JPH01176432A - Grain dispersing method - Google Patents

Grain dispersing method

Info

Publication number
JPH01176432A
JPH01176432A JP62335575A JP33557587A JPH01176432A JP H01176432 A JPH01176432 A JP H01176432A JP 62335575 A JP62335575 A JP 62335575A JP 33557587 A JP33557587 A JP 33557587A JP H01176432 A JPH01176432 A JP H01176432A
Authority
JP
Japan
Prior art keywords
dispersion
grains
dispersing liquid
dispersing
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335575A
Other languages
Japanese (ja)
Inventor
Akira Nishiwaki
彰 西脇
Atsushi Saito
篤志 斉藤
Tetsuya Yoshida
哲也 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP62335575A priority Critical patent/JPH01176432A/en
Publication of JPH01176432A publication Critical patent/JPH01176432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0525Coating methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/05Mixers using radiation, e.g. magnetic fields or microwaves to mix the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Abstract

PURPOSE:To enhance dispersion efficiency with a sharp distribution of the size of dispersed grains, by applying an electric field to the dispersed system of a dispersing liquid to electrically charge the grains and causing the same to flow in the grain dispersion. CONSTITUTION:In dispersing organic photoconductive grains in the production of electric photosensitive material, a dispersing liquid 2 and a dispersion medium 3 such as sand are placed into a pot 1, and a shaft 5 consisting of a disk plate 4 is turned. During this time, a port 1 and the shaft 5 are electrically connected with each other through a brush 6 and electric current is allowed to flow from an electric source 7 to electrically charge the grains in the dispersing liquid 2. In doing so, the charge grains flow in the dispersing liquid, thereby eliminating a dead zone where the shearing stress is not influential, resulting in a uniform dispersion of the grains, a high dispersion efficiency, formation of nearly even grain diameter and a sharp grain size distribution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真感光体の製造に当って用いる有機光
導電体粒子等の微粒子の分散方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for dispersing fine particles such as organic photoconductor particles used in the production of electrophotographic photoreceptors.

〔従来の技術〕[Conventional technology]

電子写真感光体は、導電性基体上に感光層を形成した基
本構造をもっている。この感光層を形成するための光導
電物質としては、従来、セレンを用いたものが一般的で
あり、その他無機光導電物質として硫化カドミウムや酸
化亜鉛等も知られている。
An electrophotographic photoreceptor has a basic structure in which a photosensitive layer is formed on a conductive substrate. As a photoconductive material for forming this photosensitive layer, selenium has conventionally been commonly used, and other inorganic photoconductive materials such as cadmium sulfide and zinc oxide are also known.

しかし、近年では、有機光導電物質を用いることによっ
て、成膜性の向上を図り、塗工によって生産することに
より生産性を高める試みがなされている。
However, in recent years, attempts have been made to improve film formability by using organic photoconductive substances and to increase productivity by producing by coating.

感光体を形成する場合、有機光導電顔料を溶剤を分散剤
とするとともに、必要によりさらにバインダー樹脂を添
加し、前記顔料を分散液中に分散させた後、導電性を有
する基体上に塗布している。
When forming a photoreceptor, an organic photoconductive pigment is used as a solvent and a dispersant, and if necessary, a binder resin is further added, and the pigment is dispersed in a dispersion liquid, and then applied onto a conductive substrate. ing.

上記分散に当っては、特開昭58−194036.60
−29753.60−61756.60−136747
号公報に示されているように、サンドグラインダー、ア
トライター、ニーダ−、ボールミル等を使用することが
知られている。
Regarding the above dispersion, JP-A-58-194036.60
-29753.60-61756.60-136747
As shown in the above publication, it is known to use a sand grinder, attritor, kneader, ball mill, etc.

〔問題点を解決するための手段〕[Means for solving problems]

しかし、従来通りの特にサンドグラインダーやアトライ
ター等の攪拌式ビーズミルでは、分散系内の顔料に対す
る剪断応力分布が不均一であり、殆んど剪断作用が働ら
かないデッドゾーンが存在する。また、系内の分散液の
対流は、それほど大きくなり、顔料粒子の系内循環が十
分になされていない。
However, in conventional stirring bead mills such as sand grinders and attritors, the shear stress distribution on the pigment in the dispersion system is uneven, and there are dead zones where almost no shearing action occurs. Further, the convection of the dispersion liquid within the system becomes so large that the pigment particles are not sufficiently circulated within the system.

その結果、各粒子の剪断作用を受ける確率が同一になら
ず、分散終了時点で、顔料粒子の粒度分布が広くなって
しまう。粒度分布が広くなると、感光体の電子写真特性
が悪いことを本発明者らは知見している。また、系内の
循環速度が小さいため、分散効率が低いという欠点もあ
った。
As a result, the probability of each particle receiving a shearing action is not the same, and the particle size distribution of the pigment particles becomes wide at the end of dispersion. The present inventors have found that the wider the particle size distribution, the worse the electrophotographic properties of the photoreceptor. Furthermore, since the circulation speed within the system is low, there is also the drawback that the dispersion efficiency is low.

そこで、本発明の、主たる目的は、分散効率が高く、し
かも分散粒子の粒度分布がシャープとなる分散方法を提
供するεとにある。
Therefore, the main object of the present invention is to provide a dispersion method with high dispersion efficiency and a sharp particle size distribution of dispersed particles.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、微粒子の分散にあたって、分散液の存在す
る分散系内に電界をかけながら分散を行うことで達成さ
れる。
The above object is achieved by dispersing the fine particles while applying an electric field to the dispersion system in which the dispersion liquid is present.

〔作 用〕[For production]

本発明に従って分散系内の電界をかけると、粒子が帯電
し分散液内を流動するようになるから、前記のデッドゾ
ーンが解消され、均一に分散され、分散効率が高まり、
しかも粒子が剪断作用を受ける確率がほぼ同じになるた
め、はぼ均一な粒子径のものが得られ、もって粒度分布
がシャープなものとなり、粒子が有機光導電体粒子であ
り、これを感光体の感光層形成に用いたとき、感光体の
電子写真特性が向上する。
When an electric field is applied within the dispersion system according to the present invention, the particles become charged and flow within the dispersion, thereby eliminating the dead zone, uniformly dispersing the particles, and increasing the dispersion efficiency.
Moreover, since the probability of the particles being subjected to shearing action is almost the same, particles with a fairly uniform diameter can be obtained, resulting in a sharp particle size distribution. When used to form a photosensitive layer, the electrophotographic properties of the photoreceptor are improved.

〔発明の具体例〕[Specific examples of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

本発明における分散に当っては、サンドグラインダー、
アトライター、ニーダ−、ボールミル等の公知の分散機
の全てを用いることができる。
For dispersion in the present invention, a sand grinder,
All known dispersing machines such as attritors, kneaders, and ball mills can be used.

この種の分散機を用いて、分散系内に電界をかける方法
としては、たとえば、第1図のサンドグライダ−では、
ポット1内に分散液2および砂等の分散メディア3を投
入しておき、円板ディスク4を高さ方向に複数枚保持し
たシャフト5を回転させ分散を図る際に、ポット1とシ
ャフト5とをブラシ6を介して電気的に接続し、電源7
から交流または直流を流し、分散液2中の粒子を帯電す
ることにより行う。
As a method of applying an electric field within the dispersed system using this type of disperser, for example, in the sand glider shown in Fig. 1,
A dispersion liquid 2 and a dispersion medium 3 such as sand are put into the pot 1, and when dispersing by rotating the shaft 5 holding a plurality of discs 4 in the height direction, the pot 1 and the shaft 5 are are electrically connected through the brush 6, and the power supply 7
This is carried out by flowing alternating current or direct current from the source to charge the particles in the dispersion liquid 2.

第2図はアトライターの例で、ディスクの代りに、攪拌
ロッド4Aがシャフト1に一体化されており、同様な分
散が可能である。
FIG. 2 shows an example of an attritor, in which, instead of a disk, a stirring rod 4A is integrated into the shaft 1, and similar dispersion is possible.

電界をかける際、交流であっても直流でもよい。When applying an electric field, either alternating current or direct current may be used.

電圧としては、50〜1000 V、望ましくは100
〜600■、より好適には200〜500■がよい。交
流の場合、その周波数は、1 k)Iz以下、望ましく
は30〜600Hz、さらに望ましくは50〜300H
zがよい。
The voltage is 50 to 1000 V, preferably 100 V.
~600 ■, more preferably 200 ~ 500 ■. In the case of alternating current, the frequency is 1 k) Iz or less, preferably 30 to 600 Hz, more preferably 50 to 300 Hz.
Z is good.

本発明に係る微粒子としては、荷電するものであれば限
定されないが、分散性が特性に大きく影響する電子写真
用感光体を形成するための有機光導電体顔料を主に対象
とする場合において、本発明が有効に適用される。
The fine particles according to the present invention are not limited as long as they are electrically charged, but when the target is mainly an organic photoconductor pigment for forming an electrophotographic photoreceptor whose dispersibility greatly affects the characteristics, The present invention can be effectively applied.

この有機光導電体粒子としは、アゾ系顔料、アンサンス
ロン系顔料、ペリレン系顔料、フタロシアニン系顔料、
キナクリドン系顔料、シアニン系顔料、ビリリウム系顔
料、チオピリリウム系顔料、インジゴ系顔料、スケアリ
ツク酸顔料、多環キノン系顔料等を挙げることができる
These organic photoconductor particles include azo pigments, anthanthrone pigments, perylene pigments, phthalocyanine pigments,
Examples include quinacridone pigments, cyanine pigments, biryllium pigments, thiopyrylium pigments, indigo pigments, scaric acid pigments, and polycyclic quinone pigments.

顔料の分散剤としては、メタノール、エタノール、イソ
プロピルアルコール等のアルコール系溶剤、アセトン、
メチルエチルケトン、メチルイソブチルケトン、シクロ
ヘキサノン等のケトン系溶剤、ベンゼン、トルエン、キ
シレン、クロルベンゼン等の芳香族系溶剤、DMF、D
MAC等の各種溶剤が使用できる。。
As pigment dispersants, alcohol solvents such as methanol, ethanol, and isopropyl alcohol, acetone,
Ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, aromatic solvents such as benzene, toluene, xylene, and chlorobenzene, DMF, D
Various solvents such as MAC can be used. .

バインダー樹脂としては、ポリビニルブチラール、ホル
マール樹脂、ポリアミド樹脂、ポリウレタン樹脂、セル
ロース系樹脂、ポリエステル樹脂、ポリサルホン樹脂、
ポリカーボネート樹脂、アクリル系樹脂、スチレン系樹
脂等が用いられ。
Binder resins include polyvinyl butyral, formal resin, polyamide resin, polyurethane resin, cellulose resin, polyester resin, polysulfone resin,
Polycarbonate resin, acrylic resin, styrene resin, etc. are used.

〔実施例〕〔Example〕

次に実施例によって本発明の効果を明らかにする。 Next, the effects of the present invention will be clarified by examples.

(実施例1.2および比較例1) 次記の処方にて、分散液を調製した。(Example 1.2 and Comparative Example 1) A dispersion liquid was prepared according to the following formulation.

〈処 方〉 ・4,10−ジブロムアンスアンスロン 2 重41B
・ポリカーボネート        2重量部・MEK
            250重量部上記の分散液を
第1図に示すサンドグラインダーにて、分散した。その
際、シャフトの回転数を11000rp 、電界を交流
400Vで100Hzの条件でかけた。これを実施例1
とした。
<Prescription> ・4,10-dibrom anthron 2 heavy 41B
・Polycarbonate 2 parts by weight ・MEK
250 parts by weight of the above dispersion was dispersed using a sand grinder as shown in FIG. At that time, the shaft rotation speed was 11,000 rpm, and the electric field was applied at 400 V AC and 100 Hz. Example 1
And so.

また、電源を400■の直流として以外は実施例1と同
様としたものを実施例2とした。
In addition, Example 2 was the same as Example 1 except that the power source was 400 μm DC.

さらに、電界をかけないこと以外は実施例1と同様とし
たものを比較例1とした。
Furthermore, Comparative Example 1 was prepared in the same manner as Example 1 except that no electric field was applied.

上記各側にもいて、掘場製作所側製粒度分布測定装置r
CAPA−500Jにて平均粒径の経時変化を調べ、分
散性の変化を調べたところ、第3図の結果を得た。また
、5時間後における粒度分布は第4図であり、かつ到達
平均粒径は第1表の通りであった。
There is also a particle size distribution measuring device on the Horiba factory side.
When the change in average particle diameter over time was investigated using CAPA-500J and the change in dispersibility was investigated, the results shown in FIG. 3 were obtained. Further, the particle size distribution after 5 hours was as shown in FIG. 4, and the average particle size reached was as shown in Table 1.

第   1   表 第3図の結果によると、本発明法によれば、分散時間が
著しく短縮され、第4図および第1表の結果によると、
本発明法による方が、粒度分布がシャープとなり、しか
も同じ分散時間の下で、平均粒径を小さくできることが
判る。
According to the results shown in Table 1 and Figure 3, the method of the present invention significantly shortens the dispersion time, and according to the results shown in Figure 4 and Table 1,
It can be seen that the method of the present invention has a sharper particle size distribution and can reduce the average particle size under the same dispersion time.

かくして得られた分散液により電子写真用感光体を作製
し、電子写真特性を調べたところ、第2表の結果が得ら
れた。
An electrophotographic photoreceptor was prepared using the dispersion thus obtained, and its electrophotographic properties were examined, and the results shown in Table 2 were obtained.

試験は、川口電機側製r E P A−8100Jを用
い、暗部電位■8および明部電位■1を測定するととも
に、半減露光量を調べた。
In the test, using REP A-8100J manufactured by Kawaguchi Electric Co., Ltd., dark area potential (8) and light area potential (1) were measured, and the half-decreased exposure amount was investigated.

第2表の結果によると、従来例によるものに比較して、
本発明法によって得た分散液に従うと、帯電特性および
耐久性が著しく向上した感光体を得ることができること
が判る。
According to the results in Table 2, compared to the conventional example,
It can be seen that by following the dispersion obtained by the method of the present invention, a photoreceptor with significantly improved charging characteristics and durability can be obtained.

(実施例3および比較例2) 次記の処方にて分散液を調整した。(Example 3 and Comparative Example 2) A dispersion liquid was prepared according to the following formulation.

(1)式の有機光導電体粒子    2部PMMA  
         2部 1.2−ジクロルエタン    250部分散に際して
は、第2図に示すアトライターを用い、シャフトの回転
数を30Orpmとし、電源電圧を直流500■とした
。これを実施例3とした。また、電界をかけない以外は
同一条件によるものを比較例2とした。
Organic photoconductor particles of formula (1) 2 parts PMMA
When dispersing 250 parts of 1.2-dichloroethane, an attritor shown in FIG. 2 was used, the rotational speed of the shaft was set to 30 Orpm, and the power supply voltage was set to 500 cm DC. This was designated as Example 3. Comparative Example 2 was prepared under the same conditions except that no electric field was applied.

初期平均粒径が約10μmのものを3時間分散した後の
平均粒径を第3表に、得られた分散液によって作製した
感光体の電子写真特性を第4表にそれぞれ示した。
Table 3 shows the average particle size after dispersing the particles having an initial average particle size of about 10 μm for 3 hours, and Table 4 shows the electrophotographic characteristics of the photoreceptor prepared using the resulting dispersion.

第   3   表 第   4   表 結果は、実施例1,2および比較例1との対比と同様な
傾向を示した。
The results in Tables 3 and 4 showed the same tendency as in comparison with Examples 1 and 2 and Comparative Example 1.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、分散効率が高く(分散時
間を短くでき)、分散粒子の粒度分布かシャープとなり
、特に感光体の作製のために用し゛る有機光導電体粒子
の分散に当って、本発明をin用すると、その効果が顕
著となる。
As described above, according to the present invention, the dispersion efficiency is high (the dispersion time can be shortened), the particle size distribution of the dispersed particles is sharp, and it is particularly suitable for dispersing organic photoconductor particles used for producing photoreceptors. In this case, when the present invention is used internally, the effect becomes remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係る分散機の概要図、第
3図および第4図は実施例での結果を示すグラフである
。 2・・・分散液、3・・・分散メディア、6・・・ブラ
シ、7・・・電源。
FIGS. 1 and 2 are schematic diagrams of the disperser according to the present invention, and FIGS. 3 and 4 are graphs showing the results in Examples. 2...Dispersion liquid, 3...Dispersion media, 6...Brush, 7...Power source.

Claims (2)

【特許請求の範囲】[Claims] (1)微粒子の分散にあたって、分散液の存在する分散
系内に電界をかけながら分散を行うことを特徴とする微
粒子の分散方法。
(1) A method for dispersing fine particles, which comprises dispersing fine particles while applying an electric field to a dispersion system in which a dispersion liquid exists.
(2)微粒子が有機光導電体顔料である第1項記載の分
散方法。
(2) The dispersion method according to item 1, wherein the fine particles are organic photoconductor pigments.
JP62335575A 1987-12-28 1987-12-28 Grain dispersing method Pending JPH01176432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335575A JPH01176432A (en) 1987-12-28 1987-12-28 Grain dispersing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335575A JPH01176432A (en) 1987-12-28 1987-12-28 Grain dispersing method

Publications (1)

Publication Number Publication Date
JPH01176432A true JPH01176432A (en) 1989-07-12

Family

ID=18290114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335575A Pending JPH01176432A (en) 1987-12-28 1987-12-28 Grain dispersing method

Country Status (1)

Country Link
JP (1) JPH01176432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319530A (en) * 1998-05-20 1999-11-24 Nok Corp Method for dispersing conductive particle flocculate
EP1870156A1 (en) * 2006-06-22 2007-12-26 Nitto Denko Corporation Dispersion and redispersion methods for dispersoids as well as crush method for aggregated dispersoids, and devices therefor
JP6121631B1 (en) * 2016-01-29 2017-04-26 ポッカサッポロフード&ビバレッジ株式会社 Method for reducing particle size

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319530A (en) * 1998-05-20 1999-11-24 Nok Corp Method for dispersing conductive particle flocculate
EP1870156A1 (en) * 2006-06-22 2007-12-26 Nitto Denko Corporation Dispersion and redispersion methods for dispersoids as well as crush method for aggregated dispersoids, and devices therefor
JP2008000686A (en) * 2006-06-22 2008-01-10 Nitto Denko Corp Dispersing method and apparatus, re-dispersing method and apparatus, and cracking method and apparatus for dispersoid
JP6121631B1 (en) * 2016-01-29 2017-04-26 ポッカサッポロフード&ビバレッジ株式会社 Method for reducing particle size
WO2017130382A1 (en) * 2016-01-29 2017-08-03 ポッカサッポロフード&ビバレッジ 株式会社 Method for reducing particle size of fine particles

Similar Documents

Publication Publication Date Title
JPH0555860B2 (en)
JPH0228265A (en) Phthalocyanine crystal, its production and photosensitive material for electrophotography reduced by using the same crystal
JPH10237347A (en) Crystalline oxotitanyl phthalocyanine and electrophotographic photoreceptor using the same, and image formation using the same
JP2007079493A (en) Hydroxygallium phthalocyanine mixture pigment, method for manufacturing the same, electrophotographic photoreceptor, electrophotographic device, and process cartridge
JP3003664B2 (en) Phthalocyanine crystal and electrophotographic photoreceptor using it
KR100619036B1 (en) Method of making coating composition for producing single layer type electrophotosensitive layer by using homogenizer
JPH01176432A (en) Grain dispersing method
US5168022A (en) Method of preparing photoconductive pigments by treating α-form metal-free phthalocyanine to a liquid jet interaction
DE3823363C2 (en) Electrophotographic recording material and process for its production
JPH0530263B2 (en)
JP3959475B2 (en) Charge generation layer comprising type I polymorph of titanyl phthalocyanine
JP2864622B2 (en) Method for producing oxytitanium phthalocyanine crystal
JPH01174567A (en) Production of pigment dispersion liquid
JPH11124512A (en) Organic pigment dispersion liquid, preparation thereof, and organic photoconductive layer
JPH0572773A (en) Manufacture of phthalocyanine type photoconductive composition
JPH01173042A (en) Dispersing method for organic photoconductive particle
JP2000199978A (en) Electrophotographic photoreceptor
JPH0352056B2 (en)
US5994013A (en) Dual layer photoconductors with charge generation layer containing charge transport compound
JP3597759B2 (en) Method for producing pigment dispersion, pigment dispersion, method for producing electrophotographic photosensitive member, electrophotographic photosensitive member, and electrophotographic apparatus
JPH0299969A (en) Electrophotographic sensitive body
JPH038433A (en) Production of suspension
KR100667782B1 (en) Coating composition for producing single layer type electrophotosensitive layer with excellent stability
JPH09325508A (en) Electrophotographic photoreceptor
JPS61251860A (en) Organic electrophotographic sensitive body and its manufacture