JPH08332365A - Powder and fluid mixing apparatus - Google Patents

Powder and fluid mixing apparatus

Info

Publication number
JPH08332365A
JPH08332365A JP14195795A JP14195795A JPH08332365A JP H08332365 A JPH08332365 A JP H08332365A JP 14195795 A JP14195795 A JP 14195795A JP 14195795 A JP14195795 A JP 14195795A JP H08332365 A JPH08332365 A JP H08332365A
Authority
JP
Japan
Prior art keywords
powder
pipe
iron powder
reservoir tank
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14195795A
Other languages
Japanese (ja)
Inventor
Masahiko Okuda
正彦 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14195795A priority Critical patent/JPH08332365A/en
Publication of JPH08332365A publication Critical patent/JPH08332365A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE: To mix an iron powder and water flowing through a main flow pipe by allowing the iron powder in a reservoir tank to flow through the main flow pipe without pressurizing the iron powder. CONSTITUTION: Superconductive magnets 5, 6 are respectively arranged on the upstream and downstream sides of a main flow pipe 2 through which water 12 is allowed to flow from a reservoir tank 3 so as to hold. the powder supply pipe 4 communicating with the main flow pipe 2 therebetween and excited to form a magnetic field B between the superconductive magnets 5, 6 and, since the electromagnetic force F (=χ.B.dB/dz) toward the main flow pipe 2 acts on an iron powder 11 with susceptibility χ, the iron powder 11 in the reservoir tank 3 is moved toward the main flow pipe 2. Backward electromagnetic force F' is generated when the iron powder 11 passes a symmetric point P but the iron powder is continuously moved as it is by the synthetic force of inertial force Fi and the suction force of the water 12 flowing through the main flow pipe 2 to flow in the main flow pipe 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば製鉄プラントや
石油化学プラント等において流体と粉体とを混合する粉
・流体混合装置に係り、より詳しくは、磁性材からなる
粉体と流体とを安価に、かつ高能率で混合することを可
能ならしめるようにした粉・流体混合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder / fluid mixing apparatus for mixing a fluid and a powder in, for example, an iron-making plant or a petrochemical plant. The present invention relates to a powder / fluid mixing device that enables low-cost and high-efficiency mixing.

【0002】[0002]

【従来の技術】磁性材からなる粉体と流体とを混合する
粉・流体混合装置としては、例えば、製鉄プラントにお
ける磁性材である鉄粉と液体である流体とを混合するよ
うにしたものがある。このような粉・流体混合装置を、
その模式的断面構成説明図の図5を参照しながら以下に
説明すると、同図に示す符号52は流体12が流れる水
平配設されてなる主流管であり、この主流管52にはリ
ザーバタンク53の底部に設けられた垂直な粉体供給管
54が連通している。前記リザーバタンク53内には鉄
粉61が入れられており、鉄粉61は加圧ポンプ55で
加圧されて前記粉体供給管54を介して主流管52に供
給されるようになっている。
2. Description of the Related Art As a powder / fluid mixing apparatus for mixing a powder made of a magnetic material with a fluid, for example, an apparatus for mixing iron powder as a magnetic material and a fluid as a liquid in an iron making plant is used. is there. Such a powder / fluid mixing device
This will be described below with reference to FIG. 5 which is a schematic sectional configuration explanatory view. Reference numeral 52 shown in the figure is a mainstream pipe horizontally arranged in which the fluid 12 flows, and a reservoir tank 53 is provided in the mainstream pipe 52. A vertical powder supply pipe 54 provided at the bottom of the is communicating. Iron powder 61 is put in the reservoir tank 53, and the iron powder 61 is pressurized by a pressure pump 55 and supplied to the mainstream pipe 52 via the powder supply pipe 54. .

【0003】以下、上記構成になる粉・流体混合装置5
1の作用態様を説明すると、加圧ポンプ55の作動によ
りリザーバタンク53の内圧が5×105 〜6×105
Paになると、このリザーバタンク53内の鉄粉61は
粉体供給管54を介して主流管52内に噴出し、噴出し
続ける鉄粉61は主流管52を流れる流体12と合流し
て混合されると共に、鉄粉61と流体12とからなる混
合流体13は次工程に送給される。
Hereinafter, the powder / fluid mixing apparatus 5 having the above-mentioned configuration
Explaining the operation mode of No. 1, the internal pressure of the reservoir tank 53 is 5 × 10 5 to 6 × 10 5 by the operation of the pressurizing pump 55.
When the pressure reaches Pa, the iron powder 61 in the reservoir tank 53 is jetted into the mainstream pipe 52 via the powder supply pipe 54, and the iron powder 61 which continues to jet is merged with the fluid 12 flowing in the mainstream pipe 52 to be mixed. At the same time, the mixed fluid 13 composed of the iron powder 61 and the fluid 12 is fed to the next step.

【0004】なお、前記リザーバタンク53の上部側に
連通してなるものは、バルブ57が介装されてなる粉体
供給基管56である。そして、リザーバタンク53内に
鉄粉61を供給するときには前記バルブ57を開弁し、
またリザーバタンク53内の鉄粉61を加圧ポンプ55
で加圧して、鉄粉61を主流管52に供給するときには
閉弁するというように、バッチ方式になっている。
Incidentally, what is communicated with the upper side of the reservoir tank 53 is a powder supply base pipe 56 having a valve 57 interposed therein. When the iron powder 61 is supplied into the reservoir tank 53, the valve 57 is opened,
Further, the iron powder 61 in the reservoir tank 53 is fed to the pressurizing pump 55.
It is a batch system in which the valve is closed when the iron powder 61 is supplied to the mainstream pipe 52 by pressurizing.

【0005】[0005]

【発明が解決しようとする課題】上記構成になる従来例
に係る粉・流体混合装置では、上記のとおり、リザーバ
タンクは5×105 〜6×105 Paもの高圧に耐える
高圧容器にする必要があり、高圧ガス取締法の規制対象
になるため、リザーバタンクの価格が嵩み、粉・流体混
合装置が高価になるという経済上の解決すべき課題があ
った。さらに、この粉・流体混合装置はバッチ方式であ
るため粉体と流体との混合能率が低いという解決すべき
課題や、バルブ操作の繰返しによりバルブが損耗するの
で、粉・流体混合装置の保全費が嵩むという解決すべき
課題があった。
In the powder / fluid mixing apparatus according to the conventional example having the above structure, as described above, the reservoir tank needs to be a high-pressure container capable of withstanding a high pressure of 5 × 10 5 to 6 × 10 5 Pa. However, there is a problem to be solved economically that the price of the reservoir tank increases and the powder / fluid mixing device becomes expensive because it is subject to the regulation of the High Pressure Gas Control Law. Furthermore, since this powder / fluid mixing device is a batch system, the problem that the mixing efficiency of powder and fluid is low and the valve wears out due to repeated valve operation, so the maintenance cost of the powder / fluid mixing device is low. However, there was a problem to be solved that

【0006】従って、本発明の目的とするところは、リ
ザーバタンクを薄肉にすることにより、装置自体が安価
で、高能率で粉体と流体とを混合することができ、かつ
保全費の削減を可能ならしめる粉・流体混合装置を提供
するにある。
Therefore, an object of the present invention is to make the reservoir tank thin so that the apparatus itself is inexpensive, the powder and the fluid can be mixed with high efficiency, and the maintenance cost can be reduced. The purpose is to provide a powder / fluid mixing device that makes it possible.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の請求項1に係る粉・流体混合装置が採用し
た手段は、流体が流される主流管に、リザーバタンクか
ら磁性材からなる粉体を供給する粉体供給管が連通して
なる、前記流体と粉体とを混合する粉・流体混合装置に
おいて、少なくとも前記粉体供給管を挟む前記主流管の
上流側と下流側との該主流管の外側近傍位置のそれぞれ
に、前記主流管と粉体供給管とに磁力を及ぼす磁石を配
設したことを特徴とする。
In order to solve the above-mentioned problems, the means adopted by the powder / fluid mixing apparatus according to claim 1 of the present invention is a main flow pipe through which a fluid is flown, from a reservoir tank to a magnetic material. In a powder / fluid mixing device for mixing the fluid and the powder, in which a powder supply pipe for supplying the powder is in communication, at least an upstream side and a downstream side of the mainstream pipe sandwiching the powder supply pipe. A magnet that exerts a magnetic force on the mainstream pipe and the powder supply pipe is arranged at each of positions near the outside of the mainstream pipe.

【0008】本発明の請求項2に係る粉・流体混合装置
が採用した手段は、請求項1に記載の粉・流体混合装置
において、前記磁石を超電導磁石にしたことを特徴とす
る。
The means adopted by the powder / fluid mixing apparatus according to claim 2 of the present invention is the powder / fluid mixing apparatus according to claim 1, wherein the magnet is a superconducting magnet.

【0009】[0009]

【作用】本発明の請求項1に係る粉・流体混合装置によ
れば、磁石の磁力の働きによりリザーバタンク内の磁性
材からなる粉体が粉体供給管を介して主流管に供給さ
れ、そして粉体と主流管を流れる流体とが混合されるの
で、高圧に耐えるリザーバタンクを使用する必要も、バ
ッチ方式にする必要もなく、またリザーバタンクから主
流管への粉体の供給を継続しながら、このリザーバタン
クに粉体を連続的に補給することができる。
According to the powder / fluid mixing apparatus of the first aspect of the present invention, the magnetic force of the magnet causes the powder made of the magnetic material in the reservoir tank to be supplied to the mainstream pipe via the powder supply pipe. Then, since the powder and the fluid flowing through the mainstream pipe are mixed, it is not necessary to use a reservoir tank that can withstand high pressure, it is not necessary to use a batch system, and the supply of powder from the reservoir tank to the mainstream pipe is continued. However, powder can be continuously supplied to the reservoir tank.

【0010】本発明の請求項2に係る粉・流体混合装置
によれば、超電導磁石を用いるので、電力消費量を節約
することができる。
According to the powder / fluid mixing apparatus of the second aspect of the present invention, since the superconducting magnet is used, the power consumption can be saved.

【0011】[0011]

【実施例】以下、本発明の実施例1に係る粉・流体混合
装置を、その模式的断面構成説明図の図1(a)と、そ
の作用説明図の図1(b)と、縦軸に鉄粉の移動速度
(g/min)をとり、横軸に最大磁場強度(T)をと
って示す、磁場と主流管への鉄粉の移動速度との関係説
明図(丸印で示している。)の図3とを順次参照しなが
ら説明する。
EXAMPLE A powder / fluid mixing apparatus according to Example 1 of the present invention will be described below with reference to FIG. 1 (a), which is a schematic sectional configuration explanatory view, FIG. Is a moving speed (g / min) of iron powder, and the maximum magnetic field strength (T) is taken on the horizontal axis. An explanatory diagram of the relationship between the magnetic field and the moving speed of iron powder to the mainstream pipe (indicated by circles) Will be described with reference to FIG.

【0012】先ず、粉・流体混合装置の構成を、図1
(a)を参照しながら説明すると、この粉・流体混合装
置1は、磁性材である鉄粉11と液体である水12とを
混合するものであるが、同図に示す符号2は水12が流
れる水平配設されてなる主流管(塩化ビニール製で、内
径は30mm)であり、この主流管2にはリザーバタン
ク3の底部に設けられた下方に突出する垂直な粉体供給
管(塩化ビニール製で、内径は10mm)4が連通して
いる。前記リザーバタンク3内には鉄粉11が入れられ
ており、この鉄粉11は前記粉体供給管4を介して主流
管2に供給されるようになっている。一方、リザーバタ
ンク3の上部側には粉体供給基管8が連通しており、必
要に応じて随時このリザーバタンク3に鉄粉11を補給
するように構成されている。
First, the structure of the powder / fluid mixing apparatus is shown in FIG.
Describing with reference to (a), the powder / fluid mixing apparatus 1 mixes iron powder 11 which is a magnetic material and water 12 which is a liquid. Reference numeral 2 shown in FIG. Is a mainstream pipe (made of vinyl chloride and having an inner diameter of 30 mm) horizontally arranged, and the mainstream pipe 2 is provided with a vertical powder supply pipe (chlorine chloride) provided at the bottom of the reservoir tank 3 and projecting downward. It is made of vinyl and has an inner diameter of 10 mm). Iron powder 11 is put in the reservoir tank 3, and the iron powder 11 is supplied to the mainstream pipe 2 via the powder supply pipe 4. On the other hand, a powder supply base pipe 8 communicates with the upper side of the reservoir tank 3 and is configured to replenish the reservoir tank 3 with iron powder 11 as needed.

【0013】そして、前記粉体供給管4を挟む両側、つ
まり前記主流管2の上流側と下流側とのその外側近傍位
置のそれぞれには、前記主流管2と粉体供給管4とに対
して磁力を及ぼす7T(テスラ)の磁場を発生する超電
導磁石5,6が配設されている。これら超電導磁石5,
6はそれぞれ断熱保温ケース7,7内に収納され、液体
窒素と液体ヘリウムとにより4K(−269℃)に冷却
されている。なお、前記断熱保温ケース7,7内におい
て、これら超電導磁石5,6をほぼ囲繞してなるもの
は、NbTiからなる超電導線が巻回されてなる巻枠5
a,6aである。なお、この実施例1では超電導磁石
5,6を用いているが、これを極く一般的な電磁石に代
えることができる。
On both sides of the powder feed pipe 4, that is, on the upstream side and the downstream side of the main flow pipe 2, respectively, in the vicinity of the outer sides thereof, the main flow pipe 2 and the powder feed pipe 4 are separated from each other. Superconducting magnets 5 and 6 that generate a magnetic field of 7 T (Tesla) exerting a magnetic force are arranged. These superconducting magnets 5,
6 is housed in adiabatic heat insulating cases 7 and 7, respectively, and cooled to 4 K (−269 ° C.) by liquid nitrogen and liquid helium. In the heat insulating case 7, 7, the superconducting magnets 5 and 6 are substantially surrounded by a winding frame 5 formed by winding a superconducting wire made of NbTi.
a and 6a. It should be noted that although the superconducting magnets 5 and 6 are used in the first embodiment, they can be replaced with an extremely general electromagnet.

【0014】以下、上記構成になる粉・流体混合装置1
の作用態様を、図1(b)を参照しながら説明すると、
超電導磁石5,6により粉体供給管4の径方向の中心を
通る一点鎖線で示すz軸の両側に急激な正勾配と負勾配
を有する山型の磁場が形成され、超電導磁石5,6の間
の鉄粉11に磁場強度Bと、磁場の勾配dB/dzに比
例する電磁力、即ち鉄粉11の磁化率をχとすると、χ
・B・(dB/dz)の電磁力Fが作用する。この電磁
力Fにより、リザーバタンク3内の鉄粉11は磁場強度
の大きい方に引かれて、主流管2の方向へ移動する。な
お、この場合における最大の磁場勾配dB/dzは25
T/mであり、また磁場強度と磁場勾配との積B・(d
B/dz)は135T2 /mである。
Hereinafter, the powder / fluid mixing apparatus 1 having the above structure
Referring to FIG. 1B, the operation mode of
The superconducting magnets 5 and 6 form a mountain-shaped magnetic field having a steep positive gradient and a negative gradient on both sides of the z-axis shown by the alternate long and short dash line passing through the radial center of the powder supply tube 4, and If the magnetic field strength B of the iron powder 11 between and the electromagnetic force proportional to the magnetic field gradient dB / dz, that is, the magnetic susceptibility of the iron powder 11, is χ,
-The electromagnetic force F of B- (dB / dz) acts. Due to this electromagnetic force F, the iron powder 11 in the reservoir tank 3 is attracted to the one having the larger magnetic field strength and moves toward the mainstream pipe 2. The maximum magnetic field gradient dB / dz in this case is 25
T / m, and the product of the magnetic field strength and the magnetic field gradient B · (d
B / dz) is 135 T 2 / m.

【0015】そして、鉄粉11が超電導磁石5,6の対
称点Pを超えると、同図に示すように、磁場が負勾配に
なるので、鉄粉11の主流管2方向への移動を妨げる電
磁力F′が作用するが、慣性力Fiと主流管2を流れる
水12の吸引力との総合力によって、鉄粉11は主流管
2の方向に移動し続ける。そして、主流管2に流入する
と共に、水12と合流してスラリー13となって次工程
に送給される。
When the iron powder 11 exceeds the symmetry point P of the superconducting magnets 5 and 6, the magnetic field has a negative gradient as shown in the figure, so that the iron powder 11 is prevented from moving in the direction of the mainstream pipe 2. Although the electromagnetic force F ′ acts, the iron powder 11 continues to move toward the mainstream pipe 2 due to the total force of the inertial force Fi and the suction force of the water 12 flowing through the mainstream pipe 2. Then, while flowing into the mainstream pipe 2, it joins with the water 12 to form a slurry 13 which is fed to the next step.

【0016】次に、図3を参照しながら、磁場強度に対
する鉄粉11の主流管2への移動速度について説明する
と、超電導磁石5,6で形成される磁場が大きくなれば
なるほど鉄粉11の移動速度が増大しており、そして磁
場が7Tの本実施例の場合には150g/min(図3
中において丸印で示されている。)であった。
Next, referring to FIG. 3, the moving speed of the iron powder 11 to the mainstream pipe 2 with respect to the magnetic field strength will be described. As the magnetic field formed by the superconducting magnets 5 and 6 increases, the iron powder 11 In the case of the present example in which the moving speed is increased and the magnetic field is 7T, 150 g / min (Fig. 3).
It is indicated by a circle inside. )Met.

【0017】このように、超電導磁石5,6の働きで、
リザーバタンク3内の鉄粉11を移動させて主流管2に
流入させることができるので、従来のように、5×10
5 〜6×105 Paもの高圧に耐え得る高価なリザーバ
タンク3を使用する必要も、バルブの開閉操作の繰り返
しを行うバッチ方式にする必要もない。そして、リザー
バタンク3から主流管2への鉄粉11の供給を継続しな
がら、このリザーバタンク3に粉体11を連続的に補給
することができるので、リザーバタンク3の価格低減に
よる粉・流体混合装置の価格の削減、鉄粉11と水12
との混合能率の向上および粉・流体混合装置の保全費の
削減が可能になるという効果がある。
In this way, by the action of the superconducting magnets 5 and 6,
Since the iron powder 11 in the reservoir tank 3 can be moved and flowed into the mainstream pipe 2, as in the conventional case, 5 × 10
There is no need to use an expensive reservoir tank 3 that can withstand a high pressure of 5 to 6 × 10 5 Pa, or to use a batch system in which the valve opening / closing operation is repeated. The powder 11 can be continuously replenished to the reservoir tank 3 while continuing to supply the iron powder 11 from the reservoir tank 3 to the mainstream pipe 2. Cost reduction of mixing equipment, iron powder 11 and water 12
This has the effect of improving the mixing efficiency with and reducing the maintenance cost of the powder / fluid mixing device.

【0018】なお、本実施例1の場合では、粉体供給管
4の粉体入口4aにおいて若干のブリッジ現象が生じ、
粉体供給管4から主流管2に鉄粉11が流入しなくなる
場合があった。しかしながら、磁場を7Tよりも強くす
れば、ブリッジを生じさせることなく、リザーバタンク
3内の鉄粉11を主流管2に流入させることが可能にな
ると考えられる。
In the case of the first embodiment, a slight bridging phenomenon occurs at the powder inlet 4a of the powder supply pipe 4,
In some cases, the iron powder 11 did not flow from the powder supply pipe 4 into the mainstream pipe 2. However, if the magnetic field is made stronger than 7T, the iron powder 11 in the reservoir tank 3 can be allowed to flow into the mainstream pipe 2 without causing a bridge.

【0019】次に、本発明の実施例2に係る粉・流体混
合装置を、その模式的断面構成説明図の図2(a)と、
その作用説明図の図2(b)と、実施例1の項で説明し
た磁場と主流管への鉄粉の移動速度との関係説明図(四
角印で示している。)の図3とを参照しながら説明す
る。但し、本実施例が上記実施例と相違するところは、
超電導磁石5,6の配設数の相違にあるから、上記実施
例1と同一のもの並びに同一機能を有するものを同一符
号を付して、その相違する点について説明する。
Next, a powder / fluid mixing apparatus according to a second embodiment of the present invention will be described with reference to FIG.
FIG. 2B of the operation explanatory diagram thereof and FIG. 3 of the relationship explanatory diagram (indicated by square marks) between the magnetic field and the moving speed of the iron powder to the mainstream pipe described in the section of the first embodiment. It will be explained with reference to FIG. However, the difference between this embodiment and the above embodiment is that
Since there are differences in the number of superconducting magnets 5 and 6, the same components and those having the same functions as those in the first embodiment are designated by the same reference numerals, and the differences will be described.

【0020】即ち、本実施例2に係る粉・流体混合装置
1の構成は、図2(a)から良く理解されるように、上
記実施例1のように、粉体供給管4を挟む両側の前記主
流管2の外側近傍位置のそれぞれに、主流管2と粉体供
給管4との連通部で7Tの磁場を発生する超電導磁石
5,6を配設すると共に、同図における主流管2の下側
位置であって、かつ主流管2の径方向の中心を通る中心
線に対して対称となる位置に超電導磁石5,6を追加配
設したものである。
That is, the structure of the powder / fluid mixing apparatus 1 according to the second embodiment is, as well understood from FIG. 2A, as in the first embodiment, both sides sandwiching the powder supply pipe 4 therebetween. The superconducting magnets 5 and 6 for generating a magnetic field of 7T are arranged at the respective positions near the outside of the mainstream pipe 2 and the mainstream pipe 2 in FIG. The superconducting magnets 5 and 6 are additionally disposed at the lower position of the main flow tube 2 and at a position symmetrical with respect to a center line passing through the radial center of the mainstream pipe 2.

【0021】以下、本実施例2に係る粉・流体混合装置
1の作用態様を、図2(b)を参照して説明すると、超
電導磁石5,5,6,6により粉体供給管4の径方向の
中心を通る一点鎖線で示すz軸の両側に急激な正勾配と
負勾配を有する2つの山を有する磁場が形成される。そ
のため、超電導磁石5,6の間の鉄粉11に、上記実施
例と同様に、χ・B・(dB/dz)の電磁力Fが作用
するので、鉄粉11を主流管2の方向に移動させること
ができる。
The mode of operation of the powder / fluid mixing apparatus 1 according to the second embodiment will be described below with reference to FIG. 2 (b). A magnetic field having two peaks having a steep positive gradient and a negative gradient is formed on both sides of the z-axis indicated by the one-dot chain line passing through the radial center. Therefore, the electromagnetic force F of χ · B · (dB / dz) acts on the iron powder 11 between the superconducting magnets 5 and 6 as in the above embodiment, so that the iron powder 11 is directed toward the main flow pipe 2. It can be moved.

【0022】因みに、磁場強度に対する鉄粉11の主流
管2への移動速度は、図3中において四角印で示すよう
に、超電導磁石5,5,6,6で形成される磁場が7T
の場合には220g/minで、上記実施例1の場合の
約1.5倍であった。
Incidentally, the moving speed of the iron powder 11 to the mainstream tube 2 with respect to the magnetic field strength is 7T when the magnetic field formed by the superconducting magnets 5, 5, 6, 6 is as shown by the square marks in FIG.
In this case, it was 220 g / min, which was about 1.5 times that in the case of Example 1 above.

【0023】さらに、本実施例2では、粉体供給管4側
の超電導磁石5,6だけを励磁し、粉体供給管4の粉体
入口4aにブリッジ現象を発生させた後、粉体供給管4
側の超電導磁石5,6と下側の超電導磁石5,6とを共
に励磁したところ、ブリッジが破壊され、支障なくリザ
ーバタンク3内の鉄粉11を主流管2に流出させること
ができた。従って、本実施例は上記実施例に係る効果に
加えて、最大磁場が7Tでも鉄粉11と水12との安定
した混合操業を継続することができるという多大な効果
がある。
Further, in the second embodiment, only the superconducting magnets 5 and 6 on the powder supply pipe 4 side are excited to generate a bridge phenomenon at the powder inlet 4a of the powder supply pipe 4, and then the powder supply is performed. Tube 4
When both the superconducting magnets 5 and 6 on the side and the superconducting magnets 5 and 6 on the lower side were excited together, the bridge was broken, and the iron powder 11 in the reservoir tank 3 could be flowed out to the mainstream pipe 2 without trouble. Therefore, in addition to the effects of the above-described embodiment, this embodiment has a great effect that the stable mixing operation of the iron powder 11 and the water 12 can be continued even when the maximum magnetic field is 7T.

【0024】本発明の実施例3に係る粉・流体混合装置
を、その主要部を示す模式的断面構成説明図の図4を参
照して説明すると、これは、主流管2に対して2本の粉
体供給管4,4を連通させ、そしてこれら粉体供給管
4,4を挟む両側位置のそれぞれに、超電導磁石5,
6、超電導磁石5,6を配設したものである。
A powder / fluid mixing apparatus according to a third embodiment of the present invention will be described with reference to FIG. 4 which is a schematic cross-sectional configuration explanatory view showing a main part thereof. Of the superconducting magnets 5 and 4 are communicated with each other, and the superconducting magnets 5 and
6, the superconducting magnets 5 and 6 are arranged.

【0025】従って、超電導磁石5,6、超電導磁石
5,6の働きで、リザーバタンク内の鉄粉11を2本の
粉体供給管4,4のそれぞれを介して主流管2に流入さ
せ、主流管2を流れる水12と混合させることができる
ので、本実施例は上記実施例と同効である。
Therefore, the superconducting magnets 5, 6 and the superconducting magnets 5, 6 cause the iron powder 11 in the reservoir tank to flow into the main flow pipe 2 via the two powder supply pipes 4, 4, respectively. Since this can be mixed with the water 12 flowing through the main flow pipe 2, this embodiment has the same effect as the above embodiment.

【0026】なお、以上では、何れも粉体が鉄粉11で
ある場合を例として説明したが、粉体は強磁性体であれ
ば良いから特に鉄粉11に限定されるものではなく、ま
た磁性を有する流体の混合にも適用することができるの
で特に粉体に限定されるものではなく、さらに本発明の
技術的思想を逸脱しない範囲内における設計変更等は自
由自在である。
In the above description, the case where the powder is the iron powder 11 has been described as an example. However, the powder is not limited to the iron powder 11 because the powder may be a ferromagnetic material. Since it can be applied to the mixing of fluids having magnetism, it is not particularly limited to powder, and further, design changes and the like can be freely made without departing from the technical idea of the present invention.

【0027】[0027]

【発明の効果】以上詳述したように、本発明の請求項1
又は2に係る粉・流体混合装置によれば、磁石の磁力の
働きによりリザーバタンク内の磁性材からなる粉体を粉
体供給管を介して主流管に供給し、そして粉体と流体と
を混合することができるので、高圧に耐えるリザーバタ
ンクを使用する必要も、バルブの開閉操作を繰り返すと
いうバッチ方式にする必要もなく、さらにリザーバタン
クから主流管への粉体の供給を継続しながら、このリザ
ーバタンクに粉体を連続的に補給することができる。そ
のため、リザーバタンクの価格低減による粉・流体混合
装置の価格の削減、粉体と流体との混合能率の向上、粉
・流体混合装置の保全費の削減が可能になるという多大
な効果がある。
As described in detail above, the first aspect of the present invention
According to the powder / fluid mixing apparatus of the second aspect, the powder of the magnetic material in the reservoir tank is supplied to the mainstream pipe through the powder supply pipe by the action of the magnetic force of the magnet, and the powder and the fluid are mixed. Since they can be mixed, there is no need to use a reservoir tank that withstands high pressure, nor is it necessary to use a batch system in which the valve opening and closing operations are repeated, and while continuing to supply the powder from the reservoir tank to the mainstream pipe, The powder can be continuously supplied to the reservoir tank. Therefore, it is possible to reduce the price of the powder / fluid mixing device by reducing the price of the reservoir tank, improve the mixing efficiency of the powder and the fluid, and reduce the maintenance cost of the powder / fluid mixing device.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明の実施例1に係る粉・流体
混合装置の模式的断面構成説明図であり、図1(b)は
その作用説明図である。
FIG. 1 (a) is a schematic sectional configuration explanatory view of a powder / fluid mixing apparatus according to a first embodiment of the present invention, and FIG. 1 (b) is an operation explanatory view thereof.

【図2】図2(a)は本発明実施例2に係る粉・流体混
合装置の模式的断面構成説明図であり、図2(b)はそ
の作用説明図である。
FIG. 2 (a) is a schematic sectional configuration explanatory view of a powder / fluid mixing apparatus according to a second embodiment of the present invention, and FIG. 2 (b) is an operation explanatory view thereof.

【図3】磁場と主流管への鉄粉の移動速度との関係説明
図である。
FIG. 3 is an explanatory diagram of a relationship between a magnetic field and a moving speed of iron powder to a mainstream pipe.

【図4】本発明の実施例3に係る粉・流体混合装置の主
要部を示す模式的断面構成説明図である。
FIG. 4 is a schematic sectional configuration explanatory view showing a main part of a powder / fluid mixing apparatus according to a third embodiment of the present invention.

【図5】従来例に係る粉・流体混合装置の模式的断面構
成説明図である。
FIG. 5 is a schematic sectional configuration explanatory diagram of a powder / fluid mixing device according to a conventional example.

【符号の説明】[Explanation of symbols]

1…粉・流体混合装置 2…主流管 3…リザーバタンク 4…粉体供給管,4a…粉体入口 5…超電導磁石,5a…巻枠 6…超電導磁石,6a…巻枠 7…断熱保温ケース 8…粉体供給基管 11…鉄粉 12…水 13…スラリー DESCRIPTION OF SYMBOLS 1 ... Powder / fluid mixing device 2 ... Main flow pipe 3 ... Reservoir tank 4 ... Powder supply pipe, 4a ... Powder inlet 5 ... Superconducting magnet, 5a ... Reel 6 ... Superconducting magnet, 6a ... Reel 7 ... Adiabatic heat insulation case 8 ... Powder supply base pipe 11 ... Iron powder 12 ... Water 13 ... Slurry

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 流体が流される主流管に、リザーバタン
クから磁性材からなる粉体を供給する粉体供給管が連通
してなる、前記流体と粉体とを混合する粉・流体混合装
置において、少なくとも前記粉体供給管を挟む前記主流
管の上流側と下流側との該主流管の外側近傍位置のそれ
ぞれに、前記主流管と粉体供給管とに磁力を及ぼす磁石
を配設したことを特徴とする粉・流体混合装置。
1. A powder / fluid mixing apparatus for mixing a fluid and a powder, wherein a powder supply pipe for supplying powder of a magnetic material from a reservoir tank is connected to a main flow pipe through which a fluid flows. A magnet for exerting a magnetic force on the mainstream pipe and the powder supply pipe is provided at each of positions on the upstream side and the downstream side of the mainstream pipe sandwiching the powder supply pipe, at positions near the outside of the mainstream pipe. Powder / fluid mixing device characterized by
【請求項2】 前記磁石を超電導磁石にしたことを特徴
とする請求項1に記載の粉・流体混合装置。
2. The powder / fluid mixing apparatus according to claim 1, wherein the magnet is a superconducting magnet.
JP14195795A 1995-06-08 1995-06-08 Powder and fluid mixing apparatus Withdrawn JPH08332365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14195795A JPH08332365A (en) 1995-06-08 1995-06-08 Powder and fluid mixing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14195795A JPH08332365A (en) 1995-06-08 1995-06-08 Powder and fluid mixing apparatus

Publications (1)

Publication Number Publication Date
JPH08332365A true JPH08332365A (en) 1996-12-17

Family

ID=15304066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14195795A Withdrawn JPH08332365A (en) 1995-06-08 1995-06-08 Powder and fluid mixing apparatus

Country Status (1)

Country Link
JP (1) JPH08332365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319530A (en) * 1998-05-20 1999-11-24 Nok Corp Method for dispersing conductive particle flocculate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319530A (en) * 1998-05-20 1999-11-24 Nok Corp Method for dispersing conductive particle flocculate

Similar Documents

Publication Publication Date Title
US4421464A (en) Liquid helium pump
FI93766C (en) Electromagnetic valve for controlling the flow of a fluid in a tube
GB1578396A (en) Magnetic separator
CN103807232A (en) Hydraulic drive apparatus for work machine
US5026681A (en) Diamagnetic colloid pumps
US3302418A (en) Method and apparatus for handling liquids
JPH08332365A (en) Powder and fluid mixing apparatus
US3357441A (en) Fluid control apparatus
JPS59130534A (en) Method and appaatus for forming stream consisting of at least two phases from at least two primary streams
JPS5958277A (en) Three-way solenoid valve
GB1423188A (en) Nuclear reactor including a fluidic shut-down system
US2768951A (en) Method and apparatus for the proportioned delivery of gas quantities
US5855228A (en) Control valve assembly
CN206555533U (en) A kind of high-voltage electromagnetic starter
JP2003175324A (en) Ejector type gas-liquid mixing apparatus
CN205230685U (en) Fluid magnetic processor
JPS57199917A (en) Electromagnetic flowmeter for liquid metal
CN109351504A (en) Lorentz force fluid injector
JPS6082255A (en) Device and method for adjusting transfer rate of molten metal
US2031435A (en) Electrode arrangement for controlling electric arcs
CN215086222U (en) Continuous efficient gas mixing device
JPS62189969A (en) Double induction type ring passage-shaped linear induction electromagnetic pump
JPS57182810A (en) Controller for supplying fluid to plural loads
SU1622650A1 (en) Active nossle of jet pump
RU2011172C1 (en) Peristaltic liquid batchmeter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903