JPH11319530A - Method for dispersing conductive particle flocculate - Google Patents

Method for dispersing conductive particle flocculate

Info

Publication number
JPH11319530A
JPH11319530A JP10138391A JP13839198A JPH11319530A JP H11319530 A JPH11319530 A JP H11319530A JP 10138391 A JP10138391 A JP 10138391A JP 13839198 A JP13839198 A JP 13839198A JP H11319530 A JPH11319530 A JP H11319530A
Authority
JP
Japan
Prior art keywords
frequency electromagnetic
electromagnetic wave
high frequency
flocculate
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10138391A
Other languages
Japanese (ja)
Other versions
JP3840801B2 (en
Inventor
Yasuyori Sasaki
康順 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP13839198A priority Critical patent/JP3840801B2/en
Publication of JPH11319530A publication Critical patent/JPH11319530A/en
Application granted granted Critical
Publication of JP3840801B2 publication Critical patent/JP3840801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize the effective dispersion of a flocculate of conductive particles such as carbon black by emitting a high frequency electromagnetic wave to a flocculate of conductive particles in a medium, and further preferably applying at least either of an ultrasonic emission treatment or a rapid stirring treatment after the emission of the high frequency electromagnetic wave to perform the dispersion treatment. SOLUTION: When dispersing a flocculate of conductive particles which are difficult to disperse finely in a liquid e.g. carbon black, carbon fiber, metallic particle, metallic fiber or the like, the flocculate is dispersed by emitting a high frequency electromagnetic wave to the flocculate contained in a medium. The high frequency electromagnetic wave to be used ranges from micro waves of the giga hertz area to high frequency waves of the 10-100 giga hertz area. After the emission of the high frequency electromagnetic wave, either of a process to emit an ultrasonic wave or a process to stir rapidly or a combination of these processes is applied in arbitrarily selected order to achieve a further improved dispersion. In addition, the process to emit the high frequency electromagnetic wave may be employed after the ultrasonic emission pretreatment or the rapid stirring pretreatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、導電性粒子凝集塊の分
散方法に関する。更に詳しくは、カーボンブラック、炭
素繊維、金属粒子、金属繊維等の液体への微分散が困難
な導電性粒子凝集塊の分散方法に関する。
The present invention relates to a method for dispersing agglomerates of conductive particles. More specifically, the present invention relates to a method for dispersing agglomerates of conductive particles which are difficult to finely disperse in a liquid such as carbon black, carbon fibers, metal particles, and metal fibers.

【0002】[0002]

【従来の技術】カーボンブラック等の導電性粒子の主要
な用途は、ゴムまたは樹脂に配合して弾性率および強度
を高めるための充填剤、導電性を付与する目的の導電性
付与剤である。このような用途に用いられる充填剤は、
一次粒子の形状が球形または繊維状であるが、その多く
は凝集して塊となっているものが多い。あるいは、粉体
のままでは飛散するので、それを防止する目的で造粒し
て塊として用いられることも多い。
2. Description of the Related Art The main uses of conductive particles such as carbon black are fillers for increasing elastic modulus and strength by being mixed with rubber or resin, and conductivity-imparting agents for imparting conductivity. Fillers used in such applications are:
The shape of the primary particles is spherical or fibrous, but many of them are agglomerated and aggregated. Alternatively, since the powder is scattered as it is, it is often granulated and used as a lump for the purpose of preventing the scattering.

【0003】これらの粉体の塊(凝集体)をゴムや樹脂に
配合する際、特にゴムや樹脂のラテックスや溶液に配合
する際、その一部は分散することなく塊状のまま残り、
そのため目的とする効果が得られないばかりではなく、
材料強度を著しく低下させる原因ともなり、製造工程上
の大きな問題となっている。
[0003] When compounding these powder lumps (aggregates) with rubber or resin, particularly when compounding with rubber or resin latex or solution, a part of the powder remains in a lump without being dispersed,
Therefore, not only the desired effect cannot be obtained,
This also causes a significant reduction in the material strength, which is a major problem in the manufacturing process.

【0004】特に、導電性カーボンブラックとして分類
されている種類のカーボンブラックは、この塊の破壊強
度が通常の補強用途のカーボンブラックに比べて大き
く、分散不良を発生し易いという問題がみられる。従っ
て、これを有効に分散できれば、極めて高い導電性を得
ることができ、また高い補強性の材料を得ることができ
るが、良好な分散状態のものを得ることは一般には困難
である。
[0004] In particular, carbon black of the type classified as conductive carbon black has a problem that the breaking strength of the lumps is higher than that of carbon black for ordinary reinforcing use, and that poor dispersion is likely to occur. Therefore, if this can be effectively dispersed, extremely high conductivity can be obtained and a material having high reinforcing properties can be obtained, but it is generally difficult to obtain a material having a good dispersion state.

【0005】粉体の混合方法としては様々な方法が従来
から行われており、その主な方法は攪拌翼、ボールミ
ル、シェイカ、超音波ホモジナイザ、ニーダ、ロールミ
ル等を用いる方法であるが、これらの方法は凝集力が強
くて粒子凝集塊が壊れ難く、導電性カーボンブラックな
どではしばしば分散が不十分な混合状態となり易い。
Various methods have been conventionally used for mixing powders, and the main methods are methods using a stirring blade, a ball mill, a shaker, an ultrasonic homogenizer, a kneader, a roll mill, and the like. In the method, agglomerated particles are hard to be broken due to strong cohesive force, and a mixed state in which conductive carbon black or the like is often insufficiently dispersed easily.

【0006】例えば、導電性カーボンブラックの形態
は、1nmサイズの一次粒子が部分的に融着して糸状に、
あるいは所々枝状につながったサブミクロンサイズのア
グリゲートと呼ばれる凝集体を形成し、更にこのアグリ
ゲートが物理的に凝集してミクロンからミリサイズのア
グロメレートを形成している。
[0006] For example, the form of conductive carbon black is formed by fusing primary particles of 1 nm size partially by fusing.
Alternatively, aggregates called submicron-sized aggregates connected in branches are formed in some places, and the aggregates are physically aggregated to form micron to millimeter-sized agglomerates.

【0007】アグリゲートとアグロメレートを合せてス
トラクチャーといい、後者は前者に比べて凝集力は弱い
ものの、アグリゲートが糸のように高度に絡み合い、ほ
ぐれ難くなっているため、攪拌などの機械的なせん断力
による方法では、その凝集塊の一部はなお塊状のまま残
り、分散不良の原因となっている。
The aggregate and the agglomerate are combined to form a structure. The latter has a weaker cohesive force than the former, but because the aggregate is highly entangled like a thread and is less likely to be loosened, mechanical operations such as stirring are required. In the method using the shearing force, a part of the agglomerate still remains in a lump, causing poor dispersion.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、カー
ボンブラック等の導電性粒子の凝集塊の効果的な分散方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for effectively dispersing aggregates of conductive particles such as carbon black.

【0009】[0009]

【課題を解決するための手段】かかる本発明の目的は、
媒体中の導電性粒子凝集塊に高周波電磁波を照射し、更
に好ましくはその後超音波照射および高速攪拌処理の少
くとも一方を適用して、分散処理することによって達成
される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
This is achieved by irradiating the conductive particle agglomerates in the medium with high-frequency electromagnetic waves, and more preferably by applying at least one of ultrasonic irradiation and high-speed stirring treatment and then performing dispersion treatment.

【0010】[0010]

【発明の実施の形態】本発明方法は、導電性粒子の凝集
塊、特にストラクチャーが発達して分散し難い導電性カ
ーボンブラック凝集塊に適用され、他の分散方法にはみ
られない有効な分散効果を発揮する。導電性カーボンブ
ラックとしては、アセチレンブラック・ケッチェンブラ
ック等の特殊なカーボンブラックや気相成長炭素繊維等
が挙げられ、これらのカーボンブラックは効果的に分散
させると、少量の配合でも高い導電性をゴムや樹脂に付
与する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is applied to agglomerates of conductive particles, particularly conductive carbon black agglomerates which are difficult to disperse due to the development of a structure, and are effective dispersions not found in other dispersion methods. It is effective. Examples of the conductive carbon black include special carbon blacks such as acetylene black and Ketjen black and vapor-grown carbon fibers.When these carbon blacks are effectively dispersed, high conductivity can be obtained even in a small amount. Applied to rubber and resin.

【0011】これに対して、充填剤、補強剤などとして
用いられているMTカーボンブラックやFTカーボンブラッ
ク、インキ用カーボンブラック、一般的な炭素繊維等
は、勿論本発明方法によっても分散処理できるが、他の
攪拌処理や超音波照射でも十分に良好な分散状態を形成
し得るので、特に本発明方法の優位性は認められない。
On the other hand, MT carbon black and FT carbon black used as fillers and reinforcing agents, carbon black for ink, general carbon fibers, etc. can of course be dispersed by the method of the present invention. In addition, since a sufficiently good dispersion state can be formed even by other stirring treatment or ultrasonic irradiation, the superiority of the method of the present invention is not particularly recognized.

【0012】カーボンブラック以外の導電性粒子として
は、例えば銅、ニッケル、銀等の金属の微粒子や繊維が
挙げられる。
Examples of the conductive particles other than carbon black include fine particles and fibers of metals such as copper, nickel and silver.

【0013】カーボン系粒子凝集塊の場合、それは約1.
8〜2.1程度の比重を有するので、水、アルコール、炭化
水素系有機溶媒、オリゴマー等の媒体中に入れると、媒
体を入れた容器の底部に沈殿するが、これを高周波電磁
波の発振器としてマグネトロンを用いた密閉容器の高周
波電磁波照射の場に置くと、その凝集塊は直ちに媒体中
ではじかれたような動き方で、激しく勢い良く不規則に
動き回りながら徐々に小さくなっていく様子が観察され
る。また、粒径約2〜10μmの銅粉に水を加えて高周波電
磁波を照射すると、カーボンブラックの場合と同様に、
銅粒子は激しく動き回って分散していく様子が観察され
る。
In the case of carbon-based particle agglomerates, it is about 1.
Since it has a specific gravity of about 8 to 2.1, when it is put into a medium such as water, alcohol, a hydrocarbon-based organic solvent, or an oligomer, it precipitates at the bottom of the vessel containing the medium. When placed in a high-frequency electromagnetic wave irradiation field of the used closed container, the aggregates are observed to be rapidly repelled in the medium, and gradually become smaller while moving around vigorously and irregularly. . Also, when water is added to copper powder having a particle size of about 2 to 10 μm and irradiated with high-frequency electromagnetic waves, as in the case of carbon black,
It is observed that the copper particles move violently and disperse.

【0014】はじかれる方向は、ランダムなように見え
るが、照射場の環境によるものと推定される。一方、媒
体なしでは、高周波電磁波をカーボン系粒子凝集塊に照
射すると、局部的に火花がみられ、またカーボン系粒子
が飛散する現象が観察される。
Although the direction of repelling looks random, it is presumed that it depends on the environment of the irradiation field. On the other hand, when a high-frequency electromagnetic wave is applied to the carbon-based particle aggregates without a medium, sparks are locally observed and a phenomenon in which the carbon-based particles are scattered is observed.

【0015】こうしたことからみて、導電性粒子凝集塊
に高周波電磁波を照射した際の分散過程は、導電性粒子
凝集塊面で反射された電磁波により、表面近傍の媒体が
局部的に急激に過熱され、媒体が急激にガス化する際の
瞬間的な膨張力や急速過熱による凝集部の切断などが、
凝集塊を小さく破壊するメカニズムをとっているものと
考えられる。
In view of the above, the dispersion process when the high-frequency electromagnetic waves are irradiated on the conductive particle aggregates is that the medium near the surface is locally rapidly heated by the electromagnetic waves reflected by the conductive particle aggregates. , The instantaneous expansion force when the medium rapidly gasifies or the cutting of the agglomerated part due to rapid overheating,
It is considered that a mechanism for breaking the agglomerates into small pieces is taken.

【0016】高周波電磁波としては、ギガヘルツ領域の
マイクロ波から数10乃至数100ギガヘルツ領域の高周波
迄のいずれも用いることができる。その照射密度は、分
散媒の種類や濃度によって異なるが、約0.01〜5Wh/g、
好ましくは約0.02〜0.1Wh/gである。
As the high frequency electromagnetic wave, any of microwaves in the gigahertz range to high frequencies in the range of several tens to several hundreds of gigahertz can be used. The irradiation density varies depending on the type and concentration of the dispersion medium, but is about 0.01 to 5 Wh / g,
Preferably it is about 0.02-0.1 Wh / g.

【0017】高周波電磁波を照射する代りに、超音波照
射したりあるいはコロイドミル、ホモジナイザ等を用い
て高速撹拌しただけではカーボン凝集塊の有効な分散は
達成されないが、高周波電磁波を照射した後に、これら
の方法を組合せて適用することは有効である。具体的に
は、高周波電磁波を照射した後、超音波照射する方法、
高速攪拌処理する方法あるいはこれら両者の方法を任意
の順序で適用する方法は、分散性を一段と高める上で有
効である。あるいは、予め超音波照射または高速攪拌処
理した後、高周波電磁波を照射する方法をとることもで
きる。
Instead of irradiating high-frequency electromagnetic waves, ultrasonic irradiation or high-speed stirring using a colloid mill, homogenizer or the like does not achieve effective dispersion of carbon aggregates. It is effective to apply the methods in combination. Specifically, after irradiating high-frequency electromagnetic waves, ultrasonic irradiation,
A method of high-speed stirring or a method of applying both methods in an arbitrary order is effective for further increasing dispersibility. Alternatively, a method of irradiating high-frequency electromagnetic waves after ultrasonic irradiation or high-speed stirring processing may be adopted.

【0018】媒体としては、無公害、非可燃性という点
から水が好んで用いられるが、これ以外にもアルコー
ル、トルエン等の有機溶媒またはオリゴマー等が目的に
応じて用いられる。水性媒体の場合には、それと導電性
粒子との間の親和性を高めるために、ノニオン系界面活
性剤またはアニオン系界面活性剤剤あるいはポリビニル
アルコール等の分散剤を、約0.1〜5%、好ましくは約1
〜3%程度添加して用いることも行われる。
As the medium, water is preferably used from the viewpoint of no pollution and non-flammability, but other than this, an organic solvent such as alcohol and toluene, or an oligomer is used according to the purpose. In the case of an aqueous medium, a nonionic surfactant or an anionic surfactant or a dispersant such as polyvinyl alcohol is used in an amount of about 0.1 to 5%, preferably in order to increase the affinity between the aqueous medium and the conductive particles. Is about 1
Approximately 3% may be added for use.

【0019】例えば水媒体にカーボン系凝集塊を分散さ
せる場合、約1〜20重量%、好ましくは約5〜10重量%
の割合で添加されたカーボン系凝集塊は、最初は下部に
沈殿しているが、高周波電磁波を照射し始めると、激し
く攪拌されているかのように激しく動き回り、その塊は
照射量の増加と共に小さくなり、最後には照射を止めて
も沈殿することのない水分散液を形成する。水媒体に対
して約10重量%程度のケッチェンブラックを添加した場
合には、分散が進むにつれて水分散液の粘度の急激な増
加がみられるようになり、チキソトロピー性、即ち弾性
が示されるようになる。同時に水分散液の直流電気抵抗
を測定すると、直流電気抵抗もこの急激な粘度変化に対
応して、急激に低下するようになる。
For example, when a carbon-based aggregate is dispersed in an aqueous medium, about 1 to 20% by weight, preferably about 5 to 10% by weight
The carbon-based agglomerates added at a rate of て い る are initially settled at the bottom, but when they begin to be irradiated with high-frequency electromagnetic waves, they move around violently as if they are being vigorously stirred, and the lumps become smaller as the irradiation dose increases. Finally, an aqueous dispersion which does not precipitate even when the irradiation is stopped is formed. When about 10% by weight of Ketjen Black is added to the aqueous medium, a sharp increase in the viscosity of the aqueous dispersion is observed as the dispersion proceeds, so that the thixotropic property, that is, elasticity is exhibited. become. At the same time, when the DC electric resistance of the aqueous dispersion is measured, the DC electric resistance suddenly decreases in response to the sudden change in viscosity.

【0020】このことは、カーボン系凝集塊がほぐれ
て、水媒体中にアグリゲートあるいは小さなアグロメレ
ートの単位で分散し、それらが媒体中で互いに接触する
状態、即ち弾性および導電性を有するカーボンブラック
のネットワーク構造が形成されている状態にあることを
示している。このネットワークは、水を介在して形成さ
れており、強度が極めて弱いので、静置しておくと水が
徐々に浸み出るシネリシス現象がみられる。
This means that the carbon-based agglomerates are loosened and dispersed in the aqueous medium in units of aggregates or small agglomerates, and they come into contact with each other in the medium, that is, carbon black having elasticity and conductivity. This indicates that the network structure has been formed. This network is formed with water interposed therebetween and has a very low strength, so that a static phenomena in which water gradually permeates when left standing is observed.

【0021】この水分散液の濃度を約5重量%以下にす
ると、攪拌している間は水分散液の状態を呈している
が、攪拌を停止すると分散しているカーボンブラックの
再凝集化、即ちフロキュレーションが起き、水と前記カ
ーボンブラックのネットワーク構造部とに分離する現象
がみられる。
When the concentration of the aqueous dispersion is about 5% by weight or less, the state of the aqueous dispersion is exhibited during the stirring, but when the stirring is stopped, the dispersed carbon black reagglomerates, That is, flocculation occurs and a phenomenon of separation into water and the network structure portion of carbon black is observed.

【0022】このようにして分散処理されたカーボンブ
ラックは、液体に分散して紙漉き方法などでシート状に
成形したり、ポリテトラフルオロエチレンディスパージ
ョンや他の高分子ラテックスとの共沈法でゴムや樹脂と
複合化した後シート状やパイプ状に成形したりした上、
高導電性で柔軟性のある材料として、導電性複合材料、
気相反応や液相反応の触媒担体、各種電池の電極材料な
どとして有効に使用される。
The carbon black thus dispersed is dispersed in a liquid and formed into a sheet by a paper making method or the like, or rubber is coprecipitated with a polytetrafluoroethylene dispersion or other polymer latex. After compounding with resin and forming into a sheet or pipe shape,
As a highly conductive and flexible material, conductive composite materials,
It is effectively used as a catalyst carrier for gas phase reaction and liquid phase reaction, and as an electrode material for various batteries.

【0023】[0023]

【発明の効果】本発明方法により、カーボンブラック等
の導電性粒子の凝集塊の効果的な分散が達成される。
According to the method of the present invention, an effective dispersion of agglomerates of conductive particles such as carbon black is achieved.

【0024】[0024]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described by way of examples.

【0025】実施例1 容量300mlのガラス製ビーカに水200mlおよびアセチレン
ブラック(比重約1.9)5gを入れ、オーブン型高周波電
磁波発生装置(東芝製ER-250)を用い、周波数2450MHz、
出力0.5KWの高周波電磁波を照射した。照射を始める
と、沈殿していたカーボンは、勢い良く水中で動き回り
始める。カーボン凝集塊一つの大きさは、その動きと共
にいくつかの小片に壊れ、やがでその小片は約1〜5μ
の大きさとなった。なお、照射10分後の分散液の直流電
気抵抗は、360Ωであった。
Example 1 A glass beaker having a capacity of 300 ml was charged with 200 ml of water and 5 g of acetylene black (specific gravity: about 1.9), and was subjected to an oven-type high-frequency electromagnetic wave generator (ER-250 manufactured by Toshiba) at a frequency of 2450 MHz.
Irradiated with high frequency electromagnetic wave of output 0.5KW. When irradiation starts, the precipitated carbon starts to move around in the water vigorously. The size of one carbon agglomerate breaks into several small pieces with its movement, and the small pieces become about 1-5 μm.
It became the size of. The DC electric resistance of the dispersion 10 minutes after irradiation was 360Ω.

【0026】比較例1 実施例1において、高周波電磁波発生装置の代りに高速
回転式ホモジナイザ(日本精機製MX型)を用い、回転数80
00rpmで20分間高速攪拌処理すると、分散液の直流電気
抵抗は11000Ωであった。
Comparative Example 1 In Example 1, a high-speed rotating homogenizer (MX type manufactured by Nippon Seiki) was used instead of the high-frequency electromagnetic wave generator, and the number of rotations was 80.
After high-speed stirring at 00 rpm for 20 minutes, the DC electric resistance of the dispersion was 11000Ω.

【0027】比較例2 実施例1において、高周波電磁波発生装置の代りに超音
波発生装置(Branson社製Sonifier450、ホーン:3/4イン
チ円筒形を使用)を用い、20分間超音波照射後の分散液
の直流電気抵抗を測定すると、3100Ωであった。
Comparative Example 2 In Example 1, an ultrasonic generator (Branson Sonifier450, horn: 3/4 inch cylindrical type) was used instead of the high-frequency electromagnetic wave generator, and dispersion was performed after ultrasonic irradiation for 20 minutes. The measured DC electric resistance of the liquid was 3100Ω.

【0028】実施例2 実施例1において、アセチレンブラックの代りにケッチ
ェンブラック2gを用いた。高周波電磁波照射10分後の
分散液の直流電気抵抗は、7000Ωであった。
Example 2 In Example 1, 2 g of Ketjen Black was used in place of acetylene black. The DC electric resistance of the dispersion 10 minutes after irradiation with the high-frequency electromagnetic wave was 7000Ω.

【0029】比較例3 実施例2において、高周波電磁波発生装置の代りに高速
回転式ホモジナイザ(日本精機製MX型)を用い、回転数80
00rpmで20分間高速攪拌処理すると、分散液の直流電気
抵抗は10000Ω以上であった。
Comparative Example 3 In Example 2, a high-speed rotating homogenizer (MX type manufactured by Nippon Seiki) was used instead of the high-frequency electromagnetic wave generator, and the number of rotations was 80.
After high-speed stirring at 00 rpm for 20 minutes, the DC electric resistance of the dispersion liquid was 10,000Ω or more.

【0030】比較例4 実施例2において、高周波電磁波発生装置の代りに超音
波発生装置(Branson社製Sonifier450、ホーン:3/4イン
チ円筒形を使用)を用い、20分間超音波照射後の分散液
の直流電気抵抗を測定すると、13000Ωであった。
Comparative Example 4 In Example 2, an ultrasonic generator (Bonson Sonifier 450, horn: 3/4 inch cylindrical type) was used instead of the high-frequency electromagnetic wave generator, and dispersion was performed after ultrasonic irradiation for 20 minutes. The measured DC electric resistance of the liquid was 13000Ω.

【0031】実施例3 容量300mlのガラス製ビーカーに、水200ml、ノニオン系
界面活性剤(花王製品エマルゲン210)0.2gおよびアセチ
レンブラック2gを入れ、実施例1と同様に高周波電磁
波を照射して分散処理した。分散処理時間に対する分散
液の直流電気抵抗の値は、図1のグラフの曲線(A)に示
される。
Example 3 A glass beaker having a capacity of 300 ml was charged with 200 ml of water, 0.2 g of a nonionic surfactant (Emulgen 210, Kao Corporation) and 2 g of acetylene black. Processed. The value of the DC electric resistance of the dispersion with respect to the dispersion processing time is shown by the curve (A) in the graph of FIG.

【0032】また、図1のグラフには、このような高周
波電磁波照射を施した後、前記高速回転式ホモジナイザ
を用い高速攪拌処理した場合(B)およびその後更に前記
超音波発生装置を用いて超音波照射処理をした場合(C)
の処理時間に対する分散液の直流電気抵抗値の関係が併
記されている。
The graph of FIG. 1 shows the case where the high-frequency electromagnetic wave irradiation is performed, the high-speed stirring treatment is performed using the high-speed rotating homogenizer (B), and thereafter, the ultra-high-frequency stirring is performed using the ultrasonic generator. When sonicated (C)
The relationship between the DC electric resistance value of the dispersion liquid and the processing time is also shown.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例3における分散処理時間に対する分散液
の直流電気抵抗の値を示すグラフである。
FIG. 1 is a graph showing a DC electric resistance value of a dispersion liquid with respect to a dispersion processing time in Example 3.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 媒体中の導電性粒子凝集塊に高周波電磁
波を照射して分散処理することを特徴とする導電性粒子
凝集塊の分散方法。
1. A method for dispersing conductive particle aggregates, comprising irradiating high-frequency electromagnetic waves to a conductive particle aggregate in a medium to perform a dispersion treatment.
【請求項2】 高周波電磁波を照射した後超音波照射す
る請求項1記載の導電性粒子凝集塊の分散方法。
2. The method for dispersing agglomerates of conductive particles according to claim 1, wherein the high-frequency electromagnetic waves are irradiated and then the ultrasonic waves are irradiated.
【請求項3】 高周波電磁波を照射した後高速撹拌処理
する請求項1記載の導電性粒子凝集塊の分散方法。
3. The method for dispersing conductive particle aggregates according to claim 1, wherein high-speed stirring is performed after irradiation with high-frequency electromagnetic waves.
【請求項4】 高周波電磁波を照射した後、超音波照射
および高速攪拌処理を任意の順序で行なう請求項1記載
の導電性粒子凝集塊の分散方法。
4. The method for dispersing agglomerates of conductive particles according to claim 1, wherein after irradiation with the high-frequency electromagnetic wave, ultrasonic irradiation and high-speed stirring are performed in any order.
【請求項5】 界面活性剤または分散剤の存在下の水性
媒体中で分散処理が行われる請求項1、2、3または4
記載の導電性粒子凝集塊の分散方法。
5. A dispersion treatment is carried out in an aqueous medium in the presence of a surfactant or a dispersant.
A method for dispersing an aggregate of conductive particles according to the above.
【請求項6】 超音波照射または高速攪拌処理に先立っ
て高周波電磁波の照射が行われる請求項1記載の導電性
粒子凝集塊の分散方法。
6. The method for dispersing agglomerates of conductive particles according to claim 1, wherein high-frequency electromagnetic wave irradiation is performed prior to ultrasonic irradiation or high-speed stirring.
JP13839198A 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates Expired - Fee Related JP3840801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13839198A JP3840801B2 (en) 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13839198A JP3840801B2 (en) 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates

Publications (2)

Publication Number Publication Date
JPH11319530A true JPH11319530A (en) 1999-11-24
JP3840801B2 JP3840801B2 (en) 2006-11-01

Family

ID=15220856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13839198A Expired - Fee Related JP3840801B2 (en) 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates

Country Status (1)

Country Link
JP (1) JP3840801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173318A1 (en) * 2011-06-13 2012-12-20 한국과학기술원 Method for dispersing and mixing particles using electromagnetic waves
JP2015199920A (en) * 2014-04-09 2015-11-12 ゼロックス コーポレイションXerox Corporation Magnetic milling system and method
JP2016037512A (en) * 2014-08-05 2016-03-22 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing the same, connection structure and method for producing the same
CN115283702A (en) * 2022-07-28 2022-11-04 武汉大学 Method and device for inhibiting anisotropy and crack of laser energy deposition high-temperature alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159856A (en) * 1981-03-28 1982-10-02 Kinkidaigaku Production of reformed carbon black
JPS57172049U (en) * 1981-04-27 1982-10-29
JPS6320026A (en) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd Method and apparatus for high frequency mixing
JPH01176432A (en) * 1987-12-28 1989-07-12 Konica Corp Grain dispersing method
JPH01249130A (en) * 1988-03-30 1989-10-04 Koshin Denki Kogyo Kk Method for mixing or dispersing particles
JPH04310227A (en) * 1991-04-04 1992-11-02 Nippon Steel Corp Mixing of fine particles
JPH07291611A (en) * 1994-04-20 1995-11-07 Kenichi Fujita Production of dispersion of carbon powder
JPH08332365A (en) * 1995-06-08 1996-12-17 Kobe Steel Ltd Powder and fluid mixing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57159856A (en) * 1981-03-28 1982-10-02 Kinkidaigaku Production of reformed carbon black
JPS57172049U (en) * 1981-04-27 1982-10-29
JPS6320026A (en) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd Method and apparatus for high frequency mixing
JPH01176432A (en) * 1987-12-28 1989-07-12 Konica Corp Grain dispersing method
JPH01249130A (en) * 1988-03-30 1989-10-04 Koshin Denki Kogyo Kk Method for mixing or dispersing particles
JPH04310227A (en) * 1991-04-04 1992-11-02 Nippon Steel Corp Mixing of fine particles
JPH07291611A (en) * 1994-04-20 1995-11-07 Kenichi Fujita Production of dispersion of carbon powder
JPH08332365A (en) * 1995-06-08 1996-12-17 Kobe Steel Ltd Powder and fluid mixing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173318A1 (en) * 2011-06-13 2012-12-20 한국과학기술원 Method for dispersing and mixing particles using electromagnetic waves
KR101260001B1 (en) * 2011-06-13 2013-05-06 한국과학기술원 Dispersing and mixing method for particles with electromagnetic wave
JP2015199920A (en) * 2014-04-09 2015-11-12 ゼロックス コーポレイションXerox Corporation Magnetic milling system and method
JP2016037512A (en) * 2014-08-05 2016-03-22 デクセリアルズ株式会社 Anisotropic conductive adhesive, method for producing the same, connection structure and method for producing the same
CN115283702A (en) * 2022-07-28 2022-11-04 武汉大学 Method and device for inhibiting anisotropy and crack of laser energy deposition high-temperature alloy

Also Published As

Publication number Publication date
JP3840801B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
Zhu et al. Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles
Biswas et al. Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon
Bychanok et al. Terahertz absorption in graphite nanoplatelets/polylactic acid composites
Sae‐Oui et al. Comparison of reinforcing efficiency of carbon black, conductive carbon black, and carbon nanotube in natural rubber
EP1870156A1 (en) Dispersion and redispersion methods for dispersoids as well as crush method for aggregated dispersoids, and devices therefor
JP2012177131A (en) Electrically-conducting polymer, method for preparing electrically-conducting polymer, and method for controlling electrical conductivity of polymer
CA2819999A1 (en) Particulate materials, composites comprising them, preparation and uses thereof
JP7293212B2 (en) Shielding Formulations Using Discrete Carbon Nanotubes with Targeted Oxidation Levels and Method of Formulation
JP2012210796A (en) Method of mixing fibrous nanomaterial with resin particle powder
Guo et al. A highly flexible and porous graphene-based hybrid film with superior mechanical strength for effective electromagnetic interference shielding
Galindo et al. Microwave heating of polymers: Influence of carbon nanotubes dispersion on the microwave susceptor effectiveness
Narh et al. The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide
JPH11319530A (en) Method for dispersing conductive particle flocculate
TWI543197B (en) Composite resin material particle and production method thereof
JP5470513B2 (en) Carbon composite material manufacturing method
Hu et al. Microwave absorption and mechanical properties of glass fiber/polyamide 6 composites containing carbon black by microstructural design
Li et al. Free arc liquid-phase dispersion method for the preparation of carbon nanotube dispersion
Huang et al. Improving the mechanical properties of Fe3O4/carbon nanotube reinforced nanocomposites by a low-magnetic-field induced alignment
Xu et al. Study on the properties of the Sb2O3 nanoparticles modified by different surfactants
Mizota et al. Microstructure and adhesion mechanism of mechanically prepared composite particles
CN111821874A (en) Method for dispersing nano material
JP2006247615A (en) Method and apparatus for dispersing and micronizing fine particles
Liu et al. Morphology and microwave absorption of carbon nanotube/bismaleimide foams
Almajdalawi et al. Synthesis and electrorheological effect of Cr doped TiO2 nanorods with nanocavities in silicone oil suspensions
KR101260001B1 (en) Dispersing and mixing method for particles with electromagnetic wave

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees