JP3840801B2 - Method for dispersing conductive particle agglomerates - Google Patents

Method for dispersing conductive particle agglomerates Download PDF

Info

Publication number
JP3840801B2
JP3840801B2 JP13839198A JP13839198A JP3840801B2 JP 3840801 B2 JP3840801 B2 JP 3840801B2 JP 13839198 A JP13839198 A JP 13839198A JP 13839198 A JP13839198 A JP 13839198A JP 3840801 B2 JP3840801 B2 JP 3840801B2
Authority
JP
Japan
Prior art keywords
conductive particle
dispersion
irradiation
particle agglomerates
dispersing conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13839198A
Other languages
Japanese (ja)
Other versions
JPH11319530A (en
Inventor
康順 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP13839198A priority Critical patent/JP3840801B2/en
Publication of JPH11319530A publication Critical patent/JPH11319530A/en
Application granted granted Critical
Publication of JP3840801B2 publication Critical patent/JP3840801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、導電性粒子凝集塊の分散方法に関する。更に詳しくは、カーボンブラック、炭素繊維、金属粒子、金属繊維等の液体への微分散が困難な導電性粒子凝集塊の分散方法に関する。
【0002】
【従来の技術】
カーボンブラック等の導電性粒子の主要な用途は、ゴムまたは樹脂に配合して弾性率および強度を高めるための充填剤、導電性を付与する目的の導電性付与剤である。このような用途に用いられる充填剤は、一次粒子の形状が球形または繊維状であるが、その多くは凝集して塊となっているものが多い。あるいは、粉体のままでは飛散するので、それを防止する目的で造粒して塊として用いられることも多い。
【0003】
これらの粉体の塊(凝集体)をゴムや樹脂に配合する際、特にゴムや樹脂のラテックスや溶液に配合する際、その一部は分散することなく塊状のまま残り、そのため目的とする効果が得られないばかりではなく、材料強度を著しく低下させる原因ともなり、製造工程上の大きな問題となっている。
【0004】
特に、導電性カーボンブラックとして分類されている種類のカーボンブラックは、この塊の破壊強度が通常の補強用途のカーボンブラックに比べて大きく、分散不良を発生し易いという問題がみられる。従って、これを有効に分散できれば、極めて高い導電性を得ることができ、また高い補強性の材料を得ることができるが、良好な分散状態のものを得ることは一般には困難である。
【0005】
粉体の混合方法としては様々な方法が従来から行われており、その主な方法は攪拌翼、ボールミル、シェイカ、超音波ホモジナイザ、ニーダ、ロールミル等を用いる方法であるが、これらの方法は凝集力が強くて粒子凝集塊が壊れ難く、導電性カーボンブラックなどではしばしば分散が不十分な混合状態となり易い。
【0006】
例えば、導電性カーボンブラックの形態は、1nmサイズの一次粒子が部分的に融着して糸状に、あるいは所々枝状につながったサブミクロンサイズのアグリゲートと呼ばれる凝集体を形成し、更にこのアグリゲートが物理的に凝集してミクロンからミリサイズのアグロメレートを形成している。
【0007】
アグリゲートとアグロメレートを合せてストラクチャーといい、後者は前者に比べて凝集力は弱いものの、アグリゲートが糸のように高度に絡み合い、ほぐれ難くなっているため、攪拌などの機械的なせん断力による方法では、その凝集塊の一部はなお塊状のまま残り、分散不良の原因となっている。
【0008】
【発明が解決しようとする課題】
本発明の目的は、カーボンブラック等の導電性粒子の凝集塊の効果的な分散方法を提供することにある。
【0009】
【課題を解決するための手段】
かかる本発明の目的は、媒体中の導電性粒子凝集塊にギガヘルツ領域のマイクロ波を照射し、更に好ましくはその後超音波照射および高速攪拌処理の少くとも一方を適用して、分散処理することによって達成される。
【0010】
【発明の実施の形態】
本発明方法は、導電性粒子の凝集塊、特にストラクチャーが発達して分散し難い導電性カーボンブラック凝集塊に適用され、他の分散方法にはみられない有効な分散効果を発揮する。導電性カーボンブラックとしては、アセチレンブラック・ケッチェンブラック等の特殊なカーボンブラックや気相成長炭素繊維等が挙げられ、これらのカーボンブラックは効果的に分散させると、少量の配合でも高い導電性をゴムや樹脂に付与する。
【0011】
これに対して、充填剤、補強剤などとして用いられているMTカーボンブラックやFTカーボンブラック、インキ用カーボンブラック、一般的な炭素繊維等は、勿論本発明方法によっても分散処理できるが、他の攪拌処理や超音波照射でも十分に良好な分散状態を形成し得るので、特に本発明方法の優位性は認められない。
【0012】
カーボンブラック以外の導電性粒子としては、例えば銅、ニッケル、銀等の金属の微粒子や繊維が挙げられる。
【0013】
カーボン系粒子凝集塊の場合、それは約1.8〜2.1程度の比重を有するので、水、アルコール、炭化水素系有機溶媒、オリゴマー等の媒体中に入れると、媒体を入れた容器の底部に沈殿するが、これをマイクロ波の発振器としてマグネトロンを用いた密閉容器のマイクロ波照射の場に置くと、その凝集塊は直ちに媒体中ではじかれたような動き方で、激しく勢い良く不規則に動き回りながら徐々に小さくなっていく様子が観察される。また、粒径約2〜10μmの銅粉に水を加えてマイクロ波を照射すると、カーボンブラックの場合と同様に、銅粒子は激しく動き回って分散していく様子が観察される。
【0014】
はじかれる方向は、ランダムなように見えるが、照射場の環境によるものと推定される。一方、媒体なしでは、マイクロ波をカーボン系粒子凝集塊に照射すると、局部的に火花がみられ、またカーボン系粒子が飛散する現象が観察される。
【0015】
こうしたことからみて、導電性粒子凝集塊にマイクロ波を照射した際の分散過程は、導電性粒子凝集塊面で反射された電磁波により、表面近傍の媒体が局部的に急激に過熱され、媒体が急激にガス化する際の瞬間的な膨張力や急速過熱による凝集部の切断などが、凝集塊を小さく破壊するメカニズムをとっているものと考えられる。
【0016】
マイクロ波としては、ギガヘルツ領域のものが用いられ、その照射密度は、分散媒の種類や濃度によって異なるが、約0.01〜5Wh/g、好ましくは約0.02〜0.1Wh/gである。
【0017】
マイクロ波を照射する代りに、超音波照射したりあるいはコロイドミル、ホモジナイザ等を用いて高速撹拌しただけではカーボン凝集塊の有効な分散は達成されないが、マイクロ波を照射した後に、これらの方法を組合せて適用することは有効である。具体的には、マイクロ波を照射した後、超音波照射する方法、高速攪拌処理する方法あるいはこれら両者の方法を任意の順序で適用する方法は、分散性を一段と高める上で有効である。あるいは、予め超音波照射または高速攪拌処理した後、マイクロ波を照射する方法をとることもできる。
【0018】
媒体としては、無公害、非可燃性という点から水が好んで用いられるが、これ以外にもアルコール、トルエン等の有機溶媒またはオリゴマー等が目的に応じて用いられる。水性媒体の場合には、それと導電性粒子との間の親和性を高めるために、ノニオン系界面活性剤またはアニオン系界面活性剤剤あるいはポリビニルアルコール等の分散剤を、約0.1〜5%、好ましくは約1〜3%程度添加して用いることも行われる。
【0019】
例えば水媒体にカーボン系凝集塊を分散させる場合、約1〜20重量%、好ましくは約5〜10重量%の割合で添加されたカーボン系凝集塊は、最初は下部に沈殿しているが、マイクロ波を照射し始めると、激しく攪拌されているかのように激しく動き回り、その塊は照射量の増加と共に小さくなり、最後には照射を止めても沈殿することのない水分散液を形成する。水媒体に対して約10重量%程度のケッチェンブラックを添加した場合には、分散が進むにつれて水分散液の粘度の急激な増加がみられるようになり、チキソトロピー性、即ち弾性が示されるようになる。同時に水分散液の直流電気抵抗を測定すると、直流電気抵抗もこの急激な粘度変化に対応して、急激に低下するようになる。
【0020】
このことは、カーボン系凝集塊がほぐれて、水媒体中にアグリゲートあるいは小さなアグロメレートの単位で分散し、それらが媒体中で互いに接触する状態、即ち弾性および導電性を有するカーボンブラックのネットワーク構造が形成されている状態にあることを示している。このネットワークは、水を介在して形成されており、強度が極めて弱いので、静置しておくと水が徐々に浸み出るシネリシス現象がみられる。
【0021】
この水分散液の濃度を約5重量%以下にすると、攪拌している間は水分散液の状態を呈しているが、攪拌を停止すると分散しているカーボンブラックの再凝集化、即ちフロキュレーションが起き、水と前記カーボンブラックのネットワーク構造部とに分離する現象がみられる。
【0022】
このようにして分散処理されたカーボンブラックは、液体に分散して紙漉き方法などでシート状に成形したり、ポリテトラフルオロエチレンディスパージョンや他の高分子ラテックスとの共沈法でゴムや樹脂と複合化した後シート状やパイプ状に成形したりした上、高導電性で柔軟性のある材料として、導電性複合材料、気相反応や液相反応の触媒担体、各種電池の電極材料などとして有効に使用される。
【0023】
【発明の効果】
本発明方法により、カーボンブラック等の導電性粒子の凝集塊の効果的な分散が達成される。
【0024】
【実施例】
次に、実施例について本発明を説明する。
【0025】
実施例1
容量300mlのガラス製ビーカに水200mlおよびアセチレンブラック(比重約1.9)5gを入れ、オーブン型マイクロ波発生装置(東芝製ER-250)を用い、周波数2450MHz(2.45GHz)、出力0.5KWのマイクロ波を照射した。照射を始めると、沈殿していたカーボンは、勢い良く水中で動き回り始める。カーボン凝集塊一つの大きさは、その動きと共にいくつかの小片に壊れ、やがでその小片は約1〜5μの大きさとなった。なお、照射10分後の分散液の直流電気抵抗は、360Ωであった。
【0026】
比較例1
実施例1において、マイクロ波発生装置の代りに高速回転式ホモジナイザ(日本精機製MX型)を用い、回転数8000rpmで20分間高速攪拌処理すると、分散液の直流電気抵抗は11000Ωであった。
【0027】
比較例2
実施例1において、マイクロ波発生装置の代りに超音波発生装置(Branson社製Sonifier450、ホーン:3/4インチ円筒形を使用)を用い、20分間超音波照射後の分散液の直流電気抵抗を測定すると、3100Ωであった。
【0028】
実施例2
実施例1において、アセチレンブラックの代りにケッチェンブラック2gを用いた。マイクロ波照射10分後の分散液の直流電気抵抗は、7000Ωであった。
【0029】
比較例3
実施例2において、マイクロ波発生装置の代りに高速回転式ホモジナイザ(日本精機製MX型)を用い、回転数8000rpmで20分間高速攪拌処理すると、分散液の直流電気抵抗は10000Ω以上であった。
【0030】
比較例4
実施例2において、マイクロ波発生装置の代りに超音波発生装置(Branson社製Sonifier450、ホーン:3/4インチ円筒形を使用)を用い、20分間超音波照射後の分散液の直流電気抵抗を測定すると、13000Ωであった。
【0031】
実施例3
容量300mlのガラス製ビーカーに、水200ml、ノニオン系界面活性剤(花王製品エマルゲン210)0.2gおよびアセチレンブラック2gを入れ、実施例1と同様にマイクロ波を照射して分散処理した。分散処理時間に対する分散液の直流電気抵抗の値は、図1のグラフの曲線(A)に示される。
【0032】
また、図1のグラフには、このようなマイクロ波照射を施した後、前記高速回転式ホモジナイザを用い高速攪拌処理した場合(B)およびその後更に前記超音波発生装置を用いて超音波照射処理をした場合(C)の処理時間に対する分散液の直流電気抵抗値の関係が併記されている。
【図面の簡単な説明】
【図1】 実施例3における分散処理時間に対する分散液の直流電気抵抗の値を示すグラフである。
[0001]
[Industrial application fields]
The present invention relates to a method for dispersing conductive particle agglomerates. More specifically, the present invention relates to a method for dispersing conductive particle agglomerates that are difficult to finely disperse into liquids such as carbon black, carbon fibers, metal particles, and metal fibers.
[0002]
[Prior art]
Main applications of conductive particles such as carbon black are fillers for blending with rubber or resin to increase the elastic modulus and strength, and conductivity imparting agents for the purpose of imparting conductivity. In fillers used for such applications, the primary particles have a spherical or fibrous shape, but many of them are aggregated into a lump. Alternatively, since it is scattered as it is in powder form, it is often granulated and used as a lump for the purpose of preventing it.
[0003]
When blending these powder lumps (aggregates) into rubber or resin, especially when blended into rubber or resin latex or solution, some of them remain in a lump without dispersing, so the desired effect Not only cannot be obtained, but also causes a significant reduction in material strength, which is a major problem in the manufacturing process.
[0004]
In particular, the type of carbon black classified as conductive carbon black has a problem that the fracture strength of the lump is larger than that of carbon black for normal reinforcement, and a dispersion failure is likely to occur. Therefore, if this can be dispersed effectively, extremely high conductivity can be obtained, and a highly reinforcing material can be obtained, but it is generally difficult to obtain a material having a good dispersion state.
[0005]
Various methods have been conventionally used for mixing powders, and the main method is a method using a stirring blade, a ball mill, a shaker, an ultrasonic homogenizer, a kneader, a roll mill, etc., but these methods are agglomerated. The force is strong and the particle agglomerates are not easily broken, and conductive carbon black or the like often tends to be in a mixed state with insufficient dispersion.
[0006]
For example, in the form of conductive carbon black, primary particles of 1 nm size are partly fused to form aggregates called submicron size aggregates that are connected in the form of threads or branches, and this aggregate is further formed. The gates physically aggregate to form micron to millimeter size agglomerates.
[0007]
Aggregates and agglomerates are called structures, and the latter is less cohesive than the former, but the aggregates are highly entangled like yarns and difficult to loosen. In the method, a part of the agglomerates still remains in the form of lumps, causing poor dispersion.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an effective method for dispersing agglomerates of conductive particles such as carbon black.
[0009]
[Means for Solving the Problems]
The object of the present invention is to irradiate the conductive particle agglomerates in the medium with microwaves in the gigahertz region, and more preferably to apply dispersion treatment by applying at least one of ultrasonic irradiation and high-speed stirring processing thereafter. Achieved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention is applied to agglomerates of conductive particles, particularly conductive carbon black agglomerates that have a structure that is difficult to disperse, and exhibit an effective dispersion effect not found in other dispersion methods. Examples of conductive carbon black include special carbon blacks such as acetylene black and ketjen black, and vapor-grown carbon fibers. When these carbon blacks are effectively dispersed, high conductivity can be obtained even in a small amount. Apply to rubber and resin.
[0011]
In contrast, MT carbon black and FT carbon black, carbon black for ink, general carbon fiber, etc. used as fillers, reinforcing agents, etc. can of course be dispersed by the method of the present invention. Since a sufficiently good dispersion state can be formed even by stirring treatment or ultrasonic irradiation, the superiority of the method of the present invention is not particularly recognized.
[0012]
Examples of conductive particles other than carbon black include fine particles and fibers of metals such as copper, nickel, and silver.
[0013]
In the case of carbon-based particle agglomerates, it has a specific gravity of about 1.8 to 2.1. Therefore, when it is placed in a medium such as water, alcohol, hydrocarbon-based organic solvent, oligomer, etc., it precipitates at the bottom of the container containing the medium. , placing this in a field of microwave radiation of a closed container using a magnetron as an oscillator of the microwave, in the aggregate motion immediately as repelled in medium way, while moving around the vigorous vigorously irregular gradual Observe how it gets smaller. In addition, when water is added to copper powder having a particle size of about 2 to 10 μm and irradiated with microwaves , it is observed that the copper particles move and disperse violently as in the case of carbon black.
[0014]
The direction of repelling seems to be random, but is presumed to be due to the environment of the irradiation field. On the other hand, without the medium, when the carbon-based particle agglomerates are irradiated with microwaves , a spark is locally observed and a phenomenon in which the carbon-based particles are scattered is observed.
[0015]
In view of this, the dispersion process when the conductive particle agglomerates are irradiated with microwaves is due to the electromagnetic wave reflected from the surface of the conductive particle agglomerates causing the medium in the vicinity of the surface to rapidly overheat and It is considered that the instantaneous expansion force at the time of rapid gasification or the cutting of the agglomerated part due to rapid overheating has a mechanism for breaking the agglomerate into small pieces.
[0016]
A microwave having a frequency of gigahertz is used, and its irradiation density is about 0.01 to 5 Wh / g, preferably about 0.02 to 0.1 Wh / g, although it varies depending on the type and concentration of the dispersion medium.
[0017]
Instead of microwave irradiation, ultrasonic irradiation or or colloid mill, an effective distribution of just the carbon aggregate and high speed stirring using a homogenizer or the like is not achieved, after the irradiation of microwaves, these methods It is effective to apply in combination. Specifically, a method of irradiating with microwaves and then irradiating with ultrasonic waves, a method of performing high-speed stirring treatment, or a method of applying both methods in an arbitrary order is effective in further improving dispersibility. Alternatively, a method of irradiating microwaves after ultrasonic irradiation or high-speed stirring treatment in advance can be used.
[0018]
As the medium, water is preferably used from the viewpoint of non-pollution and non-flammability, but other than this, an organic solvent such as alcohol or toluene, an oligomer, or the like is used according to the purpose. In the case of an aqueous medium, in order to increase the affinity between the conductive particles and the conductive particles, a nonionic surfactant, an anionic surfactant, or a dispersant such as polyvinyl alcohol is added at about 0.1 to 5%, preferably Is used by adding about 1 to 3%.
[0019]
For example, when carbon-based agglomerates are dispersed in an aqueous medium, carbon-based agglomerates added at a ratio of about 1 to 20% by weight, preferably about 5 to 10% by weight, are initially precipitated at the bottom. When microwave irradiation is started, it moves vigorously as if it was vigorously stirred, and its mass becomes smaller as the irradiation amount increases, and finally forms an aqueous dispersion that does not precipitate even when irradiation is stopped. When about 10% by weight of ketjen black is added to the aqueous medium, the viscosity of the aqueous dispersion rapidly increases as the dispersion progresses, indicating thixotropy, that is, elasticity. become. At the same time, when the DC electrical resistance of the aqueous dispersion is measured, the DC electrical resistance also decreases rapidly in response to this sudden viscosity change.
[0020]
This is because the carbon-based agglomerates are loosened and dispersed in units of aggregates or small agglomerates in the aqueous medium, and they are in contact with each other in the medium, that is, the network structure of carbon black having elasticity and conductivity. It shows that it is in a formed state. This network is formed with water intervening, and its strength is extremely weak. Therefore, a syneresis phenomenon in which water gradually oozes when left standing.
[0021]
When the concentration of the aqueous dispersion is about 5% by weight or less, the state of the aqueous dispersion is exhibited while stirring. However, when the stirring is stopped, the carbon black dispersed is re-agglomerated, that is, the flocculation. Phenomenon occurs, and water and the carbon black network structure are separated.
[0022]
The carbon black thus dispersed is dispersed in a liquid and formed into a sheet shape by a paper-making method or the like, or by coprecipitation with a polytetrafluoroethylene dispersion or other polymer latex. After compounding, it is molded into a sheet or pipe, and as a highly conductive and flexible material, a conductive composite material, a catalyst carrier for gas phase reaction or liquid phase reaction, an electrode material for various batteries, etc. Used effectively.
[0023]
【The invention's effect】
By the method of the present invention, effective dispersion of agglomerates of conductive particles such as carbon black is achieved.
[0024]
【Example】
Next, the present invention will be described with reference to examples.
[0025]
Example 1
Place 200 ml of water and 5 g of acetylene black (specific gravity about 1.9) in a glass beaker with a capacity of 300 ml, and use an oven-type microwave generator (Toshiba ER-250) with a frequency of 2450 MHz (2.45 GHz) and an output of 0.5 KW microwave Was irradiated. When irradiation starts, the precipitated carbon begins to move around in water. The size of one carbon agglomerate broke into several pieces with its movement, and eventually the pieces became about 1-5 microns in size. The DC electric resistance of the dispersion 10 minutes after irradiation was 360Ω.
[0026]
Comparative Example 1
In Example 1, when a high-speed rotating homogenizer (MX type manufactured by Nippon Seiki Co., Ltd.) was used instead of the microwave generator and the stirring was performed at a high speed of 8000 rpm for 20 minutes, the DC electric resistance of the dispersion was 11000Ω.
[0027]
Comparative Example 2
In Example 1, instead of the microwave generator, an ultrasonic generator (Branson Sonifier450, horn: 3/4 inch cylindrical shape) is used, and the DC electric resistance of the dispersion after ultrasonic irradiation for 20 minutes is determined. It was 3100Ω when measured.
[0028]
Example 2
In Example 1, 2 g of ketjen black was used instead of acetylene black. The DC electric resistance of the dispersion after 10 minutes of microwave irradiation was 7000Ω.
[0029]
Comparative Example 3
In Example 2, when a high-speed rotation type homogenizer (MX type manufactured by Nippon Seiki Co., Ltd.) was used instead of the microwave generator and a high-speed stirring treatment was performed at a rotation speed of 8000 rpm for 20 minutes, the DC electric resistance of the dispersion was 10000Ω or more.
[0030]
Comparative Example 4
In Example 2, instead of the microwave generator, an ultrasonic generator (Branson Sonifier450, horn: 3/4 inch cylindrical shape) was used, and the DC electric resistance of the dispersion after ultrasonic irradiation for 20 minutes was determined. The measured value was 13000Ω.
[0031]
Example 3
In a glass beaker having a capacity of 300 ml, 200 ml of water, 0.2 g of a nonionic surfactant (Kao product Emulgen 210) and 2 g of acetylene black were placed and dispersed in the same manner as in Example 1 by irradiation with microwaves . The value of the DC electrical resistance of the dispersion with respect to the dispersion treatment time is shown by the curve (A) in the graph of FIG.
[0032]
Further, in the graph of FIG. 1, after such microwave irradiation, the case of high-speed stirring using the high-speed rotating homogenizer (B), and then the ultrasonic irradiation processing using the ultrasonic generator. In the case of (C), the relationship of the DC electric resistance value of the dispersion to the processing time is also shown.
[Brief description of the drawings]
1 is a graph showing the value of DC electric resistance of a dispersion with respect to dispersion treatment time in Example 3. FIG.

Claims (6)

媒体中の導電性粒子凝集塊にギガヘルツ領域のマイクロ波を照射して分散処理することを特徴とする導電性粒子凝集塊の分散方法。A method for dispersing conductive particle agglomerates, comprising subjecting the conductive particle agglomerates in a medium to dispersion treatment by irradiating microwaves in a gigahertz region . ギガヘルツ領域のマイクロ波を照射した後超音波照射する請求項1記載の導電性粒子凝集塊の分散方法。 The method for dispersing conductive particle agglomerates according to claim 1, wherein ultrasonic irradiation is performed after irradiating microwaves in the gigahertz region . ギガヘルツ領域のマイクロ波を照射した後高速撹拌処理する請求項1記載の導電性粒子凝集塊の分散方法。 The method for dispersing conductive particle agglomerates according to claim 1, wherein high-speed stirring is performed after irradiation with microwaves in the gigahertz region . ギガヘルツ領域のマイクロ波を照射した後、超音波照射および高速攪拌処理を任意の順序で行なう請求項1記載の導電性粒子凝集塊の分散方法。 The method for dispersing conductive particle agglomerates according to claim 1, wherein after irradiation with microwaves in the gigahertz region, ultrasonic irradiation and high-speed stirring are performed in an arbitrary order. 界面活性剤または分散剤の存在下の水性媒体中で分散処理が行われる請求項1、2、3または4記載の導電性粒子凝集塊の分散方法。  The method for dispersing conductive particle aggregates according to claim 1, wherein the dispersion treatment is performed in an aqueous medium in the presence of a surfactant or a dispersant. 超音波照射または高速攪拌処理に先立ってギガヘルツ領域のマイクロ波の照射が行われる請求項1記載の導電性粒子凝集塊の分散方法。The method for dispersing conductive particle agglomerates according to claim 1 , wherein microwave irradiation in the gigahertz region is performed prior to ultrasonic irradiation or high-speed stirring treatment.
JP13839198A 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates Expired - Fee Related JP3840801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13839198A JP3840801B2 (en) 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13839198A JP3840801B2 (en) 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates

Publications (2)

Publication Number Publication Date
JPH11319530A JPH11319530A (en) 1999-11-24
JP3840801B2 true JP3840801B2 (en) 2006-11-01

Family

ID=15220856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13839198A Expired - Fee Related JP3840801B2 (en) 1998-05-20 1998-05-20 Method for dispersing conductive particle agglomerates

Country Status (1)

Country Link
JP (1) JP3840801B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101260001B1 (en) * 2011-06-13 2013-05-06 한국과학기술원 Dispersing and mixing method for particles with electromagnetic wave
US20150290651A1 (en) * 2014-04-09 2015-10-15 Xerox Corporation Magnetic milling systems and methods
JP6394159B2 (en) * 2014-08-05 2018-09-26 デクセリアルズ株式会社 Anisotropic conductive adhesive, manufacturing method thereof, connection structure and manufacturing method thereof
CN115283702B (en) * 2022-07-28 2024-07-19 武汉大学 Laser energy deposition superalloy anisotropy and crack suppression method and apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592711B2 (en) * 1981-03-28 1984-01-20 学校法人 近畿大学 Manufacturing method of modified carbon black
JPS57172049U (en) * 1981-04-27 1982-10-29
JPS6320026A (en) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd Method and apparatus for high frequency mixing
JPH084732B2 (en) * 1988-03-30 1996-01-24 光進電気工業株式会社 Particle mixing / dispersion method
JPH01176432A (en) * 1987-12-28 1989-07-12 Konica Corp Grain dispersing method
JPH04310227A (en) * 1991-04-04 1992-11-02 Nippon Steel Corp Mixing of fine particles
JPH07291611A (en) * 1994-04-20 1995-11-07 Kenichi Fujita Production of dispersion of carbon powder
JPH08332365A (en) * 1995-06-08 1996-12-17 Kobe Steel Ltd Powder and fluid mixing apparatus

Also Published As

Publication number Publication date
JPH11319530A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
Zhang et al. Carbon based conductive polymer composites
Hussein et al. Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite
Yadav et al. Lightweight NiFe2O4-Reduced Graphene Oxide-Elastomer Nanocomposite flexible sheet for electromagnetic interference shielding application
Zhu et al. Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles
Basuli et al. Electrical properties and electromagnetic interference shielding effectiveness of multiwalled carbon nanotubes‐reinforced EMA nanocomposites
JP5603059B2 (en) Composite resin material particles and method for producing the same
Jacob et al. Dielectric characteristics of sisal–oil palm hybrid biofibre reinforced natural rubber biocomposites
Sultana et al. Tailoring MWCNT dispersion, blend morphology and EMI shielding properties by sequential mixing strategy in immiscible PS/PVDF blends
Goyal et al. Electrical properties of polymer/expanded graphite nanocomposites with low percolation
Maiti et al. PVC bead assisted selective dispersion of MWCNT for designing efficient electromagnetic interference shielding PVC/MWCNT nanocomposite with very low percolation threshold
JP2012177131A (en) Electrically-conducting polymer, method for preparing electrically-conducting polymer, and method for controlling electrical conductivity of polymer
JP2012210796A (en) Method of mixing fibrous nanomaterial with resin particle powder
JP3840801B2 (en) Method for dispersing conductive particle agglomerates
Mirmohammadi et al. Electrical and electromagnetic properties of CNT/polymer composites
Yang et al. The fabrication and thermal conductivity of epoxy composites with 3D nanofillers of AgNWs@ SiO 2 &GNPs
TWI543197B (en) Composite resin material particle and production method thereof
Shahdan et al. Enhanced magnetic nanoparticles dispersion effect on the behaviour of ultrasonication-assisted compounding processing of PLA/LNR/NiZn nanocomposites
Hu et al. Microwave absorption and mechanical properties of glass fiber/polyamide 6 composites containing carbon black by microstructural design
Al-Saleh et al. Influence of carbon nanofiller geometry on EMI shielding and electrical percolation behaviors of polymer composites
JP6019761B2 (en) Planar heating element and manufacturing method thereof
Nath et al. Synthesis of ionic liquid modified 1‐D nanomaterial and its strategical distribution into the biodegradable binary polymer matrix to get reduced electrical percolation threshold and electromagnetic interference shielding effectiveness
Gao et al. Fabrication and electrical properties of CNT/PP conductive composites with low percolation threshold by solid state alloying
Kurniawan et al. Chemical exfoliation and microwave absorption of reduced graphene oxide synthesized from old coconut shells
JP2009126985A (en) Molded article, method for producing the same and use of the same
Gabino et al. Flexible microwave absorbing composites based on polydimethylsiloxane filled with hybrid carbonaceous materials: Statistical analysis of the synergistic effect

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees