large, the temperature coefficient τ f of the resonance frequency is close to zero, the Q × f value is large, and the melting point Low Au, A
It is possible to obtain a dielectric ceramic material that can be simultaneously sintered even when g, Cu, an alloy thereof, or the like is used as an internal electrode material.

【0017】また、本発明の誘電体磁器組成物は、前記
主成分に対して、B2 3 ,SiO2 ,GeO2 ,Sn
2 の内から選択された少なくと一種の酸化物を2.0
重量部以下添加したものである。
Further, the dielectric porcelain composition of the present invention is characterized in that B 2 O 3 , SiO 2 , GeO 2 , Sn
At least one oxide selected from O 2
Not more than parts by weight are added.

【0018】本発明においては、前記主成分の組成系に
2 3 ,SiO2 ,GeO2 ,SnO2 を添加すれこ
とによって、誘電特性の劣化が少なく、さらに低温で焼
結することができる誘電体磁器材料が得られる。
In the present invention, by adding B 2 O 3 , SiO 2 , GeO 2 , and SnO 2 to the composition system of the main component, deterioration of the dielectric characteristics is reduced and sintering can be performed at a lower temperature. A dielectric porcelain material is obtained.

【0019】それでは、本発明の誘電体磁気組成物の実
施の形態について説明する。
Now, an embodiment of the dielectric magnetic composition of the present invention will be described.

【0020】(第1の実施の形態)まず、Bi2 3
SrO,MgO,BaCO3 ,Nb2 5 各粉末を各組
成に応じて秤量した後、純水を用い、ジルコニアボール
にて樹脂製のボールミルで20時間湿式混合し、混合物
を得た。次に、この混台物を乾燥させた後、大気中に
て、750〜850℃の温度で約4時間仮焼し、仮焼物
を得た。さらに上記のボールミルで平均粉砕粒径が0.
8μm以下となるように湿式粉砕した後、乾燥、造粒し
た。これを、直径15mm,厚さ約6mmの円盤状に成
形し、850〜1200℃の温度で約2時間焼結するこ
とによって、下記表1に示す組成の誘電体磁器を得た。
なお下記表1で組成は、aBiO3/2 −b(Sr1-x-y
Mgx Bay )O−cNbO5/2 (a+b+c=100
モル%)のように表わした。
(First Embodiment) First, Bi 2 O 3 ,
After weighing each powder of SrO, MgO, BaCO 3 , and Nb 2 O 5 according to each composition, the mixture was wet-mixed with pure water using a zirconia ball in a resin ball mill for 20 hours to obtain a mixture. Next, after drying this mixed product, it was calcined in the air at a temperature of 750 to 850 ° C. for about 4 hours to obtain a calcined product. Further, the average crushed particle size of the above ball mill is 0.
After wet pulverization to 8 μm or less, drying and granulation were performed. This was shaped into a disk having a diameter of 15 mm and a thickness of about 6 mm, and sintered at a temperature of 850 to 1200 ° C. for about 2 hours to obtain a dielectric ceramic having a composition shown in Table 1 below.
In Table 1 below, the composition is aBiO 3/2 -b (Sr 1-xy
Mg x Ba y) O-cNbO 5/2 (a + b + c = 100
Mol%).

【0021】次に、各組成の誘電体磁器について、誘電
体共振器法によって、比誘電率をεr ,Q×f値,共振
周波数の温度係数τf を測定した。共振周波数の温度係
数τf は+20〜+60゜Cの温度範囲での共振周波数
fの差より、次の数1式によって求めた。
Next, for the dielectric ceramics of each composition, the relative permittivity εr, Q × f value, and the temperature coefficient τ f of the resonance frequency were measured by the dielectric resonator method. The temperature coefficient τ f of the resonance frequency was determined from the difference between the resonance frequencies f in the temperature range of + 20 ° C. to + 60 ° C. by the following equation (1).

【0022】[0022]

【数1】 (Equation 1)

【0023】それらの測定結果を下記表1に示した。な
お、共振周波数は2〜3GHzであつた。
The measurement results are shown in Table 1 below. In addition, the resonance frequency was 2-3 GHz.

【0024】[0024]

【表1】 [Table 1]

【0025】上記表1から明らかなように、aBiO
3/2 −b(Sr1-x-y Mgx Bay )O−cNbO5/2
(ただし、a,b,及びcの単位はモル%)で、41.
0≦a≦51.0、17.0≦b≦25.0、29.0
≦c≦39.0、0≦x≦0.4、0≦y≦0.4とす
れば、比誘電率εr が70以上と大きく、共振周波数の
温度係数τf が零に近く、Q×f値が大きく、しかも、
1100℃以下の低温で焼結できる誘電体磁器材料が得
られる。また、SrサイトをMg,Baで置換すること
によつて、より大きい比誘電率εr を有する誘電体磁器
材料が得られる。
As is apparent from Table 1 above, aBiO
3/2 -b (Sr 1-xy Mg x Ba y) O-cNbO 5/2
(However, the units of a, b, and c are mol%).
0 ≦ a ≦ 51.0, 17.0 ≦ b ≦ 25.0, 29.0
If ≦ c ≦ 39.0, 0 ≦ x ≦ 0.4 and 0 ≦ y ≦ 0.4, the relative dielectric constant ε r is as large as 70 or more, the temperature coefficient τ f of the resonance frequency is close to zero, and Q × f value is large, and
A dielectric ceramic material that can be sintered at a low temperature of 1100 ° C. or less is obtained. Further, the Sr site Mg, Yotsute to be replaced by Ba, the dielectric ceramic material is obtained having a larger relative dielectric constant epsilon r.

【0026】これに対して、本発明以外の比較例では、
BiO3/2 が41.0モル%より少ないと、1100℃
以下の低温焼結ができなくなる。また、BiO3/2 が5
1.0モル%より多い、またはNbO5/2 が29.0モ
ル%より少ないと、大きいεr が得られない。また、
(Sr,Mg,Ba)Oが17.0モル%より少ない、
または25.0モル%より多い、またはNbO5/2 が3
9.0モル%より多いと、Q×f値が劣化する。また、
SrサイトのMg置換量xが0.4を越えたり、Ba置
換量yが0.4を越えた場合、Q×f値が劣化する。
On the other hand, in comparative examples other than the present invention,
If the content of BiO 3/2 is less than 41.0 mol%,
The following low-temperature sintering becomes impossible. In addition, BiO 3/2 is 5
If it is more than 1.0 mol% or NbO 5/2 is less than 29.0 mol%, a large ε r cannot be obtained. Also,
(Sr, Mg, Ba) O is less than 17.0 mol%,
Or more than 25.0 mol%, or NbO 5/2 is 3
If it is more than 9.0 mol%, the Q × f value deteriorates. Also,
When the Mg substitution amount x of the Sr site exceeds 0.4 or the Ba substitution amount y exceeds 0.4, the Q × f value deteriorates.

【0027】(第2の実施の形態)Bi2 3 ,Sr
O,MgO,BaCO3 ,Nb2 5 の各粉末を各組成
に応じて秤量し、第1の実施の形態に示したものと同様
の方法で仮焼物を得た。次に、B2 3 ,SiO2 ,G
eO2 ,SnO2 の粉末をそれぞれ下記表2の割合にな
るように秤量し、仮焼物に加え、第1の実施の形態に示
したのと同様のボールミルで平均粉砕粒径が0.8μm
以下となるように湿式粉砕(混合を兼ねる)した後、成
形し、800〜1000℃の温度で焼結し、下記表2に
示す組成の誘電体磁器を得た。なお表2で組成は、aB
iO3/2 −b(Sr1-x-y Mgx Bay)O−cNbO
5/2 (a+b+c=100モル%)のように表わした。
(Second Embodiment) Bi 2 O 3 , Sr
Each powder of O, MgO, BaCO 3 , and Nb 2 O 5 was weighed according to each composition, and a calcined product was obtained by the same method as that shown in the first embodiment. Next, B 2 O 3 , SiO 2 , G
The powders of eO 2 and SnO 2 were respectively weighed so as to have the ratios shown in Table 2 below, added to the calcined product, and averagely ground to a particle size of 0.8 μm in the same ball mill as shown in the first embodiment.
After wet pulverization (also serving as mixing) as described below, it was molded and sintered at a temperature of 800 to 1000 ° C. to obtain a dielectric ceramic having a composition shown in Table 2 below. In Table 2, the composition is aB
iO 3/2 -b (Sr 1-xy Mg x Ba y) O-cNbO
5/2 (a + b + c = 100 mol%).

【0028】次に、各組成の誘電体磁器について、第1
の実施の形態に示したものと同様の測定を行ったとこ
ろ、下記表2に示す測定結果を得た。
Next, the dielectric porcelain of each composition is described in the first section.
When the same measurement as that described in the embodiment was performed, the measurement results shown in Table 2 below were obtained.

【0029】[0029]

【表2】 [Table 2]

【0030】上記表2より明らかなように、BiO3/2
−(Sr,Mg,Ba)O−NbO5/2 に、B2 3
SiO2 ,GeO2 ,SnO2 のうちより選ばれる一種
以上の酸化物を2.0重量部以下添加すれば、誘電特性
の劣化がほとんどなく、さらに焼結温度を低下させるこ
とができる。ただし、2.0重量部を越える添加は、誘
電特性の劣化をもたらす。
As apparent from Table 2 above, BiO 3/2
- (Sr, Mg, Ba) to O-NbO 5/2, B 2 O 3,
If at least 2.0 parts by weight of one or more oxides selected from SiO 2 , GeO 2 , and SnO 2 are added, dielectric properties are hardly deteriorated, and the sintering temperature can be further lowered. However, addition exceeding 2.0 parts by weight results in deterioration of the dielectric properties.

【0031】[0031]

【発明の効果】以上に説明した通り、本発明によれば、
比誘電率εr が大きく、共振周波数の温度係数τf が零
に近く、Q×f値が大きく、しかも、融点の低いAu,
Ag,Cu,或いはそれらの合金等を内部電極材料に使
用しても同時焼結できる誘電体磁器組成物が得られる。
As described above, according to the present invention,
Au having a large relative dielectric constant ε r , a temperature coefficient τ f of the resonance frequency close to zero, a large Q × f value, and a low melting point.
A dielectric porcelain composition that can be co-sintered even when Ag, Cu, or an alloy thereof is used for the internal electrode material is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の誘電体磁器組成物の主成分であるBi
3/2 ,(Sr,Mg,Ba)O,及びNbO5/2 の範
囲を斜線にて示す図である。
FIG. 1 shows Bi which is a main component of the dielectric ceramic composition of the present invention.
It is a figure which shows the range of O3 / 2 , (Sr, Mg, Ba) O, and NbO5 / 2 with a diagonal line.

【符号の説明】[Explanation of symbols]

1 本発明の誘電体磁器組成物の主成分を示す斜線部
1 Shaded area showing the main component of the dielectric ceramic composition of the present invention

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一般式が、aBiO3/2 −b(Sr
1-x-y Mgx Bay )O−cNbO5/2 (ただし、a,
b,及びcの単位はモル%)で、41.0≦a≦51.
0、17.0≦b≦25.0、29.0≦c≦39.0
(a+b+c=100モル%)、0≦x≦0.4、0≦
y≦0.4の範囲にあることを特徴とする誘電体磁器組
成物。
1. The general formula is aBiO 3/2 -b (Sr
1-xy Mg x Ba y) O-cNbO 5/2 ( provided that, a,
The units of b and c are mol%) and 41.0 ≦ a ≦ 51.
0, 17.0 ≦ b ≦ 25.0, 29.0 ≦ c ≦ 39.0
(A + b + c = 100 mol%), 0 ≦ x ≦ 0.4, 0 ≦
A dielectric ceramic composition, wherein y is in the range of 0.4.
【請求項2】 請求項1記載の誘電体磁器組成物に対し
て、B2 3 ,SiO2 ,GeO2 ,SnO2 の内から
選択された少なくと一種の酸化物を2.0重量部以下添
加したことを特徴とする誘電体磁器組成物。
2. The dielectric ceramic composition according to claim 1, wherein at least one kind of oxide selected from B 2 O 3 , SiO 2 , GeO 2 and SnO 2 is 2.0 parts by weight. A dielectric porcelain composition comprising:
JP10139616A 1998-05-21 1998-05-21 Dielectric porcelain composition Withdrawn JPH11322425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139616A JPH11322425A (en) 1998-05-21 1998-05-21 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139616A JPH11322425A (en) 1998-05-21 1998-05-21 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH11322425A true JPH11322425A (en) 1999-11-24

Family

ID=15249448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139616A Withdrawn JPH11322425A (en) 1998-05-21 1998-05-21 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH11322425A (en)

Similar Documents

Publication Publication Date Title
US5292694A (en) Method of producing low temperature firing dielectric ceramic composition containing B2 O3
KR100292915B1 (en) Dielectric ceramic composition
JP2000034165A (en) Dielectric porcelain composition
JP3011123B2 (en) Dielectric ceramic composition
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP2000086337A (en) Dielectric porcelain composition for low-temperature firing
JPH11130528A (en) Dielectric ceramic composition and dielectric resonator produced by using the composition
JPH11322425A (en) Dielectric porcelain composition
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3824792B2 (en) Dielectric porcelain composition
JPH1029863A (en) Dielectric porcelain composition
JPH08245262A (en) Dielectric porcelain composition
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP2000007434A (en) Dielectric porcelain composition
JPH08157257A (en) Dielectric porcelain composition
JP3376933B2 (en) High frequency dielectric ceramic composition and dielectric resonator
JP3597244B2 (en) Dielectric porcelain composition
JP3598886B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
KR100234019B1 (en) Dielectric ceramic compositions
KR100234020B1 (en) Dielectric ceramic compositions
JPH0845345A (en) Dielectric porceelain material
JP4006655B2 (en) Dielectric porcelain composition for microwave

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802