JP2012210796A - Method of mixing fibrous nanomaterial with resin particle powder - Google Patents

Method of mixing fibrous nanomaterial with resin particle powder Download PDF

Info

Publication number
JP2012210796A
JP2012210796A JP2011078665A JP2011078665A JP2012210796A JP 2012210796 A JP2012210796 A JP 2012210796A JP 2011078665 A JP2011078665 A JP 2011078665A JP 2011078665 A JP2011078665 A JP 2011078665A JP 2012210796 A JP2012210796 A JP 2012210796A
Authority
JP
Japan
Prior art keywords
resin
mixing
fibrous
nanomaterial
particle powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011078665A
Other languages
Japanese (ja)
Inventor
Tomoaki Yokota
智明 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Original Assignee
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Nippon Valqua Industries Ltd
Priority to JP2011078665A priority Critical patent/JP2012210796A/en
Publication of JP2012210796A publication Critical patent/JP2012210796A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of mixing a fibrous nanomaterial with resin particle powder, which allows development of a function suitable for the filling amount of the fibrous nanomaterial while sufficiently utilizing the excellent network forming capability of the fibrous nanomaterial.SOLUTION: In the method of mixing the fibrous nanomaterial with resin particle powder, when the fibrous nanomaterial is dispersed and mixed with powder of resin particles, the nanomaterial is mixed with the powder of resin particles while it is dispersed in liquid under the dispersed coexistence of mixing assisting resin fine particles which are composed of the same type of resin as the resin particles and finer than the resin particles.

Description

本発明は、導電性材料とか補強資材などに用いられる樹脂成形品などを得る際に、成形品への導電性付与や硬さ向上などの目的で樹脂粒子の粉末に添加される繊維状のナノ物質が樹脂粒子粉末中に塊になって混合されることなく、繊維状で分散混合されるようするために工夫された、繊維状ナノ物質の樹脂粒子粉末との混合方法に関する。   The present invention provides a fibrous nano-particle added to a resin particle powder for the purpose of imparting conductivity to a molded product or improving hardness when obtaining a resin molded product used for a conductive material or a reinforcing material. The present invention relates to a method for mixing fibrous nanomaterials with resin particle powder, which is devised so that the material is dispersed and mixed in a fibrous form without being mixed in resin particle powder.

従来、樹脂と機能性粒子とを混合して樹脂成形品を得る場合、機能性粒子として、カーボンブラックなどが用いられてきたが、最近では、カーボンナノチューブなどの繊維状のナノ物質を用いることも検討されている。繊維状ナノ物質は、非常にかさ密度が低い一方、繊維状であるためにネットワークの構築が可能であり、充填量に対して非常に高い機能性の発現が期待されるからである。
しかし、樹脂と機能性粒子とを乾式混合、例えば、混練押出し機やニーダーなどで混練して得るというような従来の加工手法の場合において、前記機能性粒子が繊維状ナノ物質であると、繊維同士は凝集しやすく、かつ、繊維同士は解離させることが困難である、というナノサイズの繊維状物質に特有の性質によって、繊維状ナノ物質同士が互いに塊を作り易いため、繊維状ナノ物質が持っている優れたネットワーク形成能を生かすことが不可能であった。その結果、繊維状ナノ物質として、例えば、カーボンナノチューブを用いても、カーボンブラックを用いた場合と同程度の効果しか得られなかった。
Conventionally, when a resin and functional particles are mixed to obtain a resin molded product, carbon black or the like has been used as the functional particles, but recently, fibrous nanomaterials such as carbon nanotubes may be used. It is being considered. This is because fibrous nanomaterials have a very low bulk density, but are fibrous, so that a network can be constructed, and a very high functionality can be expected with respect to the filling amount.
However, in the case of a conventional processing method in which the resin and functional particles are obtained by dry mixing, for example, kneading with a kneading extruder or kneader, the functional particles are fibrous nanomaterials. Due to the unique property of nano-sized fibrous materials, which tend to aggregate together and the fibers are difficult to dissociate, the fibrous nanomaterials tend to clump together so that the fibrous nanomaterials It was impossible to make use of the excellent network formation ability. As a result, even if, for example, carbon nanotubes were used as the fibrous nanomaterial, only the same effect as when carbon black was used was obtained.

そこで、本発明が解決しようとする課題は、繊維状ナノ物質が有する優れたネットワーク形成能を十分に生かすことができ、その充填量に見合った機能の発現を可能とする、繊維状ナノ物質の樹脂粒子粉末との混合方法を提供することにある。   Therefore, the problem to be solved by the present invention is that the fibrous nanomaterial can fully exploit the excellent network-forming ability of the fibrous nanomaterial, and can exhibit the function commensurate with its filling amount. It is providing the mixing method with resin particle powder.

本発明者は、上記課題を解決するべく鋭意検討を行った。
その過程において、本発明者は、まず、繊維状ナノ物質を液に分散させることで凝集を解くように工夫することを考えたが、この繊維状ナノ物質の分散液は、樹脂粒子の粉末との十分な混合が困難であり、しかも、強い剪断をかけて無理に混合すれば、繊維状ナノ物質を分散させている液が分離して、繊維状ナノ物質が再凝集してしまうという問題があり、この場合、結局、乾式混合の場合と同様に、繊維状ナノ物質が有する優れたネットワーク形成能を生かすことができなかった。
そこで、さらなる検討を重ねた結果、樹脂粒子の粉末に繊維状のナノ物質を分散混合するにあたり、前記ナノ物質を、前記樹脂粒子と同一種類の樹脂からなり前記樹脂粒子よりも微細な混和助成樹脂微粒子の分散共存下、液に分散させた状態で前記樹脂粒子の粉末に混合することとすれば、繊維状ナノ物質の再凝集を引き起こすことなく、繊維状ナノ物質と樹脂粒子粉末との十分な分散混合が可能となることを見出した。具体的には、例えば、樹脂粒子の粉末に繊維状のナノ物質を分散混合するにあたり、前記ナノ物質を液に分散させた状態で前記樹脂粒子の粉末に混合することとともに、前記ナノ物質の非凝集状態を確保するために、当該混合の前、当該混合の後および/または当該混合と同時に前記混和助成樹脂微粒子を液に分散させた状態で混合することとすれば、繊維状ナノ物質の再凝集を引き起こすことなく、繊維状ナノ物質と樹脂粒子粉末との十分な分散混合が可能となることを見出した。これは、繊維状ナノ物質が液に分散された非凝集状態で樹脂粒子の粉末の表面を被覆し、さらに、当該被覆状態を、混和助成樹脂微粒子の分散液が安定化するためであると推測される。
The present inventor has intensively studied to solve the above problems.
In the process, the present inventor first considered to devise to disaggregate by dispersing the fibrous nanomaterial in the liquid. In addition, it is difficult to sufficiently mix, and if the mixture is forcibly mixed by applying strong shear, the liquid in which the fibrous nanomaterial is dispersed is separated, and the fibrous nanomaterial is re-aggregated. In this case, as in the case of dry mixing, the excellent network forming ability of the fibrous nanomaterial could not be utilized.
Therefore, as a result of repeated studies, in dispersing and mixing fibrous nanomaterials in the resin particle powder, the nanomaterial is composed of the same type of resin as the resin particles and is finer than the resin particles. If mixed with the resin particle powder in the state of being dispersed in a liquid in the presence of fine particle dispersion, sufficient recombination of the fibrous nanomaterial and the fibrous nanomaterial and the resin particle powder are sufficient. We found that dispersive mixing is possible. Specifically, for example, when the fibrous nanomaterial is dispersed and mixed in the resin particle powder, the nanomaterial is mixed with the resin particle powder in a state in which the nanomaterial is dispersed in a liquid, In order to secure the agglomerated state, if the mixing aid resin fine particles are mixed in a state of being dispersed in the liquid before the mixing, after the mixing and / or simultaneously with the mixing, It has been found that sufficient dispersion and mixing of the fibrous nanomaterial and the resin particle powder is possible without causing aggregation. This is presumed to be because the surface of the resin particle powder is coated in a non-agglomerated state in which the fibrous nanomaterial is dispersed in the liquid, and further, the dispersion state of the mixing aid resin fine particles is stabilized in the coated state. Is done.

本発明はこれらの知見とその確認を経て完成されたものである。
すなわち、本発明にかかる繊維状ナノ物質の樹脂粒子粉末との混合方法は、樹脂粒子の粉末に繊維状のナノ物質を分散混合するにあたり、前記ナノ物質を、前記樹脂粒子と同一種類の樹脂からなり前記樹脂粒子よりも微細な混和助成樹脂微粒子の分散共存下、液に分散させた状態で前記樹脂粒子の粉末に混合することを特徴とする。
上記混合方法の実施形態の一例としては、前記ナノ物質を液に分散させた状態で前記樹脂粒子の粉末と混合すること、および、当該混合の前、当該混合の後および/または当該混合と同時に前記混和助成樹脂微粒子を液に分散させた状態で前記樹脂粒子の粉末と混合すること、を必須の要件とする、混合方法である。
The present invention has been completed through these findings and confirmation thereof.
That is, the method of mixing the fibrous nanomaterial with the resin particle powder according to the present invention is to disperse and mix the fibrous nanomaterial into the resin particle powder from the same type of resin as the resin particles. The mixture particles are mixed with the powder of the resin particles in a state of being dispersed in the liquid in the presence of dispersion fine particles of the mixing aid resin finer than the resin particles.
As an example of an embodiment of the mixing method, the nanomaterial is mixed with the resin particle powder in a state of being dispersed in a liquid, and before the mixing, after the mixing and / or simultaneously with the mixing. It is a mixing method in which mixing with the resin particle powder in a state where the mixing aid resin fine particles are dispersed in a liquid is an essential requirement.

本発明によれば、繊維状ナノ物質が有する優れたネットワーク形成を十分に生かすことができ、その充填量に見合った機能を発現させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the network formation which the fibrous nanomaterial has can fully be utilized, and the function corresponding to the filling amount can be expressed.

以下、本発明の実施の形態について、詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更実施し得る。
〔繊維状のナノ物質〕
繊維状のナノ物質としては、特に限定されず、例えば、カーボンナノチューブ、金や銀などの金属からなる金属ナノチューブ、繊維状物(例えば、セルロースや、チタン酸カリウムなどからなるもの)に金や銀などの金属が被覆された被覆繊維物などが挙げられる。
前記繊維状ナノ物質の繊維径としては、特に限定されないが、例えば、1〜500nmであることが好ましく、5〜100nmであることがより好ましい。
Hereinafter, embodiments of the present invention will be described in detail. The scope of the present invention is not limited by these descriptions, and modifications other than the following examples can be made as appropriate without departing from the spirit of the present invention.
[Fibrous nanomaterial]
The fibrous nanomaterial is not particularly limited, and examples thereof include carbon nanotubes, metal nanotubes made of metal such as gold and silver, and fibrous materials (for example, those made of cellulose, potassium titanate, etc.) and gold or silver. Examples thereof include coated fiber products coated with a metal such as
Although it does not specifically limit as a fiber diameter of the said fibrous nanomaterial, For example, it is preferable that it is 1-500 nm, and it is more preferable that it is 5-100 nm.

前記繊維状ナノ物質の繊維長としては、特に限定されないが、例えば、1〜1000μmであることが好ましく、10〜500μmであることがより好ましい。
繊維状ナノ物質は凝集しやすい物質であるので、本発明においては、液に分散させて凝集を解いた状態で使用する。
繊維状ナノ物質を分散させる液としては、特に限定されず、繊維状ナノ物質の種類に応じて、分散に適した液を選択すればよい。例えば、水、有機溶剤、これらの混合溶剤などが挙げられるが、特に水を主とする水性液が好ましく挙げられる。
繊維状ナノ物質を液に分散させる方法としては、例えば、液に繊維状ナノ物質を添加し、ホモジナイザ、ビーズミル、ボールミル、ジェットミルなどにより混合する方法が挙げられ、特に、混合手段として、超音波ホモジナイザを採用することが好ましい。
Although it does not specifically limit as fiber length of the said fibrous nanomaterial, For example, it is preferable that it is 1-1000 micrometers, and it is more preferable that it is 10-500 micrometers.
Since the fibrous nanomaterial is a substance that easily aggregates, in the present invention, it is used in a state in which the aggregation is released by dispersing it in a liquid.
The liquid for dispersing the fibrous nanomaterial is not particularly limited, and a liquid suitable for dispersion may be selected according to the type of the fibrous nanomaterial. For example, water, an organic solvent, a mixed solvent thereof and the like can be mentioned, and an aqueous liquid mainly containing water is particularly preferable.
Examples of the method for dispersing the fibrous nanomaterial in the liquid include a method in which the fibrous nanomaterial is added to the liquid and mixed by a homogenizer, a bead mill, a ball mill, a jet mill, or the like. It is preferable to employ a homogenizer.

繊維状ナノ物質とこれを分散させる液との混合割合は、特に限定されないが、例えば、繊維状ナノ物質が0.1〜20重量%となる割合で混合することが好ましい。
繊維状ナノ物質の種類に応じて、界面活性剤を添加してもよい。界面活性剤は、繊維状ナノ物質を分散させるための液に予め溶解させておいても良いし、繊維状ナノ物質を分散させるための液と繊維状ナノ物質を混合したのちに添加するようにしても良い。
界面活性剤の混合割合は、特に限定されず、例えば、液中で0.1〜20重量%の割合となるように混合すればよい。
〔樹脂粒子〕
樹脂粒子の樹脂の種類としては、特に限定されないが、例えば、フッ素樹脂が好ましく挙げられる。前記フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリフッ化ビニリデン(PVdF)、ポリフッ化ビニル(PVF)、テトラフルオロエチレン−パーフルオロビニルエーテル共重合体(PFA)、エチレン−テトラフルオロエチレン共重合体(ETFE)などが挙げられる。特に、導電性の効果が発現しやすい点で、ポリテトラフルオロエチレンが好ましい。
The mixing ratio of the fibrous nanomaterial and the liquid in which it is dispersed is not particularly limited. For example, it is preferable to mix the fibrous nanomaterial at a ratio of 0.1 to 20% by weight.
A surfactant may be added depending on the type of fibrous nanomaterial. The surfactant may be dissolved in advance in a liquid for dispersing the fibrous nanomaterial, or added after mixing the liquid for dispersing the fibrous nanomaterial and the fibrous nanomaterial. May be.
The mixing ratio of the surfactant is not particularly limited, and for example, it may be mixed so that the ratio is 0.1 to 20% by weight in the liquid.
[Resin particles]
Although it does not specifically limit as a kind of resin of resin particle, For example, a fluororesin is mentioned preferably. Examples of the fluororesin include polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVdF), polyvinyl fluoride ( PVF), tetrafluoroethylene-perfluorovinyl ether copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE) and the like. In particular, polytetrafluoroethylene is preferable in that a conductive effect is easily exhibited.

本発明においては、樹脂粒子を粉末として用いるが、その粒径としては、例えば、1〜1000μmであることが好ましく、10〜500μmであることがより好ましい。最終混合物となった状態においては、繊維状ナノ物質が樹脂粒子の表面を覆うように存在することとなるため、樹脂粒子の粒径が大きいほど、繊維状ナノ物質が高度にネットワークを形成しやすくなる。一方で、樹脂粒子の粒径が小さいほど、繊維状ナノ物質を均一に高充填することができる。したがって、繊維状ナノ物質が導電性付与などのために添加される場合のように高度なネットワークが重視される用途では樹脂粒子の粒径を大きく、例えば、50〜1000μmとすることが好ましく、繊維状ナノ物質が樹脂成形品の硬さ向上などのために添加される場合のように均一かつ高充填することが好ましい用途では樹脂粒子の粒径を小さくすることが好ましい。   In the present invention, resin particles are used as a powder, and the particle diameter is preferably, for example, 1 to 1000 μm, and more preferably 10 to 500 μm. In the final mixture state, the fibrous nanomaterials exist so as to cover the surface of the resin particles. Therefore, the larger the particle size of the resin particles, the more easily the fibrous nanomaterials form a network. Become. On the other hand, the smaller the particle size of the resin particles, the higher the density of the fibrous nanomaterial. Therefore, in applications where high-level networks are important, such as when fibrous nanomaterials are added to impart electrical conductivity, the particle size of the resin particles is preferably large, for example, 50 to 1000 μm, In applications where uniform and high filling is preferred, such as when the nanomaterial is added to improve the hardness of the resin molded product, it is preferable to reduce the particle size of the resin particles.

〔混和助成樹脂微粒子〕
混和助成樹脂微粒子の樹脂の種類としては、前記樹脂粒子と同一種類の樹脂であれば特に限定されない。ここで、「同一種類の樹脂」とは、その化学構造が全く同一である場合のみを指すものではなく、一般的な分類において同一種類とされるものであればよい。例えば、「フッ素樹脂」、「シリコーン樹脂」、「アクリル樹脂」などは、同一種類の樹脂を総括的に表現した用語であり、各用語に内包される各樹脂(フッ素樹脂を例にすれば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデン、ポリフッ化ビニルなど)は、「同一種類の樹脂」である。
[Mixing aid resin fine particles]
The type of resin of the mixing aid resin fine particle is not particularly limited as long as it is the same type of resin as the resin particles. Here, the “same type of resin” does not only indicate the case where the chemical structures are exactly the same, but may be any as long as they are the same type in general classification. For example, “fluororesin”, “silicone resin”, “acrylic resin”, etc. are terms that collectively represent the same type of resin, and each resin included in each term (for example, fluororesin, Polytetrafluoroethylene, polychlorotrifluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, etc.) are “same type of resin”.

混和助成樹脂微粒子の樹脂の種類としては、攪拌などによる剪断により繊維化しやすい樹脂がよく、樹脂粒子の樹脂の種類と同様、フッ素樹脂が好ましく、特に、ポリテトラフルオロエチレンが好ましい。
混和助成樹脂微粒子は、上述の樹脂粒子よりも微細であれば、特に限定されず、その粒径としては、例えば、0.1〜100μmであることが好ましく、0.2〜10μmであることがより好ましい。
特に、繊維化可能な混和助成樹脂微粒子、例えば、ポリテトラフルオロエチレン微粒子などを用いるようにすれば、混合時や成形時に繊維化し、樹脂粒子と非凝集状態の繊維状ナノ粒子とをより強固に結合させることができる。
As the type of resin of the mixing aid resin fine particles, a resin that is easily fiberized by shearing by stirring or the like is good, and like the type of resin of the resin particles, a fluororesin is preferable, and polytetrafluoroethylene is particularly preferable.
The mixing aid resin fine particles are not particularly limited as long as they are finer than the resin particles described above, and the particle size thereof is preferably, for example, 0.1 to 100 μm, and preferably 0.2 to 10 μm. More preferred.
In particular, by using admixture-supporting resin fine particles that can be fiberized, such as polytetrafluoroethylene fine particles, the fibers become finer at the time of mixing or molding, and the resin particles and non-aggregated fibrous nanoparticles are strengthened. Can be combined.

混和助成樹脂微粒子は、液に分散させた状態で使用することができる。
混和助成樹脂微粒子を分散させる液としては、特に限定されず、混和助成樹脂微粒子の種類に応じて、分散に適した液を選択すればよい。例えば、水、有機溶剤、これらの混合溶剤などが挙げられるが、特に水を主とする水性液が好ましく挙げられる。
混和助成樹脂微粒子を液に分散させる方法としては、例えば、液に混和助成樹脂微粒子を添加し、メカニカルスターラー、ホモミキサ、超音波ホモジナイザなどにより混合する方法が挙げられる。乳化重合などにより樹脂微粒子を作製した場合に、得られた樹脂微粒子の分散液をそのまま使用することもできる。
The mixing aid resin fine particles can be used in a state dispersed in a liquid.
The liquid for dispersing the mixing aid resin fine particles is not particularly limited, and a liquid suitable for dispersion may be selected according to the type of the mixing aid resin fine particles. For example, water, an organic solvent, a mixed solvent thereof and the like can be mentioned, and an aqueous liquid mainly containing water is particularly preferable.
Examples of the method for dispersing the mixing aid resin fine particles in the liquid include a method in which the mixing aid resin fine particles are added to the liquid and mixed using a mechanical stirrer, homomixer, ultrasonic homogenizer, or the like. When resin fine particles are produced by emulsion polymerization or the like, the obtained dispersion of resin fine particles can be used as it is.

混和助成樹脂微粒子とこれを分散させる液との混合割合は、特に限定されないが、例えば、混和助成樹脂微粒子が10〜80重量%となる割合で混合することが好ましい。
〔繊維状ナノ物質と樹脂粒子粉末との混合〕
本発明にかかる混合方法では、樹脂粒子の粉末に繊維状のナノ物質を分散混合するにあたり、前記ナノ物質を、前記樹脂粒子と同一種類の樹脂からなり前記樹脂粒子よりも微細な混和助成樹脂微粒子の分散共存下、液に分散させた状態で前記樹脂粒子の粉末に混合するが、例えば、前記ナノ物質を液に分散させた状態で前記樹脂粒子の粉末と混合すること、および、当該混合の前、当該混合の後および/または当該混合と同時に前記混和助成樹脂微粒子を液に分散させた状態で前記樹脂粒子の粉末と混合すること、を必須の要件とする。
The mixing ratio of the mixing aid resin fine particles and the liquid in which the fine particles are dispersed is not particularly limited. For example, the mixing aid resin fine particles are preferably mixed at a ratio of 10 to 80% by weight.
[Mixing of fibrous nanomaterial and resin particle powder]
In the mixing method according to the present invention, when the fibrous nanomaterial is dispersed and mixed in the resin particle powder, the nanomaterial is made of the same type of resin as the resin particles and is finer than the resin particles. In the presence of dispersion, the resin particles are mixed with the resin particles in a dispersed state. For example, the nano materials are mixed with the resin particles in a liquid state, and the mixing is performed. It is an essential requirement that the mixing aid resin fine particles are mixed with the resin particle powder in a state of being dispersed in the liquid before, after the mixing and / or simultaneously with the mixing.

すなわち、繊維状ナノ物質、樹脂粒子の粉末、混和助成樹脂微粒子の3者の混合は、どのような順序であってもよく、同時に行ってもよいのである。
樹脂粒子の粉末、混和助成樹脂微粒子の相互割合は、固形分基準で、樹脂粒子が70〜95重量部、混和助成樹脂微粒子が5〜30重量部であることが好ましい。より好ましくは、樹脂粒子が80〜95重量部、混和助成樹脂微粒子が5〜20重量部である。
繊維状ナノ物質の混合割合は、繊維状ナノ物質の種類や配合目的などによっても異なるが、樹脂粒子および混和助成樹脂微粒子の固形分合計100重量部に対して、0.01〜10重量部が好ましい。例えば、繊維状ナノ物質が樹脂成形品への導電性付与のために添加されるものである場合、前記混合割合は、0.01〜5重量部が好ましい。
That is, the mixing of the three components of the fibrous nanomaterial, the resin particle powder, and the mixing aid resin fine particles may be in any order and may be performed simultaneously.
The mutual ratio between the resin particle powder and the mixing aid resin fine particles is preferably 70 to 95 parts by weight of the resin particles and 5 to 30 parts by weight of the mixing aid resin fine particles based on the solid content. More preferably, the resin particles are 80 to 95 parts by weight and the mixing aid resin fine particles are 5 to 20 parts by weight.
The mixing ratio of the fibrous nanomaterial varies depending on the type of fiber nanomaterial and the purpose of blending, but is 0.01 to 10 parts by weight with respect to 100 parts by weight of the solid content of the resin particles and the mixing aid resin fine particles. preferable. For example, when the fibrous nanomaterial is added for imparting conductivity to the resin molded product, the mixing ratio is preferably 0.01 to 5 parts by weight.

〔用途〕
上のようにして得られる混合物は、成形加工することにより、樹脂成形品とすることができる。
成形加工を行う前に、通常、乾燥を行い、必要に応じて、粉砕も行う。
前記成形加工の方法としては、特に限定されないが、例えば、押し出し成形、圧縮成形、射出成形などが挙げられる。
本発明にかかる混合方法によれば、繊維状ナノ物質が有する優れたネットワーク形成能を十分に生かすことができ、その充填量に見合った機能を発現させることができるので、例えば、導電性、電磁波シールド、帯電防止、熱伝導性、硬さなどの特性を有する樹脂成形品を得ることができる。
[Use]
The mixture obtained as described above can be molded into a resin molded product by molding.
Prior to molding, drying is usually performed, and pulverization is also performed as necessary.
Although it does not specifically limit as the method of the said shaping | molding process, For example, extrusion molding, compression molding, injection molding etc. are mentioned.
According to the mixing method of the present invention, the excellent network forming ability of the fibrous nanomaterial can be fully utilized, and a function commensurate with the filling amount can be expressed. A resin molded product having characteristics such as shielding, antistatic properties, thermal conductivity, and hardness can be obtained.

以下に、実施例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
〔実施例1〕
水160gに界面活性剤として「ノプコスパース44−C」(商品名、サンノプコ社製)を1g添加し、メカニカルスターラーで10分間撹拌溶解した。次に、カーボンナノチューブ(CNT、繊維径150nm、繊維長6μm)1gを添加し、メカニカルスターラーでさらに10分間撹拌混合した。
上記混合液を、超音波ホモジナイザで30分間処理して、CNTの凝集を解いた。
Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
[Example 1]
1 g of “Nopcosperth 44-C” (trade name, manufactured by San Nopco) was added to 160 g of water as a surfactant, and the mixture was stirred and dissolved with a mechanical stirrer for 10 minutes. Next, 1 g of carbon nanotube (CNT, fiber diameter 150 nm, fiber length 6 μm) was added, and the mixture was further stirred and mixed with a mechanical stirrer for 10 minutes.
The mixed solution was treated with an ultrasonic homogenizer for 30 minutes to deagglomerate CNTs.

得られたCNT分散液にポリテトラフルオロエチレン(PTFE)粒子の粉末「M−12」(商品名、ダイキン工業社製、粒径50μm)90gを添加して撹拌し、さらに、混和助成樹脂微粒子としてのPTFE微粒子(粒径0.2μm)を水に分散してなるPTFE濃度60重量%のPTFEディスパージョン16.7gを添加して撹拌を続けた。この撹拌時の剪断力により、PTFEディスパージョン中のPTFEが繊維化し、このPTFE繊維により、凝集が解けたCNTがPTFE粒子の粉末「M−12」の表面にくっついた状態で安定して固定化されると推測される。
得られた最終混合物を乾燥機で乾燥して水分を除去したのち、粉砕することで、PTFEとCNTの混合粉末を得た。
To the obtained CNT dispersion, 90 g of polytetrafluoroethylene (PTFE) particle powder “M-12” (trade name, manufactured by Daikin Industries, Ltd., particle size: 50 μm) was added and stirred. 16.7 g of a PTFE dispersion having a PTFE concentration of 60% by weight obtained by dispersing PTFE fine particles (particle size: 0.2 μm) in water was added, and stirring was continued. Due to the shearing force at the time of stirring, PTFE in the PTFE dispersion is made into fibers, and the PTFE fibers stably fix the aggregated CNTs while sticking to the surface of the PTFE particle powder “M-12”. Presumed to be.
The obtained final mixture was dried with a dryer to remove moisture, and then pulverized to obtain a mixed powder of PTFE and CNT.

上記混合粉末に対してプレス加工を行い、厚み1mmのシートを得た。
〔実施例2〕
CNTを0.5g、界面活性剤としての「ノプコスパース44−C」を0.5gとしたこと以外は、実施例1と同様にして、厚み1mmのシートを得た。
〔比較例1〕
CNT1gと、PTFE粒子の粉末「M−12」100gとをヘンシルミキサーで混合し、PTFEとCNTの混合粉末を得た。
上記混合粉末に対して、実施例1と同様にプレス加工を行い、厚み1mmのシートを得た。
The mixed powder was pressed to obtain a sheet having a thickness of 1 mm.
[Example 2]
A sheet having a thickness of 1 mm was obtained in the same manner as in Example 1, except that 0.5 g of CNT and 0.5 g of “Nopcosperth 44-C” as a surfactant were used.
[Comparative Example 1]
1 g of CNT and 100 g of powder “M-12” of PTFE particles were mixed with a Hensyl mixer to obtain a mixed powder of PTFE and CNT.
The mixed powder was pressed in the same manner as in Example 1 to obtain a sheet having a thickness of 1 mm.

〔比較例2〕
混和助成樹脂微粒子を用いない以外は実施例1と同様にしてPTFEとCNTの混合粉末を得た。すなわち、CNT分散液にPTFE粒子の粉末「M−12」90gを添加し撹拌して得た混合物を乾燥粉砕してPTFEとCNTの混合粉末を得た。
上記混合粉末に対して、実施例1と同様にプレス加工を行い、厚み1mmのシートを得た。
〔比較例3〕
PTFE粒子の粉末「M−12」を用いない以外は実施例1と同様にしてPTFEとCNTの混合粉末を得た。すなわち、混和助成樹脂微粒子としてのPTFE微粒子(粒径0.2μm)を水に分散してなるPTFE濃度60重量%のPTFEディスパージョン167g中に、実施例1の手法でCNT1gを水に分散させたCNT分散液を添加して撹拌し、得られた混合液を乾燥機で乾燥して水分を除去した後、粉砕することで、PTFEとCNTの混合粉末を得た。
[Comparative Example 2]
A mixed powder of PTFE and CNT was obtained in the same manner as in Example 1 except that the mixing aid resin fine particles were not used. That is, a mixture obtained by adding 90 g of PTFE particle powder “M-12” to the CNT dispersion and stirring was dried and pulverized to obtain a mixed powder of PTFE and CNT.
The mixed powder was pressed in the same manner as in Example 1 to obtain a sheet having a thickness of 1 mm.
[Comparative Example 3]
A mixed powder of PTFE and CNT was obtained in the same manner as in Example 1 except that the PTFE particle powder “M-12” was not used. That is, 1 g of CNT was dispersed in water by the method of Example 1 in 167 g of PTFE dispersion having a PTFE concentration of 60% by weight obtained by dispersing PTFE fine particles (particle size: 0.2 μm) as mixing aid resin fine particles in water. The CNT dispersion was added and stirred, and the resulting mixture was dried with a dryer to remove moisture and then pulverized to obtain a mixed powder of PTFE and CNT.

上記混合粉末に対して、実施例1と同様にプレス加工を行い、厚み1mmのシートを得た。
〔性能評価〕
上記実施例1,2、比較例1〜3の各導電性シートについて、三菱化学社製の「ロレスタ」を用いて、体積抵抗率を測定した。
結果を表1に示す。
The mixed powder was pressed in the same manner as in Example 1 to obtain a sheet having a thickness of 1 mm.
[Performance evaluation]
About each electroconductive sheet of the said Examples 1 and 2 and Comparative Examples 1-3, the volume resistivity was measured using "Loresta" made from Mitsubishi Chemical Corporation.
The results are shown in Table 1.

Figure 2012210796
Figure 2012210796

本発明は、樹脂粒子粉末と繊維状ナノ物質を良好に分散混合でき、その結果、繊維状ナノ物質が有する優れたネットワーク形成能を十分に生かすことができるので、その充填量に見合った機能を発現させることができ、繊維状ナノ物質の機能を種類に応じて、導電性、電磁波シールド、帯電防止、熱伝導性、硬さなどの性能を付与するための方法として好適に利用することができる。   In the present invention, the resin particle powder and the fibrous nanomaterial can be well dispersed and mixed, and as a result, the excellent network forming ability of the fibrous nanomaterial can be fully utilized. It can be expressed and can be suitably used as a method for imparting performance such as conductivity, electromagnetic shielding, antistatic, thermal conductivity, hardness, etc., depending on the type of function of the fibrous nanomaterial. .

Claims (8)

樹脂粒子の粉末に繊維状のナノ物質を分散混合するにあたり、前記ナノ物質を、前記樹脂粒子と同一種類の樹脂からなり前記樹脂粒子よりも微細な混和助成樹脂微粒子の分散共存下、液に分散させた状態で前記樹脂粒子の粉末に混合することを特徴とする、繊維状ナノ物質の樹脂粒子粉末との混合方法。   In dispersing and mixing fibrous nano-materials in resin particle powder, the nano-materials are dispersed in a liquid in the presence of a dispersion of finely mixed auxiliary resin fine particles made of the same type of resin as the resin particles. A method of mixing with the resin particle powder of fibrous nano-materials, wherein the resin particle powder is mixed in the state of being made to be. 前記ナノ物質を液に分散させた状態で前記樹脂粒子の粉末と混合すること、および、当該混合の前、当該混合の後および/または当該混合と同時に前記混和助成樹脂微粒子を液に分散させた状態で前記樹脂粒子の粉末と混合すること、を必須の要件とする、請求項1に記載の混合方法。   Mixing the nanomaterial with the resin particle powder in a state of being dispersed in the liquid, and dispersing the mixing aid resin fine particles in the liquid before the mixing, after the mixing and / or simultaneously with the mixing. The mixing method according to claim 1, wherein mixing with the resin particle powder in a state is an essential requirement. 前記繊維状のナノ物質がカーボンナノチューブである、請求項1または2に記載の混合方法。   The mixing method according to claim 1 or 2, wherein the fibrous nanomaterial is a carbon nanotube. 前記樹脂粒子と混和助成樹脂微粒子の樹脂の種類がポリテトラフルオロエチレンである、請求項1から3までのいずれかに記載の混合方法。   The mixing method according to any one of claims 1 to 3, wherein a resin type of the resin particles and the mixing aid resin fine particles is polytetrafluoroethylene. 前記繊維状のナノ物質と混和助成樹脂微粒子を分散させる液が水性液である、請求項1から4までのいずれかに記載の混合方法。   The mixing method according to any one of claims 1 to 4, wherein the liquid in which the fibrous nanomaterial and the mixing aid resin fine particles are dispersed is an aqueous liquid. 前記樹脂粒子の粒径が1〜1000μmであり、前記繊維状のナノ物質の粒径が0.01〜100μmである、請求項1から5までのいずれかに記載の混合方法。   The mixing method according to any one of claims 1 to 5, wherein the resin particles have a particle size of 1 to 1000 µm, and the fibrous nanomaterial has a particle size of 0.01 to 100 µm. 樹脂成形品を得る過程で、樹脂粒子の粉末に繊維状のナノ物質が分散されてなる混合物を得るための工程として実施される、請求項1から6までのいずれかに記載の混合方法。   The mixing method according to any one of claims 1 to 6, wherein the mixing method is carried out as a step for obtaining a mixture in which fibrous nanomaterials are dispersed in a resin particle powder in the course of obtaining a resin molded product. 前記繊維状のナノ物質が樹脂成形品への導電性付与のために添加されるものである、請求項7に記載の混合方法。   The mixing method according to claim 7, wherein the fibrous nanomaterial is added to impart conductivity to the resin molded product.
JP2011078665A 2011-03-31 2011-03-31 Method of mixing fibrous nanomaterial with resin particle powder Withdrawn JP2012210796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078665A JP2012210796A (en) 2011-03-31 2011-03-31 Method of mixing fibrous nanomaterial with resin particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078665A JP2012210796A (en) 2011-03-31 2011-03-31 Method of mixing fibrous nanomaterial with resin particle powder

Publications (1)

Publication Number Publication Date
JP2012210796A true JP2012210796A (en) 2012-11-01

Family

ID=47265188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078665A Withdrawn JP2012210796A (en) 2011-03-31 2011-03-31 Method of mixing fibrous nanomaterial with resin particle powder

Country Status (1)

Country Link
JP (1) JP2012210796A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257094A (en) * 2013-05-02 2013-08-21 航天材料及工艺研究所 Determination method for dispersibility of carbon nano-tubes in resin
WO2017022229A1 (en) * 2015-07-31 2017-02-09 日本ゼオン株式会社 Composite resin material, slurry, molded composite resin material, and process for producing slurry
WO2018066433A1 (en) * 2016-10-03 2018-04-12 日本ゼオン株式会社 Method for producing composite resin material and method for producing molded article
WO2018066528A1 (en) * 2016-10-03 2018-04-12 日本ゼオン株式会社 Slurry, and method for producing composite resin material and molded article
WO2018066458A1 (en) * 2016-10-03 2018-04-12 日本ゼオン株式会社 Slurry, composite resin material, and method for producing molded article
WO2020149370A1 (en) * 2019-01-18 2020-07-23 東邦化成株式会社 Composite secondary particles containing carbon nanotubes and method for producing same
US20210301089A1 (en) * 2018-08-01 2021-09-30 Taiyo Nippon Sanso Corporation Production method for composite resin particles, and composite resin particles
JP2022103140A (en) * 2020-12-25 2022-07-07 ダイキン工業株式会社 Binding agent arranged by compounding monolayer carbon nanotube and ptfe, composition for electrode production, arranged by use thereof, and secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257094A (en) * 2013-05-02 2013-08-21 航天材料及工艺研究所 Determination method for dispersibility of carbon nano-tubes in resin
JPWO2017022229A1 (en) * 2015-07-31 2018-05-24 日本ゼオン株式会社 Composite resin material, slurry, composite resin material molded body, and slurry production method
WO2017022229A1 (en) * 2015-07-31 2017-02-09 日本ゼオン株式会社 Composite resin material, slurry, molded composite resin material, and process for producing slurry
CN107849328A (en) * 2015-07-31 2018-03-27 日本瑞翁株式会社 Composite resin material, slurry, the manufacture method of composite resin material formed body and slurry
CN107849328B (en) * 2015-07-31 2021-04-20 日本瑞翁株式会社 Composite resin material, slurry, composite resin material molded body, and method for producing slurry
US10414896B2 (en) 2015-07-31 2019-09-17 Zeon Corporation Composite resin material, slurry, shaped composite resin material product, and slurry production process
WO2018066528A1 (en) * 2016-10-03 2018-04-12 日本ゼオン株式会社 Slurry, and method for producing composite resin material and molded article
CN109790297A (en) * 2016-10-03 2019-05-21 日本瑞翁株式会社 The manufacturing method of slurry, composite resin material and formed body
CN109790347A (en) * 2016-10-03 2019-05-21 日本瑞翁株式会社 The manufacturing method of slurry and composite resin material and formed body
JPWO2018066458A1 (en) * 2016-10-03 2019-07-18 日本ゼオン株式会社 Method of manufacturing slurry, composite resin material and molded body
WO2018066458A1 (en) * 2016-10-03 2018-04-12 日本ゼオン株式会社 Slurry, composite resin material, and method for producing molded article
WO2018066433A1 (en) * 2016-10-03 2018-04-12 日本ゼオン株式会社 Method for producing composite resin material and method for producing molded article
US11584831B2 (en) 2016-10-03 2023-02-21 Zeon Corporation Method of producing slurry, method of producing composite resin material, and method of producing shaped product
US20210301089A1 (en) * 2018-08-01 2021-09-30 Taiyo Nippon Sanso Corporation Production method for composite resin particles, and composite resin particles
WO2020149370A1 (en) * 2019-01-18 2020-07-23 東邦化成株式会社 Composite secondary particles containing carbon nanotubes and method for producing same
CN113330063A (en) * 2019-01-18 2021-08-31 东邦化成株式会社 Composite secondary particle containing carbon nanotube and method for producing same
JP7381498B2 (en) 2019-01-18 2023-11-15 ダイキンファインテック株式会社 Composite secondary particles containing carbon nanotubes and their manufacturing method
JP2022103140A (en) * 2020-12-25 2022-07-07 ダイキン工業株式会社 Binding agent arranged by compounding monolayer carbon nanotube and ptfe, composition for electrode production, arranged by use thereof, and secondary battery
JP7350049B2 (en) 2020-12-25 2023-09-25 ダイキン工業株式会社 A binder comprising a composite of single-walled carbon nanotubes and PTFE, a composition for producing electrodes, and a secondary battery using the same

Similar Documents

Publication Publication Date Title
JP2012210796A (en) Method of mixing fibrous nanomaterial with resin particle powder
CN108584918B (en) Method for efficiently dispersing carbon nanotubes
TW201339228A (en) Resin composition for EMI shielding, comprising carbon hydride composite
CN105623136A (en) Polymer conductive composite and preparation method thereof
JP6630905B2 (en) Method for granulating carbon having different bulk densities and method for producing granulated carbon
CN109880405A (en) A kind of modified carbon black particle and its preparation method and application
Cui et al. Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy
CN103160049A (en) Preparation method for nano-silver/carbon nano-tube (CNT)/polyvinyl alcohol (PVA) composite electroconductive film
JP2015061891A (en) Production method of conductive resin composition master batch and master batch
JPWO2018066433A1 (en) Method of manufacturing composite resin material and method of manufacturing molded body
Shuba et al. How effectively do carbon nanotube inclusions contribute to the electromagnetic performance of a composite material? Estimation criteria from microwave and terahertz measurements
CN109735064A (en) A kind of conductive agglomerate and preparation method thereof
Kang et al. Multiwalled carbon nanotube pretreatment to enhance tensile properties, process stability, and filler dispersion of polyamide 66 nanocomposites
JP2011042538A (en) Carbon nanotube resin composition and method for producing the same
JP4363206B2 (en) Dispersing method of carbon nanotube
CN113793717A (en) Graphene/nano carbon black/carbon nano tube composite conductive powder and preparation method thereof
CN110564113B (en) Conductive master batch and preparation method thereof
TWI753180B (en) A method for producing composite resin particle, resin molding, and composite resin particle
Botelho et al. Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin
Li et al. Conductive nylon-MXD6 composites prepared by melt compounding associated with formation of carbon black-covered PET domains serving as big conductive particles
CN106243622A (en) Carbon nano-tube/poly ether ether ketone composite powder material and preparation method for SLS
Park et al. Dispersion of multi-walled carbon nanotubes mechanically milled under different process conditions
JP2003342476A (en) Conductive resin material
Murarescu et al. Influence of MWCNT dispersion on electric properties of nanocomposites with polyester matrix
KR20210038543A (en) Method for producing composite resin particles and composite resin particles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603