JPS6082255A - Device and method for adjusting transfer rate of molten metal - Google Patents

Device and method for adjusting transfer rate of molten metal

Info

Publication number
JPS6082255A
JPS6082255A JP18590583A JP18590583A JPS6082255A JP S6082255 A JPS6082255 A JP S6082255A JP 18590583 A JP18590583 A JP 18590583A JP 18590583 A JP18590583 A JP 18590583A JP S6082255 A JPS6082255 A JP S6082255A
Authority
JP
Japan
Prior art keywords
electromagnet
molten metal
magnetic field
superconducting
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18590583A
Other languages
Japanese (ja)
Inventor
Masanao Nanba
南波 正直
Hideki Yamazaki
秀樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18590583A priority Critical patent/JPS6082255A/en
Publication of JPS6082255A publication Critical patent/JPS6082255A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/181Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To control uniformly the transfer flow rate of a molten metal by disposing a superconductive electromagnet and a normal conductive electromagnet to a molten metal flow part so as to cross each other in the changed directions of the magnetic fields and adjusting the excitation current to the superconductive coils and normal conductive coils. CONSTITUTION:A superconductive electromagnet 5 provided with superconductive coils 5a, 5b and a normal conductive electromagnet 6 provided with normal conductive coils 6a, 6b and an iron core 6c are provided in the nozzle part 3 of a tundish 2 and are so constituted that the respective magnetic fields 7a, 7b intersect orthogonally with each other. Excitation current is then alternately supplied from power sources 8a, 8b to said electromagnets to generate the electromagnetic force in the direction opposite from the flow of the molten steel 1 flowing downward from the nozzle part 3 to a mold 4 to the molten steel, thereby controlling the downflow rate of the molten steel. The transfer rate of the molten steel 1 is controlled in this stage by combining ingeniously the large brake force by the electromagnet 5 and the high speed responsiveness by the electromagnet 6. The transfer rate of the molten steel is thus uniformly adjusted and the quality uniformity of the product is improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は例えば溶鋼の連続鋳造のように、金属を溶融し
た溶湯を一方の容器から他方の容器へ流動移送する際に
、その移送用を調整する装置と方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for adjusting the flow of molten metal when it is fluidly transferred from one container to another, such as in continuous casting of molten steel. The present invention relates to an apparatus and a method for doing so.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近製鋼過程において省エネルギーを目的として製鋼自
動化が盛んである。その一つに、連続鋳造設備がある。
Recently, steelmaking automation has become popular for the purpose of saving energy in the steelmaking process. One of them is continuous casting equipment.

これは溶融した鋼を取鍋から一旦タンディッシュに溜め
、その後連続的にタンディツシュ下部に設けられたノズ
ルからモールド部に給湯され、その後連続的に鋼が製造
されるものである。
In this method, molten steel is temporarily stored in a tundish from a ladle, and then continuously supplied to a mold part from a nozzle provided at the bottom of the tundish, and then steel is manufactured continuously.

取鍋からタンディツシュへの給湯は比較的連続給湯され
るがその移送量に変動があり、したがってタンディツシ
ュ溶鋼湯面も多少変動する。それにもかかわらずタンデ
ィツシュからモールド部への注鋼量を一定に制御できる
装置および方法が要望されている。
Although hot water is supplied relatively continuously from the ladle to the tundish, the amount of the molten metal transferred varies, and therefore the molten steel level in the tundish also fluctuates to some extent. Nevertheless, there is a need for an apparatus and method that can control the amount of steel poured from the tundish into the mold part at a constant level.

連続鋳造設備においてはその設備の最上部のタンディツ
シュには約一時間毎に、取鍋から溶鋼がゆっくり給湯さ
れる。一方タンディッシュからモールド部への注鋼は、
タンディツシュ下部のノズルを通じて連続的に行なわれ
るが、その注鋼量はタンディツシュ湯面レベルによって
変化する。注鋼量が変化することの欠点としては製造さ
れる鋼の材質の微妙な変化バラツキやブレークアウトと
いわれる鋳造品の破損というトラブルを生む原因となる
。このため従来はノズル部に機械的に開度な変えられる
弁を設け、調整しているが、機械的きない。これは溶融
アルミや半田、亜鉛等の溶湯の流量調整においても同様
である。
In continuous casting equipment, molten steel is slowly fed from a ladle into the tundish at the top of the equipment approximately every hour. On the other hand, pouring steel from the tundish to the mold part,
The pouring is carried out continuously through a nozzle at the bottom of the tundish, and the amount of steel poured varies depending on the level of the molten metal in the tundish. The disadvantage of changing the amount of steel poured is that it can cause problems such as slight variations in the quality of the steel being manufactured and damage to the cast product called breakout. For this reason, conventionally, a valve whose opening degree can be changed mechanically is provided in the nozzle section for adjustment, but this is not possible mechanically. This also applies to the flow rate adjustment of molten metal such as molten aluminum, solder, and zinc.

〔発明の目的〕[Purpose of the invention]

本発明は溶湯の流動移送をする際に、その移送量を均一
になるように調整する装置と方法を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus and a method for adjusting the amount of molten metal to be transferred uniformly when fluidly transferring the molten metal.

〔発明の概要〕[Summary of the invention]

本発明においては、金属を溶融した溶湯を一方の容器か
ら他方の容器へ流動移送する際にその移送量を調整する
装置において、溶湯流動部に後記する常電導電磁石より
高い直流磁界を発生する超電導コイルを有する超電導電
磁石と、この超電導電磁石よりも高速応性励磁電流制御
可能な常電導コイルを有する常電導電磁石とを磁界の方
向を変えて鎖交するように配設した装置にし、金属を溶
融した溶湯な一方の容器から他方の容器へ流動移送する
際にその移送量を調整する方法において、溶湯流動部に
後記する常電導電磁石より高い直流磁界を発生する超電
導コイルを有する超電導電磁石と、この超電導電磁石よ
りも高速応性励磁電流制御可能な常電導コイルを有する
常電導電磁石とを磁界の方向を変えて鎖交するように配
設し、流動溶湯が緩慢で大きい変化に対する制御は超電
導コイルの励磁電流の調整により行ない、急激で小さい
変化に対する制御は常電導コイルの励磁電流の調整で行
なう方法とすることにより、溶湯の流動移送を電磁的に
流動変動の緩急に応じて、均一になるよう制御するもの
である。
In the present invention, in a device that adjusts the transfer amount when a molten metal containing molten metal is fluidly transferred from one container to another, a superconducting magnet that generates a higher DC magnetic field than a normal conductive electromagnet (described later) in the molten metal flowing section is used. A device in which a superconducting electromagnet with a coil and a normal-conducting electromagnet with a normal-conducting coil that can control reactive excitation current faster than the superconducting electromagnet are interlinked by changing the direction of the magnetic field is used to melt metal. A method for adjusting the transfer amount when molten metal is fluidly transferred from one container to another, includes a superconducting electromagnet having a superconducting coil that generates a DC magnetic field higher than that of a normal-conducting electromagnet (described later) in a molten metal flowing part, and this superconducting electromagnet. A normal-conducting electromagnet with a normal-conducting coil that can control excitation current faster than an electromagnet is arranged so that the direction of the magnetic field is changed and interlinked, and the excitation current of the superconducting coil is used to control slow and large changes in the flowing molten metal. By adjusting the excitation current of the normally conducting coil to control sudden and small changes, the flow transfer of the molten metal is electromagnetically controlled to be uniform according to the speed and speed of the flow fluctuations. It is something.

〔発明の実施例〕[Embodiments of the invention]

実施例1 以下、本発明の第1の実施例について、第1図ないし第
3図を参照して説明する。溶鋼(1)を貯えたタンディ
ツシュ(2)の底部のノズル部(3)から鋳品(1a)
を作るために、モールド(4)へ給湯する場合、流れ方
向にほぼ直角方向に強い磁場が発生するように、超電導
コイル(5a) 、 (5b)を備えた超電導電磁石(
5)が設けられ、その互いに直角方向に磁場が発生する
よう常電導コイル(6a) 、 (6b)と鉄心(6c
)を備えた常電導電磁石(6)が設けられる。これら両
方のコイル(5a)、(5b)、(6a)、(6c)は
その励磁電流が可変になるようじ制御できる電源(8a
) 、 (8b)から供給される。第2図は第1図の…
−■線に沿う矢視断面を示すが、ノズル部(3)を挿ん
で、超電導コイル(5a) 、 (5b)が対向に配設
され、それと直角方向に常電導コイル(6a) 、 (
6b)およびその磁気回路の鉄心(6c)が構成される
。すなわち超電導コイル(5a) 、 (5b)により
作られる磁界(7a)と常電導コイル(6a) 、 (
6b)により作られる磁界(7b)は互いに直交する構
成がとられる。
Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. The casting (1a) is discharged from the nozzle (3) at the bottom of the tundish (2) that stores the molten steel (1).
When supplying hot water to the mold (4) to make hot water, a superconducting electromagnet (
5) are provided, and normally conducting coils (6a), (6b) and iron core (6c
) is provided. Both of these coils (5a), (5b), (6a), (6c) are powered by a power source (8a) that can be controlled so that the excitation current is variable.
), (8b). Figure 2 is the same as Figure 1...
The cross section taken along line -■ shows that superconducting coils (5a) and (5b) are arranged facing each other with nozzle part (3) inserted, and normal conducting coils (6a) and (5b) are disposed in a direction perpendicular to the nozzle part (3).
6b) and the iron core (6c) of its magnetic circuit. That is, the magnetic field (7a) created by the superconducting coils (5a), (5b) and the normal conducting coils (6a), (
The magnetic fields (7b) created by 6b) are configured to be orthogonal to each other.

次に作用について説明する。Next, the effect will be explained.

溶湯である溶鋼(1)を貯える一方の容器であるタンデ
ィツシュ(2)から溶鋼(すはノズル部(3)を通過す
る時の流速が2〜4 m / tecという比較的に速
い速度で他方の容器であるモールド(4)へ給湯されて
いる。この力はタンディツシュ湯面とモールド部湯面の
差ΔHの重力によるものである。ノズル部(3)に七の
流れ方向に対し直角に超電導コイル4による例えば工な
いし数テスラという高い直流磁場がかけられると、電磁
流体であるノズル内溶鋼(1)には速度起電力が発生す
るが、第3図の如く流体内で短絡回路が構成されるので
、電流(9a)が流れる。
The molten steel (1) is stored at a relatively high flow rate of 2 to 4 m/tec as it passes through the nozzle part (3) from one vessel (2), which is a container, to the other vessel. Hot water is supplied to the mold (4), which is a container.This force is due to the gravitational force of the difference ΔH between the tundish hot water level and the hot water level in the mold.A superconducting coil is installed in the nozzle part (3) at right angles to the flow direction. 4, when a high DC magnetic field of, for example, a few centimeters to several Tesla is applied, a velocity electromotive force is generated in the molten steel (1) in the nozzle, which is a magnetic fluid, but a short circuit is formed within the fluid as shown in Figure 3. Therefore, current (9a) flows.

この電流(9a)は、超電導磁界(7a)中で溶湯(1
)の流れ方向と逆方向電磁力が発生する。この力は結局
ノズル(3)内で溶湯の流下速度を緩かにすることにな
る。すなわちブレーキング作用が働くことになる。超電
導コイル(5a) 、 (5b)は数テスラの強磁場を
発生しブレーキ力が大きい。一方他の直角方向に加えら
れた常電導コイル(6a) 、 (6b)による磁場(
7b)はその強さが1〜2テスラ以下で比較的弱い。し
かし超電導コイル(5a) 、 (5b)による場合と
同様溶湯流下速度にブレーキをかけることになる。
This current (9a) flows through the molten metal (1) in the superconducting magnetic field (7a).
) is generated in the direction opposite to the flow direction. This force eventually slows down the flow rate of the molten metal within the nozzle (3). In other words, a braking action will work. The superconducting coils (5a) and (5b) generate a strong magnetic field of several Tesla and have a large braking force. On the other hand, the magnetic field (
7b) is relatively weak, with a strength of less than 1-2 Tesla. However, as with the superconducting coils (5a) and (5b), a brake is applied to the molten metal flowing speed.

タンディツシュよりモールド部への給湯量を常に一定量
に保つ′こと超電導電磁石(5)は強い磁場を発生する
が、急激に磁束変化をすると一種のヒステリシス損が発
生し、その発熱により超電導が破れるため、急速な磁場
変化させることができない。
A superconducting electromagnet (5) generates a strong magnetic field, but if the magnetic flux suddenly changes, a type of hysteresis loss occurs, and the heat generated breaks the superconductivity. , unable to make rapid magnetic field changes.

精度の高い溶鋼(1)の流量調整により注鋼量を一定に
保つ為には各種不規則な小さい外乱に対し高い連応性が
要求される。しかし前述の如く超電導電磁石(5)では
この制御に対応できない。そのため、高速応性の励磁電
流制御が可能な常電導電磁石(6)を組合せている。従
来の設備における注鋼量の変化は第4図の如く時間3二
対し周期が30秒程度に太きくゆるやかに変化する要素
と、その変化量は小さいが周期が数秒程度に激しく変化
する要素がある。時間的にゆっくりした注鋼量変化に対
して超電導コイルの励磁電流を制H調整するようにし、
激しい変化に対しては、常電導コイルの励磁電流をサイ
リスクレオナード装置(東芝商品名のレオバックという
ものあり)で制卸調整して注iamを制御する。第1図
においては超電導コイル(5a) 。
In order to keep the amount of poured steel constant through highly accurate flow rate adjustment of molten steel (1), a high degree of responsiveness to various small irregular disturbances is required. However, as mentioned above, the superconducting electromagnet (5) cannot handle this control. Therefore, a normally conducting electromagnet (6) capable of controlling excitation current with high speed response is combined. As shown in Figure 4, changes in the amount of steel poured in conventional equipment include two factors: one that changes sharply and gradually with a period of about 30 seconds per time, and the other that changes rapidly but with a small period of about a few seconds. be. The excitation current of the superconducting coil is adjusted to suppress the change in the amount of steel poured over time,
In case of drastic changes, the excitation current of the normal conducting coil is controlled and adjusted using a Silys-Cleonard device (there is also a Toshiba product name, ``Reovac'') to control the injection current. In Fig. 1, there is a superconducting coil (5a).

(5b)による磁界と常電流コイル(6a)、(6b)
による磁界が直交するため、各々のコイルの励磁電流変
化に対する影響、干渉はなく、制御は各々独立して調整
することができる。
Magnetic field due to (5b) and normal current coils (6a), (6b)
Since the magnetic fields are orthogonal to each other, there is no influence or interference with changes in the excitation current of each coil, and control can be adjusted independently for each coil.

励磁電流が変化すれば磁界強さも変化し、前述の如くブ
レーキ作用も変化する。したがって、常に一定の流量の
制御をしようとする場合流量が増加する時には励磁電流
ひいては磁界を強くしてブレーキ力も増加させ、流量が
減少する時は励磁電流を減少する制御がとられることは
言うまでも、ない。
If the excitation current changes, the magnetic field strength will also change, and as mentioned above, the braking action will also change. Therefore, when trying to control a constant flow rate, it goes without saying that when the flow rate increases, the excitation current and therefore the magnetic field are strengthened to increase the braking force, and when the flow rate decreases, the excitation current is decreased. Nor.

この実施例での効果は次の通りである。第4図の如き注
鋼量の変化に対し超電導コイル(5a)、(5b)と常
電導コイル(6a) 、 (6b)を配設し、生重量の
変化がない一定量注鋼制御する場合それらの電流を前記
のように制御することによって、外乱などがあった場合
にも、一定量の注鋼な保つことができる。一定量の注鋼
が実現できると常に一定条件での鋳造が可能となり、製
品の品質のバラツキがなく、品質の安定した鋼材を製造
することができる。
The effects of this embodiment are as follows. In the case where superconducting coils (5a), (5b) and normal conducting coils (6a), (6b) are installed to control the pouring of a constant amount of steel without any change in the green weight, as shown in Fig. 4, the amount of steel poured is changed. By controlling these currents as described above, a constant amount of steel pouring can be maintained even if there is a disturbance. If a certain amount of steel can be poured, casting can always be performed under certain conditions, and there will be no variation in product quality, making it possible to manufacture steel products with stable quality.

実施例2 第5図は本発明の第2の実施例を示す構成図である。超
電導コイル(5m) 、 (5b)による磁界と常電導
マイル(6a)、(6b)による磁界の場所がノズルの
流下方向の異なった位置に設けられた実施例である。
Embodiment 2 FIG. 5 is a block diagram showing a second embodiment of the present invention. This is an embodiment in which the magnetic field generated by the superconducting coils (5 m) and (5b) and the magnetic field generated by the normal conducting miles (6a) and (6b) are provided at different positions in the flow direction of the nozzle.

このようにしても実施例1と同様の作用効果が得られる
Even in this case, the same effects as in the first embodiment can be obtained.

実施例3 第6図および第7図は第3の実施例で、超電導磁界、常
電導磁界をかける部分のノズル部(3)の流路断面形状
を流路の上下で変化させた構成例を示す。第6図の場合
、超電導磁界をかける部分の上部流路断面形状を円形と
し、第7図の場合、常電導磁界をかける部分の下部流路
断面形状を矩形としている。
Embodiment 3 Figures 6 and 7 show a third embodiment, which shows a configuration example in which the cross-sectional shape of the flow path of the nozzle part (3) in the part where the superconducting magnetic field and the normal conductive magnetic field are applied is changed at the upper and lower portions of the flow path. show. In the case of FIG. 6, the cross-sectional shape of the upper flow path in the portion to which the superconducting magnetic field is applied is circular, and in the case of FIG. 7, the cross-sectional shape of the lower flow path in the portion to which the normal conducting magnetic field is applied is rectangular.

このようにしても実施例1と同様の作用効果が得られる
Even in this case, the same effects as in the first embodiment can be obtained.

尚、常電導コイルは直流励磁であっても、交流励磁であ
っても良く、又、必ずしも直交しなくてよく、適用場所
としては連鋳機のみに限らず他の溶鋼移動装置、移送装
置に対しても適用可能である。更に、溶融アルミや半田
、亜鉛等、溶湯が金属を溶融した電磁流体であればよく
、本発明の適用は溶鋼(1)に限るものではない。
In addition, the normal conducting coils may be DC excited or AC excited, and they do not necessarily have to be orthogonal to each other, and can be applied not only to continuous casters but also to other molten steel moving devices and transfer devices. It is also applicable to Furthermore, the application of the present invention is not limited to molten steel (1), as long as the molten metal is a magnetic fluid made by molten metal, such as molten aluminum, solder, or zinc.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、超電導コイルによ
る大きなブレーキ力と常電導コイルの高速応性な巧みに
組合せ配置制御することによって、従来の機械的調整機
構によらず、電磁的な力によって溶湯の移送量を調整制
御できるので、機械的調整機構で従来から問題となって
いた調整機構部の摩耗や湯詰まり等の問題が解消される
。移送量調整に関する応答性も機械的調整機構に比べ、
励磁電流の調整はその連応性が飛躍的に向上する。
As explained above, according to the present invention, by skillfully controlling the combination of the large braking force of the superconducting coil and the high-speed response of the normal-conducting coil, the molten metal is controlled by electromagnetic force without relying on a conventional mechanical adjustment mechanism. Since the transfer amount can be adjusted and controlled, problems such as wear and clogging of the adjustment mechanism, which have conventionally been a problem with mechanical adjustment mechanisms, can be solved. The responsiveness regarding transfer amount adjustment is also better compared to mechanical adjustment mechanisms.
Adjustment of excitation current dramatically improves coordination.

このため、信頼性が高く、制御性能が優れた溶湯移送量
調整装置がその方法が実現できるので、製品の品質均一
性向上や設備の自動化が可能となる。
Therefore, the method can realize a molten metal transfer amount adjusting device with high reliability and excellent control performance, and it becomes possible to improve the uniformity of product quality and automate equipment.

連鋳機の場合は、タンディツシュからモールドへの注湯
ノズル部へこれらコイルを配置制御することは、その磁
界によるブレーキング作用により、ノズル内流速を低く
押えることができるので、モールド内での成分コントロ
ールや、不純物浮上を阻害することがなくなり、常に安
定した条件で連鋳機を運転することができる。
In the case of a continuous casting machine, controlling the placement of these coils from the tundish to the mold pouring nozzle allows the flow velocity in the nozzle to be kept low due to the braking effect of the magnetic field, so that the components in the mold can be controlled. Control and impurity surfacing are no longer obstructed, and the continuous casting machine can be operated under stable conditions at all times.

第1図は本発明の溶湯移送量調整装置の第1の実施例を
示す一部断両立面図、第2図は第1図の■−■線に沿う
矢視断面図、第3図は第1図の装置の磁場と溶湯内の電
流の関係を示す説明図、第4図は従来の移送装置におけ
る溶湯移送量の変化状態を示す曲線図、第5図は第2の
実施例を示す一部断両立面図、第6図および第7図は第
3の実施例のそれぞれ異なるノズル位置部に対する電磁
石配置を示す横断面図である。
Fig. 1 is a partially cutaway elevational view showing a first embodiment of the molten metal transfer rate adjusting device of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a Fig. 1 is an explanatory diagram showing the relationship between the magnetic field of the device and the current in the molten metal, Fig. 4 is a curve diagram showing the state of change in the amount of molten metal transferred in the conventional transfer device, and Fig. 5 shows the second embodiment. 6 and 7 are cross-sectional views showing the arrangement of electromagnets for different nozzle positions of the third embodiment.

l・・・溶湯である溶鋼 2・・・一方の容器であるタンディツシュ3・・・ノズ
ル部 4・・・他方の容器であるモールド 5・・・超電導電磁石 5a、5b・・・超電導コイル
6・・・常電導電磁石 6a、6ト=常箪尋コイル8a
、8b・・・励磁電源 代理人 弁理士 井 上 −男 第 1 図 第 2 図 第 3 図 第 4 図 一時向 第 5 図 第61 7順 第7図 −6C /乙α /7A /3 一一一−Xノ −−64 −6ン
l... Molten steel which is molten metal 2... Tundish 3 which is one container... Nozzle part 4... Mold 5 which is the other container... Superconducting electromagnets 5a, 5b... Superconducting coils 6. ...Normal conductive electromagnet 6a, 6t = Tokenhiro coil 8a
, 8b...Exciting power supply agent Patent attorney Inoue - Male No. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 1 direction No. 5 Fig. 61 7 order Fig. 7-6C /Otsu α /7A /3 11 1-X-64-6

Claims (4)

【特許請求の範囲】[Claims] (1)金属を溶融した溶湯な一方の容器から他方の容器
へ流動移送する際にその移送量を調整する装置において
、溶湯流動部に後記する常電導電磁石より高い直流磁界
を発生する超電導コイルを有する超電導電磁石と、この
超電導電磁石よりも高速応性励磁電流制御可能な常電導
コイルを有する常電導電磁石とを磁界の方向を変えて鎖
交するように配設したことを特徴とする溶湯移送量調整
装置。
(1) In a device that adjusts the transfer amount when molten metal is fluidly transferred from one container to another, a superconducting coil that generates a DC magnetic field higher than that of a normal-conducting electromagnet (described later) is installed in the molten metal flowing section. A superconducting electromagnet having a superconducting electromagnet and a normal conducting electromagnet having a normal conducting coil capable of controlling a reactive excitation current faster than the superconducting electromagnet are arranged so as to interlink by changing the direction of the magnetic field. Device.
(2)変える磁界の方向は直角としたことを特徴とする
特許請求の範囲第1項記載の溶湯移送量調整装置。
(2) The molten metal transfer rate adjusting device according to claim 1, wherein the direction of the magnetic field to be changed is perpendicular.
(3)金属なi融した溶湯な一方の容器から他方石より
高い直流磁界を発生する超電導コイルな有する超電導電
磁石と、この超電導電磁石よりも高速応性励磁電流制御
可能な常電導コイルを有する常電導電磁石とを磁界の方
向を変えて鎖交するように配設し、流動溶湯が緩慢で大
きい変化に対する制御は超電導コイルの励磁電流の調整
により行ない、急激で小さい変化に対する制御は常電導
コイルの励磁電流の調整で行なうことを特徴とする溶湯
移送量調整方法。
(3) A normal conductor having a superconducting electromagnet with a superconducting coil that generates a higher DC magnetic field from one container of molten metal than the other, and a normal conductor coil that can control the reactive excitation current faster than this superconducting electromagnet. The electromagnets are arranged so as to interlink with each other by changing the direction of the magnetic field, and control for slow and large changes in the flowing molten metal is performed by adjusting the excitation current of the superconducting coil, and control for sudden and small changes is performed by excitation of the normal conducting coil. A method for adjusting the amount of molten metal transferred, characterized by adjusting the amount of electric current.
(4)変える磁界の方向は直角としたことを特徴とする
特許請求の範囲第3項記載の溶湯移送量調整方法。
(4) The method for adjusting the amount of molten metal transferred according to claim 3, characterized in that the direction of the magnetic field to be changed is at right angles.
JP18590583A 1983-10-06 1983-10-06 Device and method for adjusting transfer rate of molten metal Pending JPS6082255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18590583A JPS6082255A (en) 1983-10-06 1983-10-06 Device and method for adjusting transfer rate of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18590583A JPS6082255A (en) 1983-10-06 1983-10-06 Device and method for adjusting transfer rate of molten metal

Publications (1)

Publication Number Publication Date
JPS6082255A true JPS6082255A (en) 1985-05-10

Family

ID=16178931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18590583A Pending JPS6082255A (en) 1983-10-06 1983-10-06 Device and method for adjusting transfer rate of molten metal

Country Status (1)

Country Link
JP (1) JPS6082255A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027885A (en) * 1988-05-16 1991-07-02 Nippon-Steel Corporation Injection apparatus and injection control method for high-speed thin plate continuous casting machine
WO1997041985A1 (en) * 1996-05-08 1997-11-13 Keith Richard Whittington Electromagnetic valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027885A (en) * 1988-05-16 1991-07-02 Nippon-Steel Corporation Injection apparatus and injection control method for high-speed thin plate continuous casting machine
WO1997041985A1 (en) * 1996-05-08 1997-11-13 Keith Richard Whittington Electromagnetic valve

Similar Documents

Publication Publication Date Title
KR20090033212A (en) Method and apparatus for controlling the flow of molten steel in a mould
EP2216111B1 (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
EP0880417A1 (en) A device for casting in a mould
US3701357A (en) Electromagnetic valve means for tapping molten metal
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
SE500745C2 (en) Methods and apparatus for casting in mold
CN101868311B (en) Electromagnetic coil device for use of in-mold molten steel capable of serving both as electromagnetic stir and electromagnetic brake
JPS6082255A (en) Device and method for adjusting transfer rate of molten metal
RU2170157C2 (en) Ingot continuous casting mold with apparatus for electromagnetically agitating melt
US5137077A (en) Method of controlling flow of molten steel in mold
JPH0623498A (en) Device for controlling supply of molten steel in continuous casting
CA2261142A1 (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
JP4580135B2 (en) Apparatus for supplying molten metal to continuous casting ingot mold and method of using the same
JPH0471759A (en) Method for controlling fluidity of molten metal
US4446909A (en) Process and apparatus for electromagnetic casting of multiple strands having individual head control
JPS60184457A (en) Device for adjusting pouring rate of molten steel
JPH03198974A (en) Flow controller of molten metal in transfer flow passage
EP0058899A1 (en) A process and apparatus for electromagnetic casting of multiple strands having individual head control
JPH0428460A (en) Apparatus and method for preventing molten metal vortex flow
JPS61140355A (en) Electromagnetic stirrer for controlling molten steel flow in casting mold
EP0914223A1 (en) Electromagnetic valve
WO1999011404A1 (en) Method and device for continuous or semi-continuous casting of metal
JPH10328790A (en) Electromagnetic braking device of mold for continuous casting and continuous casting method using this braking device
JPS61245948A (en) Device for braking flow of molten steel in continuous casting device
JP3700356B2 (en) Method and apparatus for continuously casting molten metal