JPH11307259A - Organic el element - Google Patents

Organic el element

Info

Publication number
JPH11307259A
JPH11307259A JP10129593A JP12959398A JPH11307259A JP H11307259 A JPH11307259 A JP H11307259A JP 10129593 A JP10129593 A JP 10129593A JP 12959398 A JP12959398 A JP 12959398A JP H11307259 A JPH11307259 A JP H11307259A
Authority
JP
Japan
Prior art keywords
layer
organic
hole injection
quinolinolato
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10129593A
Other languages
Japanese (ja)
Inventor
Michio Arai
三千男 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP10129593A priority Critical patent/JPH11307259A/en
Publication of JPH11307259A publication Critical patent/JPH11307259A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic EL element having heat resistance, weather resistance, stable physical property and high productivity in mass production at a low cost. SOLUTION: This organic EL element has a hole injection electrode 22, an electron injection electrode 26 and one or more kinds of organic layer relating to a light emitting function between these electrodes, and has a hole injection layer 23 between the organic layer and the hole injection electrode 22. This hole injection layer 23 having carbon as a main ingredient is doped by one or more kinds of element selected from B, Al, Ga, In, Tl and As and/or one or more kinds of compound selected from nickel oxide, chromium oxide, ferrous oxide, ferric oxide and molybdenum oxide, in order to make this EL element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機EL(電界発
光)素子に関し、詳しくは、有機化合物からなる薄膜に
電界を印加して光を放出する素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence (EL) device, and more particularly, to a device that emits light by applying an electric field to a thin film made of an organic compound.

【0002】[0002]

【従来の技術】有機EL素子は、蛍光性有機化合物を含
む薄膜を、電子注入電極とホール注入電極とで挟んだ構
成を有し、前記薄膜に電子およびホールを注入して再結
合させることにより励起子(エキシトン)を生成させ、
このエキシトンが失活する際の光の放出(蛍光・燐光)
を利用して発光する素子である。
2. Description of the Related Art An organic EL device has a structure in which a thin film containing a fluorescent organic compound is sandwiched between an electron injection electrode and a hole injection electrode, and electrons and holes are injected into the thin film and recombined. Generate excitons,
Light emission when this exciton is deactivated (fluorescence / phosphorescence)
This is an element that emits light by utilizing.

【0003】有機EL素子の特徴は、10V前後の電圧
で数100から数10000cd/m2ときわめて高い輝度
の面発光が可能であり、また蛍光物質の種類を選択する
ことにより青色から赤色までの発光が可能なことであ
る。
[0003] The characteristics of the organic EL element are that it can emit a very high luminance of several hundreds to several tens of thousands cd / m 2 at a voltage of about 10 V, and can change the color from blue to red by selecting the type of fluorescent substance. Light emission is possible.

【0004】ところで、有機EL素子として、ホール注
入電極にスズドープ酸化インジウム(ITO)透明電極
を使用し、ホール注入輸送層等用のホール注入輸送性化
合物にテトラアリーレンジアミン誘導体を使用した構成
のものが知られている(特開昭63−295695号
等)。
Meanwhile, an organic EL device having a structure using a tin-doped indium oxide (ITO) transparent electrode as a hole injection electrode and a tetraarylenediamine derivative as a hole injection / transport compound for a hole injection / transport layer or the like is known. It is known (JP-A-63-29569, etc.).

【0005】しかし、ITO透明電極上に直接例えば
N,N,N’,N’−テトラキス(−m−ビフェニル)
−1,1’−ビフェニル−4,4’−ジアミンのような
テトラアリーレンジアミン誘導体の層を形成した場合に
テトラアリーレンジアミン誘導体の結晶化や層の剥離に
よって発光寿命が十分でないという問題がある。
However, for example, N, N, N ', N'-tetrakis (-m-biphenyl) is directly formed on the ITO transparent electrode.
When a layer of a tetraarylenediamine derivative such as -1,1'-biphenyl-4,4'-diamine is formed, there is a problem that the luminescence lifetime is not sufficient due to crystallization of the tetraarylenediamine derivative or separation of the layer.

【0006】このような問題に対処するために、ITO
透明電極とテトラアリーレンジアミン誘導体を含有する
層との間に、ホール注入輸送性化合物でもある4,
4’,4”−トリス(−N−(−3−メチルフェニル)
−N−フェニルアミノ)トリフェニルアミン(MTDA
TA)を含有する層を設け、ホール注入効果を得るとと
もに、両層の密着性を改善することが行われている(特
開平4−308688号等)。
In order to deal with such a problem, ITO
4, which is also a hole injecting and transporting compound, between the transparent electrode and the layer containing the tetraarylenediamine derivative.
4 ', 4 "-tris (-N-(-3-methylphenyl)
-N-phenylamino) triphenylamine (MTDA
It has been practiced to provide a layer containing TA) to obtain a hole injection effect and to improve the adhesion between the two layers (Japanese Patent Laid-Open No. 4-308688, etc.).

【0007】しかしながら、例えば4,4’,4”−ト
リス(−N−(−3−メチルフェニル)−N−フェニル
アミノ)トリフェニルアミンはガラス転移温度が80℃
程度であり、耐熱性が不十分である。有機EL素子は、
実用上、高い電界強度下において使用されるものであっ
て発熱からは逃れられないものであるため、4,4’,
4”−トリス(−N−(−3−メチルフェニル)−N−
フェニルアミノ)トリフェニルアミン等、有機材料の耐
熱性の悪さは深刻であり、これに起因して発光寿命が十
分でないという問題が生じる。
However, for example, 4,4 ', 4 "-tris (-N-(-3-methylphenyl) -N-phenylamino) triphenylamine has a glass transition temperature of 80.degree.
And heat resistance is insufficient. Organic EL elements
Practically, it is used under a high electric field strength and cannot escape heat generation.
4 "-tris (-N-(-3-methylphenyl) -N-
The heat resistance of organic materials such as phenylamino) triphenylamine is serious, and as a result, there is a problem that the light emission lifetime is not sufficient.

【0008】また、これらの有機材料が劣化したり、そ
の界面における物性が悪化してくると、リーク電流によ
る誤発光現象が生じるようになったり、ダークスポット
と称する非発光領域が発生、拡大し、表示品質を著しく
損ねてしまう。
Further, when these organic materials are deteriorated or physical properties at the interface are deteriorated, an erroneous light emission phenomenon occurs due to a leak current, and a non-light emitting region called a dark spot is generated and expanded. This significantly impairs the display quality.

【0009】さらに、ホール注入層、電子注入層等に使
用される有機材料は比較的高価である。このため、大盤
のディスプレイや、量産品への応用を考えた場合、コス
トの低減が重要な問題となってくる。
Further, the organic materials used for the hole injection layer, the electron injection layer and the like are relatively expensive. For this reason, cost reduction is an important issue when considering application to large displays and mass-produced products.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、耐熱
性、耐候性を備え、リーク電流やダークスポットの発生
が抑制可能で、物性が安定していて、しかも量産性が高
く、低コスト化が可能な有機EL素子を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide heat resistance and weather resistance, which can suppress the occurrence of leak current and dark spots, have stable physical properties, and have high mass productivity and low cost. An object of the present invention is to provide an organic EL device that can be manufactured.

【0011】[0011]

【課題を解決するための手段】上記目的は、以下の構成
により達成される。 (1) ホール注入電極と、電子注入電極と、これらの
電極間に少なくとも発光機能に関与する1種または2種
以上の有機層を有し、前記有機層とホール注入電極との
間に無機ホール注入層を有し、この無機ホール注入層
は、炭素を主成分とし、これにB,Al,Ga,In,
TlおよびAsから選択される元素の1種または2種以
上、および/または、酸化ニッケル、酸化クロム、酸化
第1鉄、および酸化モリブデンから選択される化合物の
1種または2種以上を混合またはドープしたものである
有機EL素子。 (2) 前記無機ホール注入層の膜厚は、1〜50nmで
ある上記(1)の有機EL素子。
The above object is achieved by the following constitution. (1) A hole injection electrode, an electron injection electrode, and at least one or more organic layers involved in at least a light emitting function between these electrodes, and an inorganic hole is provided between the organic layer and the hole injection electrode. The inorganic hole injection layer includes carbon as a main component, and further contains B, Al, Ga, In,
Mixing or doping one or more of the elements selected from Tl and As and / or one or more of the compounds selected from nickel oxide, chromium oxide, ferrous oxide, and molybdenum oxide An organic EL device. (2) The organic EL device according to (1), wherein the inorganic hole injection layer has a thickness of 1 to 50 nm.

【0012】[0012]

【発明の実施の形態】本発明の有機EL素子は、ホール
注入電極と、電子注入電極と、これらの電極間に少なく
とも発光機能に関与する1種または2種以上の有機層を
有し、前記有機層とホール注入電極との間に無機ホール
注入層を有し、このホール注入層は、炭素を主成分と
し、これにB,Al,Ga,In,TlおよびAsの1
種または2種以上、および/または、酸化ニッケル、酸
化クロム、酸化第1鉄および酸化モリブデンから選択さ
れる化合物の1種または2種以上を混合またはドープし
たものである。
BEST MODE FOR CARRYING OUT THE INVENTION The organic EL device of the present invention has a hole injection electrode, an electron injection electrode, and one or more organic layers at least related to a light emitting function between these electrodes. An inorganic hole injecting layer is provided between the organic layer and the hole injecting electrode. The hole injecting layer contains carbon as a main component, and contains one of B, Al, Ga, In, Tl and As.
One or more kinds of compounds selected from nickel oxide, chromium oxide, ferrous oxide, and molybdenum oxide are mixed or doped.

【0013】無機ホール注入層は、ホール注入電極から
のホールの注入を容易にする機能、ホールを安定に輸送
する機能および電子を妨げる機能を有するものである。
この層は、発光層に注入されるホールを増大・閉じこめ
させ、再結合領域を最適化させ、発光効率を改善する。
なお、無機ホール注入層に加えホール輸送層(または、
ホール注入輸送層)を発光層との間に設けてもよいし、
発光層をホール輸送発光層としてもよい。
The inorganic hole injection layer has a function of facilitating the injection of holes from the hole injection electrode, a function of stably transporting holes, and a function of preventing electrons.
This layer increases and confines the holes injected into the light emitting layer, optimizes the recombination region, and improves luminous efficiency.
The hole transport layer (or, in addition to the inorganic hole injection layer)
Hole injection transport layer) may be provided between the light emitting layer and
The light emitting layer may be a hole transporting light emitting layer.

【0014】ホール注入層を、無機材料を用いた層とす
ることにより、耐熱性が向上し、素子の寿命や耐候性を
向上させることができる。また、比較的高価な有機物質
と異なり、安価で入手しやすい無機材料を用いているの
で、製造が容易となり、製造コストを低減することがで
きる。さらに、無機材料をホール注入層に用いることで
ITO等のホール注入電極との接続性、接着性も良好に
なる。また、熱拡散性が良好となり、素子の耐久性や寿
命が向上する。
By making the hole injection layer a layer using an inorganic material, the heat resistance can be improved, and the life and weather resistance of the element can be improved. Further, unlike an organic material that is relatively expensive, an inorganic material that is inexpensive and easily available is used, so that the production becomes easy and the production cost can be reduced. Further, by using an inorganic material for the hole injection layer, the connectivity and adhesion to a hole injection electrode such as ITO can be improved. In addition, the thermal diffusivity becomes good, and the durability and life of the element are improved.

【0015】無機ホール注入層の厚さはホールを効率よ
く注入しうるものであれば特に限定されるものではな
い。具体的には形成材料によっても異なるが、通常、1
〜50nmが好ましい。無機ホール注入層が光を取り出す
側にあるとき、発光波長帯域、通常400〜700nm、
特に各発光光に対する光透過率が50%以上、好ましく
は70%以上、特に80%以上であることが好ましい。
透過率が低くなると、発光層からの発光自体が減衰さ
れ、発光素子として必要な輝度が得られなくなる傾向が
ある。
The thickness of the inorganic hole injection layer is not particularly limited as long as holes can be injected efficiently. Specifically, although it differs depending on the forming material, usually, 1
~ 50 nm is preferred. When the inorganic hole injection layer is on the light extraction side, the emission wavelength band, usually 400 to 700 nm,
In particular, the light transmittance for each emitted light is preferably 50% or more, preferably 70% or more, and particularly preferably 80% or more.
When the transmittance is low, the light emission from the light emitting layer itself is attenuated, and the luminance required for the light emitting element tends not to be obtained.

【0016】無機ホール注入層を構成する材料として
は、炭素を主成分とし、これにB,Al,Ga,In,
TlおよびAsから選択される元素の1種または2種以
上、および/または、酸化ニッケル、酸化クロム、酸化
第1鉄、酸化モリブデンから選択される化合物の1種ま
たは2種以上を混合またはドープしたものである。
As a material constituting the inorganic hole injection layer, carbon is a main component, and B, Al, Ga, In,
One or more elements selected from Tl and As and / or one or more compounds selected from nickel oxide, chromium oxide, ferrous oxide and molybdenum oxide are mixed or doped. Things.

【0017】上記B,Al,Ga,In,TlおよびA
sから選択される元素の含有量としては、0.5〜5at
%が好ましく、酸化ニッケル、酸化クロム、酸化第1
鉄、および酸化モリブデンは、それぞれ金属換算で、5
〜50at%程度混合、またはドープすることが好まし
い。
The above B, Al, Ga, In, Tl and A
The content of the element selected from s is 0.5 to 5 at.
%, Preferably nickel oxide, chromium oxide, primary oxide
Iron and molybdenum oxide are each 5
It is preferable to mix or dope about 50 at%.

【0018】これらの材料を混合またはドープする方法
として、スパッタ法を用いる場合、ターゲットにこれら
の材料をド−ピングしたものを用いてもよいし、ターゲ
ット上にこれらの材料のチップを置いたり、反応性スパ
ッタや2元スパッタとしてもよい。また、炭素膜成膜後
にこれらの材料をイオン打ち込み法等によりドーピング
してもよい。
When a sputtering method is used as a method for mixing or doping these materials, a material obtained by doping these materials on a target may be used, or a chip of these materials may be placed on the target, Reactive sputtering or binary sputtering may be used. After the carbon film is formed, these materials may be doped by ion implantation or the like.

【0019】形成された炭素を主成分とする膜は、通
常、非単結晶状態になっている。このような膜構造、お
よび膜組成は、XRD(X線回折)や、EPMA(電子
プローブマイクロアナリシス)等により確認することが
できる。
The formed film mainly composed of carbon is usually in a non-single-crystal state. Such a film structure and a film composition can be confirmed by XRD (X-ray diffraction), EPMA (Electron Probe Micro-Analysis), or the like.

【0020】上記無機ホール注入層は、スパッタ法やプ
ラズマCVD等で形成することができるが、中でもRF
スパッタ法が好ましい。
The above-mentioned inorganic hole injection layer can be formed by a sputtering method, a plasma CVD, or the like.
Sputtering is preferred.

【0021】無機ホール注入層をスパッタ法で形成する
場合、スパッタ時のスパッタガスの圧力は、0.1〜1
Paの範囲が好ましい。スパッタガスは、通常のスパッタ
装置に使用されるAr,Kr,Xe等の不活性ガスが使
用できる。スパッタ装置の電力としては、好ましくは1
0〜100W/cm2の範囲である。また、成膜レートは
5〜100nm/min 、特に10〜50nm/min の範囲が
好ましい。
When the inorganic hole injection layer is formed by the sputtering method, the pressure of the sputtering gas during the sputtering is 0.1 to 1
The range of Pa is preferable. As the sputtering gas, an inert gas such as Ar, Kr, or Xe used in a normal sputtering apparatus can be used. The power of the sputtering apparatus is preferably 1
The range is from 0 to 100 W / cm 2 . Further, the film formation rate is preferably in the range of 5 to 100 nm / min, particularly 10 to 50 nm / min.

【0022】本発明の有機EL素子は、上記絶縁性無機
材料にて形成されたホール注入層を用いるときには、有
機物質からなるホール注入層(または、発光層を除くホ
ール注入輸送性物質を有する層)は用いないことが好ま
しい。
In the organic EL device of the present invention, when a hole injection layer formed of the above-mentioned insulating inorganic material is used, a hole injection layer made of an organic substance (or a layer having a hole injection / transport substance except a light emitting layer) ) Is preferably not used.

【0023】本発明の有機EL素子の構成例について説
明する。図1は有機EL素子の1構成例を示す概略断面
図である。図において、本発明の有機EL素子は、基板
21と、その上に形成されたITO等のホール注入電極
22と、無機ホール注入層23と、発光層24と、電子
注入層25と、電子注入電極26とを順次有する。本発
明の有機EL素子は、図示例の構成に限定されるもので
はなく、種々の変更、応用が可能である。
A configuration example of the organic EL device of the present invention will be described. FIG. 1 is a schematic sectional view showing one configuration example of the organic EL element. In the figure, the organic EL device of the present invention comprises a substrate 21, a hole injection electrode 22, such as ITO, formed thereon, an inorganic hole injection layer 23, a light emitting layer 24, an electron injection layer 25, and an electron injection layer. And an electrode 26 sequentially. The organic EL device of the present invention is not limited to the configuration of the illustrated example, and various modifications and applications are possible.

【0024】カラーディスプレイとする場合、例えば、
基板上にITO等の第1のホール注入電極と、第1のホ
ール注入層と、第1の発光層と、第1の電子注入層と、
第1の電子注入電極とを順次積層し、その上に第2の電
子注入層と、第2の発光層と、第2のホール注入層と、
第2のホール注入電極とを順次積層し、さらにその上
に、第3のホール注入層と、第3の発光層と、第3の電
子注入層と、第2の電子注入電極とを順次積層した構成
とすればよい。
For a color display, for example,
A first hole injection electrode such as ITO on a substrate, a first hole injection layer, a first light emitting layer, a first electron injection layer,
A first electron injection electrode is sequentially stacked, and a second electron injection layer, a second light emitting layer, a second hole injection layer,
A second hole injection electrode is sequentially stacked, and a third hole injection layer, a third light emitting layer, a third electron injection layer, and a second electron injection electrode are sequentially stacked thereon. What is necessary is just to set it as the structure.

【0025】あるいは、例えば、基板上に第1の電子注
入電極と、第1の電子注入層と、第1の発光層と、第1
のホール注入層と、第1のホール注入電極とを順次積層
し、、その上に第2のホール注入層と、第2の発光層
と、第2の電子注入層と、第2の電子注入電極とを順次
積層し、さらにその上に、第3の電子注入層と、第3の
発光層と、第3のホール注入層と、第2のホール注入電
極を順次積層する構成としてもよい。この場合、電子注
入電極等は光透過性を確保するため、膜厚を100nm以
下とすることが好ましい。なお、上記ホール注入層のう
ち、一層以上が本発明の無機ホール注入層であればよ
い。
Alternatively, for example, a first electron injection electrode, a first electron injection layer, a first light emitting layer,
A hole injection layer and a first hole injection electrode are sequentially laminated, and a second hole injection layer, a second light emitting layer, a second electron injection layer, and a second electron injection layer are stacked thereon. Electrodes may be sequentially stacked, and a third electron injection layer, a third light emitting layer, a third hole injection layer, and a second hole injection electrode may be sequentially stacked thereon. In this case, the thickness of the electron injection electrode or the like is preferably 100 nm or less in order to secure light transmittance. In addition, one or more of the hole injection layers may be the inorganic hole injection layer of the present invention.

【0026】必要に応じて、各ホール注入電極とホール
注入層との間にホール注入輸送層、あるいはホール輸送
層を設けてもよいし、各電子注入電極と電子注入層との
間に電子注入輸送層、あるいは電子輸送層を設けてもよ
い。また、前記積層体中、本発明のホール輸送層および
/または電子輸送層は、必ずしも全てが層である必要は
なく、一層以上あればよい。このような、積層体を複数
積層する構造の場合、本発明のホール輸送層および/ま
たは電子輸送層を設けることで、耐熱性が向上し、酸化
被膜などで有機層を挟み込むこととなるため耐候性が向
上する。
If necessary, a hole injection transport layer or a hole transport layer may be provided between each hole injection electrode and the hole injection layer, or an electron injection layer may be provided between each electron injection electrode and the electron injection layer. A transport layer or an electron transport layer may be provided. Further, in the laminate, the hole transport layer and / or the electron transport layer of the present invention need not necessarily be all layers, but may be one or more. In the case of such a structure in which a plurality of laminates are laminated, heat resistance is improved by providing the hole transport layer and / or the electron transport layer of the present invention, and the organic layer is sandwiched by an oxide film or the like. The performance is improved.

【0027】これらの例では、1つの発光単位となる積
層体を3層積層して、3原色発光によるフルカラーディ
スプレイ、あるいは3原色を同時に発光させ、ブロード
な白色光源として機能させることができる構成となって
いる。
In these examples, a three-layered laminate serving as one light-emitting unit is laminated, and a full-color display using three primary colors or three primary colors are simultaneously emitted to function as a broad white light source. Has become.

【0028】ホール注入電極は、通常基板側から発光し
た光を取り出す構成であるため、透明ないし半透明な電
極が好ましい。透明電極としては、上記電子注入電極と
同様、ITO(錫ドープ酸化インジウム)、IZO(亜
鉛ドープ酸化インジウム)、ZnO、SnO2 、In2
3 等が挙げられ、ITO(錫ドープ酸化インジウ
ム)、IZO(亜鉛ドープ酸化インジウム)が好まし
い。
Since the hole injection electrode is generally configured to extract light emitted from the substrate side, a transparent or translucent electrode is preferable. As the transparent electrode, similarly to the above-mentioned electron injection electrode, ITO (tin-doped indium oxide), IZO (zinc-doped indium oxide), ZnO, SnO 2 , In 2
O 3 and the like are exemplified, and ITO (tin-doped indium oxide) and IZO (zinc-doped indium oxide) are preferable.

【0029】ホール注入電極が、光を取り出す側の電極
である場合、発光波長帯域、通常400〜700nm、特
に各発光光に対する光透過率が80%以上、特に90%
以上であることが好ましい。透過率が低くなると、発光
層からの発光自体が減衰され、発光素子として必要な輝
度が得られなくなる傾向がある。
When the hole injection electrode is an electrode on the side from which light is extracted, the light transmittance is 80% or more, especially 90%, for the emission wavelength band, usually 400 to 700 nm, especially for each emitted light.
It is preferable that it is above. When the transmittance is low, the light emission from the light emitting layer itself is attenuated, and the luminance required for the light emitting element tends not to be obtained.

【0030】ホール注入電極の厚さは、ホール注入を十
分行える一定以上の厚さを有すれば良く、好ましくは5
0〜500nm、さらには50〜300nmの範囲が好まし
い。また、その上限は特に制限はないが、あまり厚いと
剥離などの心配が生じる。厚さが薄すぎると、製造時の
膜強度やホール輸送能力、抵抗値の点で問題がある。
The thickness of the hole injecting electrode may be a certain thickness or more that can sufficiently inject holes, and is preferably 5 or more.
The range is preferably from 0 to 500 nm, more preferably from 50 to 300 nm. The upper limit is not particularly limited, but if the thickness is too large, there is a fear of peeling or the like. If the thickness is too small, there is a problem in the film strength at the time of manufacturing, the hole transport ability, and the resistance value.

【0031】このホール注入電極層は蒸着法等によって
も形成できるが、好ましくはスパッタ法、特にDCスパ
ッタあるいはパルススパッタ法により形成することが好
ましい。
The hole injecting electrode layer can be formed by a vapor deposition method or the like, but is preferably formed by a sputtering method, particularly, a DC sputtering method or a pulse sputtering method.

【0032】有機層は、以下のような構成とすることが
できる。発光層は、ホール(正孔)および電子の輸送機
能、ホールと電子の再結合により励起子を生成させる機
能を有する。発光層には、比較的電子的にニュートラル
な化合物を用いることが好ましい。
The organic layer can have the following structure. The light emitting layer has a function of transporting holes (holes) and electrons, and a function of generating excitons by recombination of holes and electrons. It is preferable to use a relatively electronically neutral compound for the light emitting layer.

【0033】電子注入輸送層は、電子注入電極からの電
子の注入を容易にする機能、電子を安定に輸送する機
能、および、ホールを妨げる機能を有するものである。
この層は、発光層に注入される電子を増大・閉じこめさ
せ、再結合領域を最適化させ、発光効率を改善する。
The electron injecting and transporting layer has a function of facilitating electron injection from the electron injecting electrode, a function of stably transporting electrons, and a function of preventing holes.
This layer increases and confines the electrons injected into the light emitting layer, optimizes the recombination region, and improves luminous efficiency.

【0034】発光層の厚さ、電子注入輸送層の厚さは、
特に制限されるものではなく、形成方法によっても異な
るが、通常5〜500nm程度、特に10〜300nmとす
ることが好ましい。
The thickness of the light emitting layer and the thickness of the electron injection transport layer are as follows:
There is no particular limitation, and although it depends on the forming method, it is usually preferably about 5 to 500 nm, particularly preferably 10 to 300 nm.

【0035】電子注入輸送層の厚さは、再結合・発光領
域の設計によるが、発光層の厚さと同程度または1/1
0〜10倍程度とすればよい。電子の各々の注入層と輸
送層とを分ける場合は、注入層は1nm以上、輸送層は1
nm以上とするのが好ましい。このときの注入層、輸送層
の厚さの上限は、通常、注入層で500nm程度、輸送層
で500nm程度である。このような膜厚については、注
入輸送層を2層設けるときも同じである。
The thickness of the electron injecting / transporting layer depends on the design of the recombination / light emitting region.
It may be about 0 to 10 times. When the electron injection layer and the transport layer are separated, the injection layer is 1 nm or more, and the transport layer is 1 nm or more.
It is preferably at least nm. At this time, the upper limit of the thickness of the injection layer and the transport layer is usually about 500 nm for the injection layer and about 500 nm for the transport layer. Such a film thickness is the same when two injection / transport layers are provided.

【0036】有機EL素子の発光層には、発光機能を有
する化合物である蛍光性物質を含有させる。このような
蛍光性物質としては、例えば、特開昭63−26469
2号公報に開示されているような化合物、例えばキナク
リドン、ルブレン、スチリル系色素等の化合物から選択
される少なくとも1種が挙げられる。また、トリス(8
−キノリノラト)アルミニウム等の8−キノリノールま
たはその誘導体を配位子とする金属錯体色素などのキノ
リン誘導体、テトラフェニルブタジエン、アントラセ
ン、ペリレン、コロネン、12−フタロペリノン誘導体
等が挙げられる。さらには、特願平6−110569号
のフェニルアントラセン誘導体、特願平6−11445
6号のテトラアリールエテン誘導体等を用いることがで
きる。
The light emitting layer of the organic EL element contains a fluorescent substance which is a compound having a light emitting function. Examples of such a fluorescent substance include, for example, JP-A-63-26469.
No. 2 discloses at least one compound selected from compounds such as quinacridone, rubrene, and styryl dyes. Also, Tris (8
-Quinolinolato) quinoline derivatives such as metal complex dyes having 8-quinolinol or a derivative thereof as a ligand such as aluminum, tetraphenylbutadiene, anthracene, perylene, coronene, and 12-phthaloperinone derivatives. Further, phenylanthracene derivatives disclosed in Japanese Patent Application No. 6-110569, and Japanese Patent Application No. 6-11445.
No. 6 tetraarylethene derivative or the like can be used.

【0037】また、それ自体で発光が可能なホスト物質
と組み合わせて使用することが好ましく、ドーパントと
しての使用が好ましい。このような場合の発光層におけ
る化合物の含有量は0.01〜20wt% 、さらには0.
1〜15wt% であることが好ましい。ホスト物質と組み
合わせて使用することによって、ホスト物質の発光波長
特性を変化させることができ、長波長に移行した発光が
可能になるとともに、素子の発光効率や安定性が向上す
る。
Further, it is preferable to use in combination with a host substance capable of emitting light by itself, and it is preferable to use it as a dopant. In such a case, the content of the compound in the light emitting layer is 0.01 to 20% by weight, and more preferably 0.1 to 20% by weight.
It is preferably 1 to 15% by weight. When used in combination with a host substance, the emission wavelength characteristics of the host substance can be changed, light emission shifted to a longer wavelength becomes possible, and the luminous efficiency and stability of the device are improved.

【0038】ホスト物質としては、キノリノラト錯体が
好ましく、さらには8−キノリノールまたはその誘導体
を配位子とするアルミニウム錯体が好ましい。このよう
なアルミニウム錯体としては、特開昭63−26469
2号、特開平3−255190号、特開平5−7073
3号、特開平5−258859号、特開平6−2158
74号等に開示されているものを挙げることができる。
As the host substance, a quinolinolato complex is preferable, and an aluminum complex having 8-quinolinol or a derivative thereof as a ligand is preferable. Such an aluminum complex is disclosed in JP-A-63-26469.
No. 2, JP-A-3-255190, JP-A-5-7073
3, JP-A-5-258859, JP-A-6-2158
No. 74 and the like.

【0039】具体的には、まず、トリス(8−キノリノ
ラト)アルミニウム、ビス(8−キノリノラト)マグネ
シウム、ビス(ベンゾ{f}−8−キノリノラト)亜
鉛、ビス(2−メチル−8−キノリノラト)アルミニウ
ムオキシド、トリス(8−キノリノラト)インジウム、
トリス(5−メチル−8−キノリノラト)アルミニウ
ム、8−キノリノラトリチウム、トリス(5−クロロ−
8−キノリノラト)ガリウム、ビス(5−クロロ−8−
キノリノラト)カルシウム、5,7−ジクロル−8−キ
ノリノラトアルミニウム、トリス(5,7−ジブロモ−
8−ヒドロキシキノリノラト)アルミニウム、ポリ[亜
鉛(II)−ビス(8−ヒドロキシ−5−キノリニル)メ
タン]等がある。
Specifically, first, tris (8-quinolinolato) aluminum, bis (8-quinolinolato) magnesium, bis (benzo {f} -8-quinolinolato) zinc, bis (2-methyl-8-quinolinolato) aluminum Oxide, tris (8-quinolinolato) indium,
Tris (5-methyl-8-quinolinolato) aluminum, 8-quinolinolatolithium, tris (5-chloro-
8-quinolinolato) gallium, bis (5-chloro-8-
Quinolinolato) calcium, 5,7-dichloro-8-quinolinolatoaluminum, tris (5,7-dibromo-
8-hydroxyquinolinolato) aluminum and poly [zinc (II) -bis (8-hydroxy-5-quinolinyl) methane].

【0040】また、8−キノリノールまたはその誘導体
のほかに他の配位子を有するアルミニウム錯体であって
もよく、このようなものとしては、ビス(2−メチル−
8−キノリノラト)(フェノラト)アルミニウム(III)
、ビス(2−メチル−8−キノリノラト)(オルト−
クレゾラト)アルミニウム(III) 、ビス(2−メチル−
8−キノリノラト)(メタークレゾラト)アルミニウム
(III) 、ビス(2−メチル−8−キノリノラト)(パラ
−クレゾラト)アルミニウム(III) 、ビス(2−メチル
−8−キノリノラト)(オルト−フェニルフェノラト)
アルミニウム(III) 、ビス(2−メチル−8−キノリノ
ラト)(メタ−フェニルフェノラト)アルミニウム(II
I) 、ビス(2−メチル−8−キノリノラト)(パラ−
フェニルフェノラト)アルミニウム(III) 、ビス(2−
メチル−8−キノリノラト)(2,3−ジメチルフェノ
ラト)アルミニウム(III) 、ビス(2−メチル−8−キ
ノリノラト)(2,6−ジメチルフェノラト)アルミニ
ウム(III) 、ビス(2−メチル−8−キノリノラト)
(3,4−ジメチルフェノラト)アルミニウム(III) 、
ビス(2−メチル−8−キノリノラト)(3,5−ジメ
チルフェノラト)アルミニウム(III) 、ビス(2−メチ
ル−8−キノリノラト)(3,5−ジ−tert−ブチルフ
ェノラト)アルミニウム(III) 、ビス(2−メチル−8
−キノリノラト)(2,6−ジフェニルフェノラト)ア
ルミニウム(III) 、ビス(2−メチル−8−キノリノラ
ト)(2,4,6−トリフェニルフェノラト)アルミニ
ウム(III) 、ビス(2−メチル−8−キノリノラト)
(2,3,6−トリメチルフェノラト)アルミニウム(I
II) 、ビス(2−メチル−8−キノリノラト)(2,
3,5,6−テトラメチルフェノラト)アルミニウム(I
II) 、ビス(2−メチル−8−キノリノラト)(1−ナ
フトラト)アルミニウム(III) 、ビス(2−メチル−8
−キノリノラト)(2−ナフトラト)アルミニウム(II
I) 、ビス(2,4−ジメチル−8−キノリノラト)
(オルト−フェニルフェノラト)アルミニウム(III) 、
ビス(2,4−ジメチル−8−キノリノラト)(パラ−
フェニルフェノラト)アルミニウム(III) 、ビス(2,
4−ジメチル−8−キノリノラト)(メタ−フェニルフ
ェノラト)アルミニウム(III) 、ビス(2,4−ジメチ
ル−8−キノリノラト)(3,5−ジメチルフェノラ
ト)アルミニウム(III) 、ビス(2,4−ジメチル−8
−キノリノラト)(3,5−ジ−tert−ブチルフェノラ
ト)アルミニウム(III) 、ビス(2−メチル−4−エチ
ル−8−キノリノラト)(パラ−クレゾラト)アルミニ
ウム(III) 、ビス(2−メチル−4−メトキシ−8−キ
ノリノラト)(パラ−フェニルフェノラト)アルミニウ
ム(III) 、ビス(2−メチル−5−シアノ−8−キノリ
ノラト)(オルト−クレゾラト)アルミニウム(III) 、
ビス(2−メチル−6−トリフルオロメチル−8−キノ
リノラト)(2−ナフトラト)アルミニウム(III) 等が
ある。
In addition to 8-quinolinol or its derivative, an aluminum complex having another ligand may be used, such as bis (2-methyl-
8-quinolinolato) (phenolato) aluminum (III)
, Bis (2-methyl-8-quinolinolato) (ortho-
Cresolato) aluminum (III), bis (2-methyl-
8-quinolinolato) (meth-cresolate) aluminum
(III), bis (2-methyl-8-quinolinolato) (para-cresolato) aluminum (III), bis (2-methyl-8-quinolinolato) (ortho-phenylphenolate)
Aluminum (III), bis (2-methyl-8-quinolinolato) (meth-phenylphenolato) aluminum (II
I), bis (2-methyl-8-quinolinolato) (para-
Phenylphenolato) aluminum (III), bis (2-
Methyl-8-quinolinolato) (2,3-dimethylphenolato) aluminum (III), bis (2-methyl-8-quinolinolato) (2,6-dimethylphenolato) aluminum (III), bis (2-methyl- 8-quinolinolato)
(3,4-dimethylphenolato) aluminum (III),
Bis (2-methyl-8-quinolinolato) (3,5-dimethylphenolato) aluminum (III), bis (2-methyl-8-quinolinolato) (3,5-di-tert-butylphenolato) aluminum (III) ), Bis (2-methyl-8)
-Quinolinolato) (2,6-diphenylphenolato) aluminum (III), bis (2-methyl-8-quinolinolato) (2,4,6-triphenylphenolato) aluminum (III), bis (2-methyl- 8-quinolinolato)
(2,3,6-trimethylphenolato) aluminum (I
II), bis (2-methyl-8-quinolinolato) (2,
3,5,6-tetramethylphenolato) aluminum (I
II), bis (2-methyl-8-quinolinolato) (1-naphthrat) aluminum (III), bis (2-methyl-8
-Quinolinolato) (2-naphthrat) aluminum (II
I), bis (2,4-dimethyl-8-quinolinolato)
(Ortho-phenylphenolato) aluminum (III),
Bis (2,4-dimethyl-8-quinolinolato) (para-
Phenylphenolato) aluminum (III), bis (2,
4-dimethyl-8-quinolinolato) (meta-phenylphenolato) aluminum (III), bis (2,4-dimethyl-8-quinolinolato) (3,5-dimethylphenolato) aluminum (III), bis (2 4-dimethyl-8
-Quinolinolato) (3,5-di-tert-butylphenolato) aluminum (III), bis (2-methyl-4-ethyl-8-quinolinolato) (para-cresolato) aluminum (III), bis (2-methyl) -4-methoxy-8-quinolinolato) (para-phenylphenolato) aluminum (III), bis (2-methyl-5-cyano-8-quinolinolato) (ortho-cresolato) aluminum (III),
Bis (2-methyl-6-trifluoromethyl-8-quinolinolato) (2-naphthrat) aluminum (III);

【0041】このほか、ビス(2−メチル−8−キノリ
ノラト)アルミニウム(III) −μ−オキソ−ビス(2−
メチル−8−キノリノラト)アルミニウム(III) 、ビス
(2,4−ジメチル−8−キノリノラト)アルミニウム
(III) −μ−オキソ−ビス(2,4−ジメチル−8−キ
ノリノラト)アルミニウム(III) 、ビス(4−エチル−
2−メチル−8−キノリノラト)アルミニウム(III) −
μ−オキソ−ビス(4−エチル−2−メチル−8−キノ
リノラト)アルミニウム(III) 、ビス(2−メチル−4
−メトキシキノリノラト)アルミニウム(III) −μ−オ
キソ−ビス(2−メチル−4−メトキシキノリノラト)
アルミニウム(III) 、ビス(5−シアノ−2−メチル−
8−キノリノラト)アルミニウム(III) −μ−オキソ−
ビス(5−シアノ−2−メチル−8−キノリノラト)ア
ルミニウム(III) 、ビス(2−メチル−5−トリフルオ
ロメチル−8−キノリノラト)アルミニウム(III) −μ
−オキソ−ビス(2−メチル−5−トリフルオロメチル
−8−キノリノラト)アルミニウム(III) 等であっても
よい。
In addition, bis (2-methyl-8-quinolinolato) aluminum (III) -μ-oxo-bis (2-
Methyl-8-quinolinolato) aluminum (III), bis (2,4-dimethyl-8-quinolinolato) aluminum
(III) -μ-oxo-bis (2,4-dimethyl-8-quinolinolato) aluminum (III), bis (4-ethyl-
2-methyl-8-quinolinolato) aluminum (III)-
μ-oxo-bis (4-ethyl-2-methyl-8-quinolinolato) aluminum (III), bis (2-methyl-4
-Methoxyquinolinolato) aluminum (III) -μ-oxo-bis (2-methyl-4-methoxyquinolinolato)
Aluminum (III), bis (5-cyano-2-methyl-
8-quinolinolato) aluminum (III) -μ-oxo-
Bis (5-cyano-2-methyl-8-quinolinolato) aluminum (III), bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum (III) -μ
-Oxo-bis (2-methyl-5-trifluoromethyl-8-quinolinolato) aluminum (III) and the like.

【0042】このほかのホスト物質としては、特願平6
−110569号に記載のフェニルアントラセン誘導体
や特願平6−114456号に記載のテトラアリールエ
テン誘導体なども好ましい。
Other host materials include Japanese Patent Application No.
Also preferred are phenylanthracene derivatives described in -110569 and tetraarylethene derivatives described in Japanese Patent Application No. 6-114456.

【0043】発光層は電子輸送層を兼ねたものであって
もよく、このような場合はトリス(8−キノリノラト)
アルミニウム等を使用することが好ましい。これらの蛍
光性物質を蒸着すればよい。
The light emitting layer may also serve as an electron transporting layer. In such a case, tris (8-quinolinolato)
It is preferable to use aluminum or the like. These fluorescent substances may be deposited.

【0044】また、発光層は、必要に応じて、少なくと
も1種のホール注入輸送性化合物と少なくとも1種の電
子注入輸送性化合物との混合層とすることも好ましく、
さらにはこの混合層中にドーパントを含有させることが
好ましい。このような混合層における化合物の含有量
は、0.01〜20wt% 、さらには0.1〜15wt% と
することが好ましい。
The light emitting layer is preferably a mixed layer of at least one kind of hole injecting and transporting compound and at least one kind of electron injecting and transporting compound, if necessary.
Further, it is preferable that a dopant is contained in the mixed layer. The content of the compound in such a mixed layer is preferably 0.01 to 20% by weight, more preferably 0.1 to 15% by weight.

【0045】混合層では、キャリアのホッピング伝導パ
スができるため、各キャリアは極性的に有利な物質中を
移動し、逆の極性のキャリア注入は起こりにくくなるた
め、有機化合物がダメージを受けにくくなり、素子寿命
がのびるという利点がある。また、前述のドーパントを
このような混合層に含有させることにより、混合層自体
のもつ発光波長特性を変化させることができ、発光波長
を長波長に移行させることができるとともに、発光強度
を高め、素子の安定性を向上させることもできる。
In the mixed layer, a hopping conduction path of carriers is formed, so that each carrier moves in a substance having a favorable polarity and injection of a carrier having the opposite polarity is less likely to occur, so that the organic compound is less likely to be damaged. This has the advantage that the element life is extended. Further, by including the above-described dopant in such a mixed layer, the emission wavelength characteristics of the mixed layer itself can be changed, the emission wavelength can be shifted to a longer wavelength, and the emission intensity is increased, The stability of the device can be improved.

【0046】混合層に用いられるホール輸送性化合物お
よび電子輸送性化合物は、各々、後述のホール輸送層用
の化合物および電子輸送層用の化合物の中から選択すれ
ばよい。なかでも、ホール輸送層用の化合物としては、
強い蛍光を持ったアミン誘導体、例えばホール輸送材料
であるトリフェニルジアミン誘導体、さらにはスチリル
アミン誘導体、芳香族縮合環を持つアミン誘導体を用い
るのが好ましい。
The hole transporting compound and the electron transporting compound used in the mixed layer may be selected from the compounds for the hole transporting layer and the compounds for the electron transporting layer described later. Among them, compounds for the hole transport layer include:
It is preferable to use an amine derivative having strong fluorescence, for example, a triphenyldiamine derivative which is a hole transport material, a styrylamine derivative, or an amine derivative having an aromatic condensed ring.

【0047】電子輸送性の化合物としては、キノリン誘
導体、さらには8−キノリノールないしその誘導体を配
位子とする金属錯体、特にトリス(8−キノリノラト)
アルミニウム(Alq3)を用いることが好ましい。ま
た、上記のフェニルアントラセン誘導体、テトラアリー
ルエテン誘導体を用いるのも好ましい。
As the electron transporting compound, quinoline derivatives, furthermore, metal complexes having 8-quinolinol or a derivative thereof as a ligand, particularly tris (8-quinolinolato)
It is preferable to use aluminum (Alq3). It is also preferable to use the above-mentioned phenylanthracene derivatives and tetraarylethene derivatives.

【0048】ホール輸送層用の化合物としては、強い蛍
光を持ったアミン誘導体、例えば上記のホール輸送材料
であるトリフェニルジアミン誘導体、さらにはスチリル
アミン誘導体、芳香族縮合環を持つアミン誘導体を用い
るのが好ましい。
As the compound for the hole transport layer, an amine derivative having strong fluorescence, for example, a triphenyldiamine derivative which is the above-described hole transport material, a styrylamine derivative, or an amine derivative having an aromatic condensed ring is used. Is preferred.

【0049】この場合の混合比は、それぞれのキャリア
移動度とキャリア濃度によるが、一般的には、ホール輸
送性化合物の化合物/電子輸送機能を有する化合物の重
量比が、1/99〜99/1、さらに好ましくは10/
90〜90/10、特に好ましくは20/80〜80/
20程度となるようにすることが好ましい。
The mixing ratio in this case depends on the respective carrier mobility and carrier concentration. In general, the weight ratio of the compound of the hole transporting compound / the compound having the electron transporting function is 1/99 to 99/99. 1, more preferably 10 /
90-90 / 10, particularly preferably 20 / 80-80 /
It is preferable to set it to about 20.

【0050】また、混合層の厚さは、分子層一層に相当
する厚み以上で、有機化合物層の膜厚未満とすることが
好ましい。具体的には1〜85nmとすることが好まし
く、さらには5〜60nm、特には5〜50nmとすること
が好ましい。
The thickness of the mixed layer is preferably not less than the thickness corresponding to one molecular layer and less than the thickness of the organic compound layer. Specifically, the thickness is preferably 1 to 85 nm, more preferably 5 to 60 nm, particularly preferably 5 to 50 nm.

【0051】また、混合層の形成方法としては、異なる
蒸着源より蒸発させる共蒸着が好ましいが、蒸気圧(蒸
発温度)が同程度あるいは非常に近い場合には、予め同
じ蒸着ボード内で混合させておき、蒸着することもでき
る。混合層は化合物同士が均一に混合している方が好ま
しいが、場合によっては、化合物が島状に存在するもの
であってもよい。発光層は、一般的には、有機蛍光物質
を蒸着するか、あるいは、樹脂バインダー中に分散させ
てコーティングすることにより、発光層を所定の厚さに
形成する。
As a method of forming a mixed layer, co-evaporation in which evaporation is performed from different evaporation sources is preferable. However, when the vapor pressures (evaporation temperatures) are approximately the same or very close, they are mixed in advance in the same evaporation board. Alternatively, it can be deposited. In the mixed layer, it is preferable that the compounds are uniformly mixed, but in some cases, the compounds may exist in an island shape. The light-emitting layer is generally formed to a predetermined thickness by vapor-depositing an organic fluorescent substance or by dispersing and coating the resin in a resin binder.

【0052】特に発光層として好ましいものに、8−キ
ノリノールまたはその誘導体を配位子とするアルミニウ
ム錯体と、テトラアリールベンジシン化合物に、ルブレ
ン、クマリン等の蛍光物質をドープした混合層が挙げら
れる。これらの混合比はアルミニウム錯体:テトラアリ
ールベンジシン化合物を1:1程度に混合した混合層
に、ルブレン等のドーピング蛍光物質を0.01〜20
mol%ドーピングしたものが好ましい。
Particularly preferred as the light emitting layer is a mixed layer in which 8-quinolinol or a derivative thereof as a ligand is doped with an aluminum complex, and a tetraarylbendicine compound is doped with a fluorescent substance such as rubrene or coumarin. The mixing ratio is such that a doping fluorescent substance such as rubrene is added to a mixed layer in which an aluminum complex: tetraarylbendicine compound is mixed at a ratio of about 1: 1 to 0.01 to 20.
Preferable is one doped with mol%.

【0053】また、本発明の無機ホール注入層の他に、
有機物のホール注入輸送層を形成する場合、ホール注入
輸送層には、例えば、特開昭63−295695号公
報、特開平2−191694号公報、特開平3−792
号公報、特開平5−234681号公報、特開平5−2
39455号公報、特開平5−299174号公報、特
開平7−126225号公報、特開平7−126226
号公報、特開平8−100172号公報、EP0650
955A1等に記載されている各種有機化合物を用いる
ことができる。例えば、テトラアリールベンジシン化合
物(トリアリールジアミンないしトリフェニルジアミ
ン:TPD)、芳香族三級アミン、ヒドラゾン誘導体、
カルバゾール誘導体、トリアゾール誘導体、イミダゾー
ル誘導体、アミノ基を有するオキサジアゾール誘導体、
ポリチオフェン等である。これらの化合物は、1種のみ
を用いても、2種以上を併用してもよい。2種以上を併
用するときは、別層にして積層したり、混合したりすれ
ばよい。
In addition to the inorganic hole injection layer of the present invention,
When an organic hole injecting and transporting layer is formed, the hole injecting and transporting layer may include, for example, JP-A-63-295695, JP-A-2-191694, and JP-A-3-792.
JP, JP-A-5-234681, JP-A-5-25-2
39455, JP-A-5-299174, JP-A-7-126225, JP-A-7-126226
JP, JP-A-8-100172, EP0650
Various organic compounds described in 955A1 and the like can be used. For example, a tetraarylbendicine compound (triaryldiamine or triphenyldiamine: TPD), an aromatic tertiary amine, a hydrazone derivative,
Carbazole derivatives, triazole derivatives, imidazole derivatives, oxadiazole derivatives having an amino group,
And polythiophene. These compounds may be used alone or in combination of two or more. When two or more kinds are used in combination, they may be stacked as separate layers or mixed.

【0054】また、必要に応じて設けられる電子注入輸
送層には、トリス(8−キノリノラト)アルミニウム
(Alq3 )等の8−キノリノールまたはその誘導体を
配位子とする有機金属錯体などのキノリン誘導体、オキ
サジアゾール誘導体、ペリレン誘導体、ピリジン誘導
体、ピリミジン誘導体、キノキサリン誘導体、ジフェニ
ルキノン誘導体、ニトロ置換フルオレン誘導体等を用い
ることができる。電子注入輸送層は発光層を兼ねたもの
であってもよく、このような場合はトリス(8−キノリ
ノラト)アルミニウム等を使用することが好ましい。電
子注入輸送層の形成は、発光層と同様に、蒸着等によれ
ばよい。
A quinoline derivative such as an organometallic complex having 8-quinolinol such as tris (8-quinolinolato) aluminum (Alq 3 ) or a derivative thereof as a ligand is provided in the electron injection transport layer provided as needed. Oxadiazole derivatives, perylene derivatives, pyridine derivatives, pyrimidine derivatives, quinoxaline derivatives, diphenylquinone derivatives, nitro-substituted fluorene derivatives, and the like. The electron injection / transport layer may also serve as the light emitting layer. In such a case, it is preferable to use tris (8-quinolinolato) aluminum or the like. The electron injecting and transporting layer may be formed by vapor deposition or the like, similarly to the light emitting layer.

【0055】電子注入輸送層を電子注入層と電子輸送層
とに分ける場合には、電子注入輸送層用の化合物の中か
ら好ましい組み合わせを選択して用いたり、上記絶縁材
料を用いた電子注入層と組み合わせて用いることができ
る。このとき、電子注入電極側から電子親和力の値の大
きい化合物の順に積層することが好ましい。このような
積層順については、電子注入輸送層を2層以上設けると
きも同様である。
When the electron injecting / transporting layer is divided into an electron injecting layer and an electron transporting layer, a preferable combination is selected from the compounds for the electron injecting / transporting layer and used. Can be used in combination. At this time, it is preferable to stack the compounds in descending order of the electron affinity value from the electron injection electrode side. Such a stacking order is the same when two or more electron injection / transport layers are provided.

【0056】有機EL構造体各層を成膜した後に、Si
X 等の無機材料、テフロン、塩素を含むフッ化炭素重
合体等の有機材料等を用いた保護膜を形成してもよい。
保護膜は透明でも不透明であってもよく、保護膜の厚さ
は50〜1200nm程度とする。保護膜は、前記の反応
性スパッタ法の他に、一般的なスパッタ法、蒸着法、P
ECVD法等により形成すればよい。
After forming each layer of the organic EL structure, the Si
Inorganic materials O X such as Teflon, a protective film may be formed using an organic material such as fluorocarbon polymers containing chlorine.
The protective film may be transparent or opaque, and the thickness of the protective film is about 50 to 1200 nm. The protective film can be formed by a general sputtering method, a vapor deposition method,
It may be formed by an ECVD method or the like.

【0057】さらに、素子の有機層や電極の酸化を防い
だり、機械的ダメージから保護するために、素子上に封
止板を設けることが好ましい。封止板は、湿気の侵入を
防ぐために、接着性樹脂等を用いて接着し密封する。封
止ガスは、Ar、He、N2等の不活性ガス等が好まし
い。また、この封止ガスの水分含有量は、100 ppm以
下、より好ましくは10 ppm以下、特には1 ppm以下で
あることが好ましい。この水分含有量に下限値は特にな
いが、通常0.1 ppm程度である。
Further, it is preferable to provide a sealing plate on the device in order to prevent oxidation of the organic layer and the electrode of the device and to protect the device from mechanical damage. The sealing plate is bonded and sealed with an adhesive resin or the like in order to prevent moisture from entering. The sealing gas is preferably an inert gas such as Ar, He, and N 2 . Further, the moisture content of the sealing gas is preferably 100 ppm or less, more preferably 10 ppm or less, and particularly preferably 1 ppm or less. Although there is no particular lower limit for the water content, it is usually about 0.1 ppm.

【0058】封止板の材料としては、好ましくは平板状
であって、ガラスや石英、樹脂等の透明ないし半透明材
料が挙げられるが、特にガラスが好ましい。このような
ガラス材として、アルカリガラスが好ましいが、この
他、ソーダ石灰ガラス、鉛アルカリガラス、ホウケイ酸
ガラス、アルミノケイ酸ガラス、シリカガラス等のガラ
ス組成のものも好ましい。また、その製板方法として
は、ロールアウト法、ダウンロード法、フュージョン
法、フロート法等が好ましい。ガラス材の表面処理法と
しては、研磨加工処理、SiO2バリヤーコート処理等
が好ましい。これらの中でも、フロート法で製板された
ソーダ石灰ガラスで、表面処理の無いガラス材が安価に
使用でき、好ましい。封止板としては、ガラス板以外に
も、金属板、プラスチック板等を用いることもできる。
The material of the sealing plate is preferably a flat plate, and may be a transparent or translucent material such as glass, quartz, and resin. Glass is particularly preferred. As such a glass material, an alkali glass is preferable, and in addition, a glass composition such as soda-lime glass, lead-alkali glass, borosilicate glass, aluminosilicate glass, and silica glass is also preferable. As the plate making method, a roll-out method, a download method, a fusion method, a float method, or the like is preferable. As a surface treatment method for the glass material, a polishing treatment, a SiO 2 barrier coat treatment, or the like is preferable. Among them, soda-lime glass produced by a float method and having no surface treatment can be used at a low cost, and is preferable. As the sealing plate, other than a glass plate, a metal plate, a plastic plate, or the like can be used.

【0059】封止板は、スペーサーを用いて高さを調整
し、所望の高さに保持してもよい。スペーサーの材料と
しては、樹脂ビーズ、シリカビーズ、ガラスビーズ、ガ
ラスファイバー等が挙げられ、特にガラスビーズ等が好
ましい。スペーサーは、通常、粒径の揃った粒状物であ
るが、その形状は特に限定されるものではなく、スペー
サーとしての機能に支障のないものであれば種々の形状
であってもよい。その大きさとしては、円換算の直径が
1〜20μm 、より好ましくは1〜10μm 、特に2〜
8μm が好ましい。このような直径のものは、粒長10
0μm 以下程度であることが好ましく、その下限は特に
規制されるものではないが、通常1μm程度である。
The sealing plate may be maintained at a desired height by adjusting the height using a spacer. Examples of the material of the spacer include resin beads, silica beads, glass beads, and glass fibers, and glass beads are particularly preferable. The spacer is usually a granular material having a uniform particle size, but the shape is not particularly limited, and may be various shapes as long as it does not hinder the function as the spacer. As the size, the diameter in terms of a circle is 1 to 20 μm, more preferably 1 to 10 μm, and especially 2 to 20 μm.
8 μm is preferred. Those having such a diameter have a grain length of 10
It is preferably about 0 μm or less, and the lower limit is not particularly limited, but is usually about 1 μm.

【0060】なお、封止板に凹部を形成した場合には、
スペーサーは使用しても、使用しなくてもよい。使用す
る場合の好ましい大きさとしては、前記範囲でよいが、
特に2〜8μm の範囲が好ましい。
When a recess is formed in the sealing plate,
Spacers may or may not be used. The preferred size when used is within the above range,
Particularly, the range of 2 to 8 μm is preferable.

【0061】スペーサーは、予め封止用接着剤中に混入
されていても、接着時に混入してもよい。封止用接着剤
中におけるスペーサーの含有量は、好ましくは0.01
〜30wt%、より好ましくは0.1〜5wt%である。
The spacer may be mixed in the sealing adhesive in advance, or may be mixed at the time of bonding. The content of the spacer in the sealing adhesive is preferably 0.01
-30 wt%, more preferably 0.1-5 wt%.

【0062】接着剤としては、安定した接着強度が保
て、気密性が良好なものであれば特に限定されるもので
はないが、カチオン硬化タイプの紫外線硬化型エポキシ
樹脂接着剤を用いることが好ましい。
The adhesive is not particularly limited as long as it can maintain stable adhesive strength and has good airtightness, but it is preferable to use a cationic curing type ultraviolet curing epoxy resin adhesive. .

【0063】基板材料としては特に限定するものではな
く、積層する有機EL構造体の電極の材質等により適宜
決めることができ、例えば、Al等の金属材料や、ガラ
ス、石英や樹脂等の透明ないし半透明材料、あるいは不
透明であってもよく、この場合はガラス等のほか、アル
ミナ等のセラミックス、ステンレス等の金属シートに表
面酸化などの絶縁処理を施したもの、フェノール樹脂等
の熱硬化性樹脂、ポリカーボネート等の熱可塑性樹脂な
どを用いることができる。
The material of the substrate is not particularly limited, and can be appropriately determined depending on the material of the electrode of the organic EL structure to be laminated. For example, a metal material such as Al, or a transparent or transparent material such as glass, quartz or resin is used. The material may be translucent or opaque. In this case, in addition to glass, ceramics such as alumina, metal sheets such as stainless steel are subjected to insulation treatment such as surface oxidation, and thermosetting resins such as phenolic resin And a thermoplastic resin such as polycarbonate.

【0064】基板に色フィルター膜や蛍光性物質を含む
色変換膜、あるいは誘電体反射膜を用いて発光色をコン
トロールしてもよい。
The emission color may be controlled by using a color filter film, a color conversion film containing a fluorescent substance, or a dielectric reflection film on the substrate.

【0065】色フィルター膜には、液晶ディスプレイ等
で用いられているカラーフィルターを用いれば良いが、
有機EL素子の発光する光に合わせてカラーフィルター
の特性を調整し、取り出し効率・色純度を最適化すれば
よい。
As the color filter film, a color filter used in a liquid crystal display or the like may be used.
The characteristics of the color filter may be adjusted in accordance with the light emitted from the organic EL element to optimize the extraction efficiency and the color purity.

【0066】また、EL素子材料や蛍光変換層が光吸収
するような短波長の外光をカットできるカラーフィルタ
ーを用いれば、素子の耐光性・表示のコントラストも向
上する。
When a color filter capable of cutting off short-wavelength external light that is absorbed by the EL element material or the fluorescence conversion layer is used, the light resistance of the element and the display contrast are improved.

【0067】また、誘電体多層膜のような光学薄膜を用
いてカラーフィルターの代わりにしても良い。
Further, an optical thin film such as a dielectric multilayer film may be used instead of the color filter.

【0068】蛍光変換フィルター膜は、EL発光の光を
吸収し、蛍光変換膜中の蛍光体から光を放出させること
で、発光色の色変換を行うものであるが、組成として
は、バインダー、蛍光材料、光吸収材料の三つから形成
される。
The fluorescence conversion filter film absorbs EL light and emits light from the phosphor in the fluorescence conversion film, thereby performing color conversion of the emission color. It is formed from a fluorescent material and a light absorbing material.

【0069】蛍光材料は、基本的には蛍光量子収率が高
いものを用いれば良く、EL発光波長域に吸収が強いこ
とが望ましい。実際には、レーザー色素などが適してお
り、ローダミン系化合物・ペリレン系化合物・シアニン
系化合物・フタロシアニン系化合物(サブフタロシアニ
ン等も含む)ナフタロイミド系化合物・縮合環炭化水素
系化合物・縮合複素環系化合物・スチリル系化合物・ク
マリン系化合物等を用いればよい。
As the fluorescent material, basically, a material having a high fluorescence quantum yield may be used, and it is desirable that absorption is strong in an EL emission wavelength region. In practice, laser dyes and the like are suitable, and rhodamine compounds, perylene compounds, cyanine compounds, phthalocyanine compounds (including subphthalocyanines, etc.) naphthalimide compounds, condensed ring hydrocarbon compounds, condensed heterocyclic compounds A styryl compound, a coumarin compound or the like may be used.

【0070】バインダーは、基本的に蛍光を消光しない
ような材料を選べば良く、フォトリソグラフィー・印刷
等で微細なパターニングが出来るようなものが好まし
い。また、ITO、IZOの成膜時にダメージを受けな
いような材料が好ましい。
As the binder, a material that does not quench the fluorescence may be basically selected, and a binder that can be finely patterned by photolithography, printing, or the like is preferable. Further, a material that does not suffer damage during the formation of ITO or IZO is preferable.

【0071】光吸収材料は、蛍光材料の光吸収が足りな
い場合に用いるが、必要のない場合は用いなくても良
い。また、光吸収材料は、蛍光性材料の蛍光を消光しな
いような材料を選べば良い。
The light absorbing material is used when the light absorption of the fluorescent material is insufficient, but may be omitted when unnecessary. As the light absorbing material, a material that does not quench the fluorescence of the fluorescent material may be selected.

【0072】発光層および電子注入輸送層の形成には、
均質な薄膜が形成できることから、真空蒸着法を用いる
ことが好ましい。真空蒸着法を用いた場合、アモルファ
ス状態または結晶粒径が0.1μm 以下の均質な薄膜が
得られる。結晶粒径が0.1μm を超えていると、不均
一な発光となり、素子の駆動電圧を高くしなければなら
なくなり、電荷の注入効率も著しく低下する。
For forming the light emitting layer and the electron injection / transport layer,
It is preferable to use a vacuum evaporation method since a uniform thin film can be formed. When a vacuum deposition method is used, a homogeneous thin film having an amorphous state or a crystal grain size of 0.1 μm or less can be obtained. If the crystal grain size exceeds 0.1 μm, the light emission becomes non-uniform, the driving voltage of the device must be increased, and the charge injection efficiency is significantly reduced.

【0073】真空蒸着の条件は特に限定されないが、1
-4Pa以下の真空度とし、蒸着速度は0.01〜1nm/
sec 程度とすることが好ましい。また、真空中で連続し
て各層を形成することが好ましい。真空中で連続して形
成すれば、各層の界面に不純物が吸着することを防げる
ため、高特性が得られる。また、素子の駆動電圧を低く
したり、ダークスポットの発生・成長を抑制したりする
ことができる。
The conditions for vacuum deposition are not particularly limited.
The degree of vacuum is 0 -4 Pa or less, and the deposition rate is 0.01 to 1 nm /
It is preferable to set it to about sec. Further, it is preferable to form each layer continuously in a vacuum. If they are formed continuously in a vacuum, impurities can be prevented from adsorbing at the interface between the layers, so that high characteristics can be obtained. Further, the driving voltage of the element can be reduced, and the occurrence and growth of dark spots can be suppressed.

【0074】これら各層の形成に真空蒸着法を用いる場
合において、1層に複数の化合物を含有させる場合、化
合物を入れた各ボートを個別に温度制御して共蒸着する
ことが好ましい。
When a plurality of compounds are contained in one layer when a vacuum evaporation method is used to form each of these layers, it is preferable to co-deposit each boat containing the compounds by individually controlling the temperature.

【0075】有機EL素子は、直流駆動やパルス駆動等
され、印加電圧は、通常、2〜30V 程度である。
The organic EL element is driven by a direct current or a pulse, and the applied voltage is usually about 2 to 30 V.

【0076】[0076]

【実施例】以下、本発明の具体的実施例を比較例ととも
に示し、本発明をさらに詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention together with comparative examples.

【0077】<実施例1>ガラス基板上にRFスパッタ
法で、ITO透明電極薄膜を100nmの厚さに成膜し、
パターニングした。このITO透明電極付きガラス基板
を、中性洗剤、アセトン、エタノールを用いて超音波洗
浄し、煮沸エタノール中から引き上げて乾燥した。透明
電極表面をUV/O3 洗浄した後、真空蒸着装置の基板
ホルダーに固定して、槽内を1×10-4Pa以下まで減圧
した。
Example 1 An ITO transparent electrode thin film was formed to a thickness of 100 nm on a glass substrate by RF sputtering.
Patterned. The glass substrate with the ITO transparent electrode was subjected to ultrasonic cleaning using a neutral detergent, acetone and ethanol, pulled up from boiling ethanol and dried. After the surface of the transparent electrode was washed with UV / O 3, it was fixed to a substrate holder of a vacuum evaporation apparatus, and the pressure in the tank was reduced to 1 × 10 −4 Pa or less.

【0078】次いで、減圧状態を保ったまま、別のスパ
ッタ装置に移し、スパッタ圧力0.5Paにて、無機ホー
ル注入層を10nmの厚さに成膜した。その際スパッタガ
スにはArを用い、投入電力はRF100Wとし、成膜
された膜が炭素を主成分とし、これにB,Al,Ga,
In,TlおよびAsから選択される元素の1種または
2種以上、または、酸化ニッケル、酸化クロム、酸化第
1鉄、および酸化モリブデンから選択される化合物の1
種または2種以上を、B,Al,Ga,In,Tlおよ
びAsは、0.5〜5at%、酸化ニッケル、酸化クロ
ム、酸化第1鉄、および酸化モリブデンは、それぞれ金
属換算で、5〜50at%程度含有するように成膜した。
また、成膜された膜はアモルファスに微結晶が混在した
状態になっていた。
Then, while maintaining the reduced pressure, the wafer was transferred to another sputtering apparatus, and an inorganic hole injection layer was formed to a thickness of 10 nm at a sputtering pressure of 0.5 Pa. At that time, Ar was used as a sputtering gas, the input power was set to RF 100 W, the formed film was mainly composed of carbon, and B, Al, Ga,
One or more elements selected from In, Tl and As, or one of compounds selected from nickel oxide, chromium oxide, ferrous oxide and molybdenum oxide
B, Al, Ga, In, Tl, and As are 0.5 to 5 at%, and nickel oxide, chromium oxide, ferrous oxide, and molybdenum oxide are each 5 to 5 types in terms of metal. The film was formed so as to contain about 50 at%.
Further, the formed film was in a state where microcrystals were mixed with amorphous.

【0079】さらに、減圧を保ったまま、N,N,
N’,N’−テトラキス(m−ビフェニル)−1,1’
−ビフェニル−4,4’−ジアミン(TPD)と、トリ
ス(8−キノリノラト)アルミニウム(Alq3 )とを
1:1で混合したものに、下記構造のルブレンを、5 m
ol%ドープしたものを、全体の蒸着速度0.2nm/secと
して40nmの厚さに蒸着し、発光層とした。
Further, N, N, N
N ', N'-tetrakis (m-biphenyl) -1,1'
-Biphenyl-4,4'-diamine (TPD) and tris (8-quinolinolato) aluminum (Alq 3 ) in a ratio of 1: 1 were mixed with rubrene of the following structure for 5 m.
The ol% -doped one was deposited to a thickness of 40 nm at an overall deposition rate of 0.2 nm / sec to form a light emitting layer.

【0080】[0080]

【化1】 Embedded image

【0081】さらに、減圧を保ったまま、トリス(8−
キノリノラト)アルミニウム(Alq3)を蒸着速度
0.2nm/secとして30nmの厚さに蒸着し、電子注入輸
送層とした。
Further, the tris (8-
(Quinolinolato) aluminum (Alq 3 ) was deposited at a deposition rate of 0.2 nm / sec to a thickness of 30 nm to form an electron injection transport layer.

【0082】次いで、減圧状態を保ったまま、Mg・A
g(重量比10:1)を蒸着速度0.2nm/secで100
nmの厚さに蒸着し、電子注入電極とし、保護電極として
Alを100nm蒸着し有機EL素子を得た。
Next, while maintaining the reduced pressure state, Mg.A
g (weight ratio 10: 1) at a deposition rate of 0.2 nm / sec.
An organic EL element was obtained by depositing Al to a thickness of 100 nm, forming an electron injection electrode, and depositing Al to a thickness of 100 nm as a protective electrode.

【0083】最後にガラス封止板を貼り合わせ、有機E
L素子とした。
Lastly, a glass sealing plate is attached, and organic E
An L element was used.

【0084】また、比較サンプルとして、前記ITOホ
ール注入電極上に、N,N’−ジフェニル−N,N’−
ビス[N−(4−メチルフェニル)−N−フェニル−
(4−アミノフェニル)]−1,1’−ビフェニル−
4,4’−ジアミンを蒸着速度0.2nm/sec で50nm
の膜厚に蒸着し、ホール注入層とし、トリス(8−キノ
リノラト)アルミニウム(Alq3 )を蒸着速度0.2
nm/sec で50nmの厚さに蒸着して、電子注入輸送・発
光層とした他は、上記と同様にして比較サンプルを作製
した。
As a comparative sample, N, N'-diphenyl-N, N'-
Bis [N- (4-methylphenyl) -N-phenyl-
(4-aminophenyl)]-1,1′-biphenyl-
4,4'-diamine is deposited at a deposition rate of 0.2 nm / sec at 50 nm.
To form a hole injection layer, and tris (8-quinolinolato) aluminum (Alq 3 ) was deposited at a deposition rate of 0.2.
A comparative sample was prepared in the same manner as described above except that the layer was vapor-deposited at a thickness of 50 nm at a rate of nm / sec to form an electron injection / transport / emission layer.

【0085】各有機EL素子に直流電圧を印加し、10
mA/cm2 の定電流駆動を行ったところ、従来の比較サン
プルと同等の発光が確認できた。また、リーク電流やダ
ークスポットの発生は確認できなかった。
When a DC voltage is applied to each organic EL element,
When the device was driven at a constant current of mA / cm 2 , light emission equivalent to that of the conventional comparative sample was confirmed. In addition, generation of a leak current or a dark spot was not confirmed.

【0086】[0086]

【発明の効果】以上のように本発明によれば、耐熱性、
耐候性を備え、リーク電流や、ダークスポットの発生を
抑制でき、物性が安定していて、しかも量産性が高く、
低コスト化が可能な有機EL素子を提供することができ
る。
As described above, according to the present invention, heat resistance,
It has weather resistance, can suppress the generation of leak current and dark spots, has stable physical properties, and has high mass productivity.
An organic EL device that can be reduced in cost can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機EL素子の一構成例を模式的に表
した図である。
FIG. 1 is a diagram schematically illustrating a configuration example of an organic EL device of the present invention.

【符号の説明】[Explanation of symbols]

21 基板 22 ホール注入電極 23 無機ホール注入層 24 発光層 25 電子注入層 26 電子注入電極 DESCRIPTION OF SYMBOLS 21 Substrate 22 Hole injection electrode 23 Inorganic hole injection layer 24 Light emitting layer 25 Electron injection layer 26 Electron injection electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ホール注入電極と、電子注入電極と、こ
れらの電極間に少なくとも発光機能に関与する1種また
は2種以上の有機層を有し、 前記有機層とホール注入電極との間に無機ホール注入層
を有し、 この無機ホール注入層は、炭素を主成分とし、これに
B,Al,Ga,In,TlおよびAsから選択される
元素の1種または2種以上、および/または、酸化ニッ
ケル、酸化クロム、酸化第1鉄、および酸化モリブデン
から選択される化合物の1種または2種以上を混合また
はドープしたものである有機EL素子。
1. An electron injection electrode, an electron injection electrode, and at least one or more organic layers involved in at least a light emitting function between these electrodes, and between the organic layer and the hole injection electrode. An inorganic hole injecting layer, the inorganic hole injecting layer being mainly composed of carbon, and containing one or more elements selected from B, Al, Ga, In, Tl and As, and / or An organic EL device comprising one or more compounds selected from nickel, nickel oxide, chromium oxide, ferrous oxide, and molybdenum oxide.
【請求項2】 前記無機ホール注入層の膜厚は、1〜5
0nmである請求項1の有機EL素子。
2. The inorganic hole injecting layer has a thickness of 1 to 5
2. The organic EL device according to claim 1, which has a thickness of 0 nm.
JP10129593A 1998-04-23 1998-04-23 Organic el element Withdrawn JPH11307259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10129593A JPH11307259A (en) 1998-04-23 1998-04-23 Organic el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10129593A JPH11307259A (en) 1998-04-23 1998-04-23 Organic el element

Publications (1)

Publication Number Publication Date
JPH11307259A true JPH11307259A (en) 1999-11-05

Family

ID=15013292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10129593A Withdrawn JPH11307259A (en) 1998-04-23 1998-04-23 Organic el element

Country Status (1)

Country Link
JP (1) JPH11307259A (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005129500A (en) * 2003-10-03 2005-05-19 Semiconductor Energy Lab Co Ltd Light emitting element and its manufacturing method, and light emitting device using the light emitting element
JP2005129519A (en) * 2003-10-03 2005-05-19 Semiconductor Energy Lab Co Ltd Light-emitting device
WO2005086538A1 (en) * 2004-03-05 2005-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and organic electroluminescent display
JP2006013458A (en) * 2004-05-21 2006-01-12 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
JP2006303457A (en) * 2005-03-22 2006-11-02 Semiconductor Energy Lab Co Ltd Nonlinear element, element board therewith and display
CN100369293C (en) * 2005-01-13 2008-02-13 复旦大学 Method for blocking hole in organic layer of organic semiconductor device
US7387904B2 (en) 2003-10-03 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7462883B2 (en) 2004-08-04 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having hole generating layer
WO2009022552A1 (en) * 2007-08-10 2009-02-19 Sumitomo Chemical Company, Limited Organic electroluminescent device containing metal-doped molybdenum oxide layer and method for manufacturing the same
US7521855B2 (en) 2004-12-06 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
JP2009135516A (en) * 2000-12-15 2009-06-18 Universal Display Corp Highly stable and efficient oleds with phosphorescent-doped mixed layer architecture
US7605534B2 (en) 2003-12-02 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having metal oxide and light-emitting device using the same
WO2009093873A3 (en) * 2008-01-23 2009-10-29 주식회사 엘지화학 Organic luminescent device and a production method for the same
US7626198B2 (en) 2005-03-22 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Nonlinear element, element substrate including the nonlinear element, and display device
US7649197B2 (en) 2005-03-23 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Composite material, and light emitting element and light emitting device using the composite material
JP2010092693A (en) * 2008-10-07 2010-04-22 Sumitomo Chemical Co Ltd Manufacturing method of organic electroluminescent element, organic electroluminescent element, lighting device, planar light source, and display device
US7732808B2 (en) 2003-09-26 2010-06-08 Semiconductor Energy Laboratory Co., Ltd Light-emitting device and method for manufacturing the same
US7737626B2 (en) 2004-09-30 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
US7777232B2 (en) 2005-04-11 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US7790296B2 (en) 2005-05-20 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7838874B2 (en) 2007-06-14 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and manufacturing method of light-emitting device
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7868539B2 (en) 2006-12-21 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US7872413B2 (en) 2008-03-26 2011-01-18 Toppan Printing Co., Ltd. Organic light emitting display device provided with an organic layer including an amorphous molybdenum oxide layer and a crystal molybdenum oxide layer
US7875881B2 (en) 2007-04-03 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US7893427B2 (en) 2004-07-23 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7892657B2 (en) 2004-11-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7919772B2 (en) 2004-12-14 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US7977865B2 (en) 2005-03-23 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US7989694B2 (en) 2004-12-06 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element, solar battery, and photo sensor
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8049208B2 (en) 2005-04-22 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor device having composite electrode
US8093806B2 (en) 2007-06-20 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and electronic apparatus
US8138667B2 (en) 2003-10-03 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having metal oxide layer and color filter
US8173277B2 (en) 2005-09-12 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
US8183764B2 (en) 2008-03-26 2012-05-22 Toppan Printing Co., Ltd. Organic electroluminescence element, manufacturing method for an organic electroluminescence element and display unit
US8227982B2 (en) 2005-07-25 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
CN102610759A (en) * 2012-03-30 2012-07-25 中国科学院长春应用化学研究所 Conjugated thin polymer film solar cell and method for producing same
US8269227B2 (en) 2005-06-09 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
US8415878B2 (en) 2005-07-06 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US8426034B2 (en) 2005-02-08 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US8586197B2 (en) 2005-02-28 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element, light emitting device and electronic appliance using the composite material
JP2014003041A (en) * 2004-09-24 2014-01-09 Semiconductor Energy Lab Co Ltd Light-emitting device
US8659008B2 (en) 2005-07-08 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Composite material and light emitting element, light emitting device, and electronic device using the composite material
US8674353B2 (en) 2009-09-30 2014-03-18 Toppan Printing Co., Ltd. Organic electroluminescence element, display device using organic electroluminescence element, and method of manufacturing organic electroluminescence element
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8841653B2 (en) 2009-05-29 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, lighting device, and electronic appliance
US8941301B2 (en) 2007-06-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and method for fabricating light-emitting element
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8994009B2 (en) 2011-09-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
JP2015062247A (en) * 2001-12-05 2015-04-02 株式会社半導体エネルギー研究所 Organic solar cell
US9088002B2 (en) 2011-02-11 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US9093402B2 (en) 2005-02-18 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US9142783B2 (en) 2004-11-30 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US9159939B2 (en) 2011-07-21 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9385328B2 (en) 2011-03-23 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US9419239B2 (en) 2011-07-08 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US9496505B2 (en) 2010-10-04 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US9530968B2 (en) 2005-02-15 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US9564609B2 (en) 2011-02-11 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including electrode of three layers
US9570697B2 (en) 2003-12-26 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9647228B2 (en) 2011-05-13 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US9698354B2 (en) 2009-12-01 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9741955B2 (en) 2009-05-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
US10134996B2 (en) 2004-10-29 2018-11-20 Semicondcutor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, and manufacturing method thereof

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135516A (en) * 2000-12-15 2009-06-18 Universal Display Corp Highly stable and efficient oleds with phosphorescent-doped mixed layer architecture
JP2015062247A (en) * 2001-12-05 2015-04-02 株式会社半導体エネルギー研究所 Organic solar cell
US11217764B2 (en) 2001-12-05 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
US8178869B2 (en) 2003-09-26 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US7732808B2 (en) 2003-09-26 2010-06-08 Semiconductor Energy Laboratory Co., Ltd Light-emitting device and method for manufacturing the same
US8507903B2 (en) 2003-09-26 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8216875B2 (en) 2003-09-26 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
JP2012039145A (en) * 2003-10-03 2012-02-23 Semiconductor Energy Lab Co Ltd Light-emitting element, and light-emitting device and illumination apparatus including the light-emitting element
US9564561B2 (en) 2003-10-03 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8138667B2 (en) 2003-10-03 2012-03-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having metal oxide layer and color filter
US9070894B2 (en) 2003-10-03 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2011071145A (en) * 2003-10-03 2011-04-07 Semiconductor Energy Lab Co Ltd Light emitting element and method of manufacturing the same, and light-emitting device using light emitting element, and lighting apparatus
US7387904B2 (en) 2003-10-03 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US9461271B2 (en) 2003-10-03 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US10490618B2 (en) 2003-10-03 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US10192946B2 (en) 2003-10-03 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2005129519A (en) * 2003-10-03 2005-05-19 Semiconductor Energy Lab Co Ltd Light-emitting device
US8994007B2 (en) 2003-10-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
JP2005129500A (en) * 2003-10-03 2005-05-19 Semiconductor Energy Lab Co Ltd Light emitting element and its manufacturing method, and light emitting device using the light emitting element
US7605534B2 (en) 2003-12-02 2009-10-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having metal oxide and light-emitting device using the same
US10886497B2 (en) 2003-12-26 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9570697B2 (en) 2003-12-26 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
WO2005086538A1 (en) * 2004-03-05 2005-09-15 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and organic electroluminescent display
JP2010192465A (en) * 2004-05-21 2010-09-02 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, and lighting device
US8922116B2 (en) 2004-05-21 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US8344621B2 (en) 2004-05-21 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US7940002B2 (en) 2004-05-21 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP4667955B2 (en) * 2004-05-21 2011-04-13 株式会社半導体エネルギー研究所 LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, AND LIGHTING EQUIPMENT
US7598670B2 (en) 2004-05-21 2009-10-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2006013458A (en) * 2004-05-21 2006-01-12 Semiconductor Energy Lab Co Ltd Light-emitting element and light-emitting device
US8872169B2 (en) 2004-07-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US9520532B2 (en) 2004-07-23 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7893427B2 (en) 2004-07-23 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8368060B2 (en) 2004-07-23 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8368059B2 (en) 2004-07-23 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7462883B2 (en) 2004-08-04 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element having hole generating layer
JP2014030031A (en) * 2004-08-04 2014-02-13 Semiconductor Energy Lab Co Ltd Light-emitting element
US7964891B2 (en) 2004-08-04 2011-06-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
US8618574B2 (en) 2004-08-04 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, and electronic appliance
JP2014003041A (en) * 2004-09-24 2014-01-09 Semiconductor Energy Lab Co Ltd Light-emitting device
US7737626B2 (en) 2004-09-30 2010-06-15 Semiconductor Energy Laboratory Co., Ltd. Light emitting element
US10134996B2 (en) 2004-10-29 2018-11-20 Semicondcutor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
US9142783B2 (en) 2004-11-30 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US7892657B2 (en) 2004-11-30 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7989694B2 (en) 2004-12-06 2011-08-02 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element, solar battery, and photo sensor
US8692454B2 (en) 2004-12-06 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US7521855B2 (en) 2004-12-06 2009-04-21 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US7999460B2 (en) 2004-12-06 2011-08-16 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US9257489B2 (en) 2004-12-06 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US8492971B2 (en) 2004-12-06 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Electronic appliance and light-emitting device
US7919772B2 (en) 2004-12-14 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN100369293C (en) * 2005-01-13 2008-02-13 复旦大学 Method for blocking hole in organic layer of organic semiconductor device
US8426034B2 (en) 2005-02-08 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US9530968B2 (en) 2005-02-15 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
US9093402B2 (en) 2005-02-18 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8586197B2 (en) 2005-02-28 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element, light emitting device and electronic appliance using the composite material
JP2006303457A (en) * 2005-03-22 2006-11-02 Semiconductor Energy Lab Co Ltd Nonlinear element, element board therewith and display
US7626198B2 (en) 2005-03-22 2009-12-01 Semiconductor Energy Laboratory Co., Ltd. Nonlinear element, element substrate including the nonlinear element, and display device
US8986854B2 (en) 2005-03-23 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US7649197B2 (en) 2005-03-23 2010-01-19 Semiconductor Energy Laboratory Co., Ltd. Composite material, and light emitting element and light emitting device using the composite material
US7977865B2 (en) 2005-03-23 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US8916276B2 (en) 2005-03-23 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US8405070B2 (en) 2005-03-23 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Composite material, and light emitting element and light emitting device using the composite material
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8362688B2 (en) 2005-03-25 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9246056B2 (en) 2005-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7777232B2 (en) 2005-04-11 2010-08-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device using the same
US8049208B2 (en) 2005-04-22 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor device having composite electrode
US7790296B2 (en) 2005-05-20 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7883788B2 (en) 2005-05-20 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8445121B2 (en) 2005-05-20 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8227097B2 (en) 2005-05-20 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8048543B2 (en) 2005-05-20 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US9263645B2 (en) 2005-06-08 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8461605B2 (en) 2005-06-09 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8269227B2 (en) 2005-06-09 2012-09-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8252434B2 (en) 2005-06-22 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8541114B2 (en) 2005-06-22 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8815419B2 (en) 2005-06-22 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8378570B2 (en) 2005-06-30 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic apparatus having first and second composite layers with different metal concentrations
US9391128B2 (en) 2005-06-30 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8519617B2 (en) 2005-06-30 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element having a metal oxide composite layer, and light emitting device, and electronic apparatus
US7948169B2 (en) 2005-06-30 2011-05-24 Semiconductor Energy Larboratory Co., Ltd. Light emitting element with composite layers of varying concentration, light emitting device, and electronic apparatus
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
US8729795B2 (en) 2005-06-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8415878B2 (en) 2005-07-06 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8901814B2 (en) 2005-07-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8659008B2 (en) 2005-07-08 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Composite material and light emitting element, light emitting device, and electronic device using the composite material
US9224968B2 (en) 2005-07-25 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US8227982B2 (en) 2005-07-25 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic appliance
US8173277B2 (en) 2005-09-12 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic appliance using the same
US8623523B2 (en) 2005-09-12 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light emitting element, light emitting device, and electronic appliance using the same
US9112170B2 (en) 2006-03-21 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8974918B2 (en) 2006-07-04 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US7868539B2 (en) 2006-12-21 2011-01-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US8330357B2 (en) 2006-12-21 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US8187917B2 (en) 2007-04-03 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing memory device
US7875881B2 (en) 2007-04-03 2011-01-25 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8319212B2 (en) 2007-06-14 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US7838874B2 (en) 2007-06-14 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, electronic device, and manufacturing method of light-emitting device
US8531104B2 (en) 2007-06-20 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and electronic apparatus
US8093806B2 (en) 2007-06-20 2012-01-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and electronic apparatus
US8368301B2 (en) 2007-06-20 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, method for manufacturing the same, and electronic apparatus
US8941301B2 (en) 2007-06-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and method for fabricating light-emitting element
US8928028B2 (en) 2007-08-10 2015-01-06 Sumitomo Chemical Company, Limited Organic electroluminescence element including metal doped molybdenum oxide layer and method for producing the same
US20110068327A1 (en) * 2007-08-10 2011-03-24 Sumitomo Chemical Company, Limited Organic electroluminescence element including metal doped molybdenum oxide layer and method for producing the same
WO2009022552A1 (en) * 2007-08-10 2009-02-19 Sumitomo Chemical Company, Limited Organic electroluminescent device containing metal-doped molybdenum oxide layer and method for manufacturing the same
WO2009093873A3 (en) * 2008-01-23 2009-10-29 주식회사 엘지화학 Organic luminescent device and a production method for the same
KR101003232B1 (en) 2008-01-23 2010-12-21 주식회사 엘지화학 Organic electroluminescent device and method for fabricating the same
US7872413B2 (en) 2008-03-26 2011-01-18 Toppan Printing Co., Ltd. Organic light emitting display device provided with an organic layer including an amorphous molybdenum oxide layer and a crystal molybdenum oxide layer
US8183764B2 (en) 2008-03-26 2012-05-22 Toppan Printing Co., Ltd. Organic electroluminescence element, manufacturing method for an organic electroluminescence element and display unit
JP2010092693A (en) * 2008-10-07 2010-04-22 Sumitomo Chemical Co Ltd Manufacturing method of organic electroluminescent element, organic electroluminescent element, lighting device, planar light source, and display device
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US8841653B2 (en) 2009-05-29 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, lighting device, and electronic appliance
US9741955B2 (en) 2009-05-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and method for manufacturing the same
US8674353B2 (en) 2009-09-30 2014-03-18 Toppan Printing Co., Ltd. Organic electroluminescence element, display device using organic electroluminescence element, and method of manufacturing organic electroluminescence element
US8803188B2 (en) 2009-11-02 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, Light-emitting device, lighting device, and electronic appliance
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
US9698354B2 (en) 2009-12-01 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10756287B2 (en) 2009-12-01 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9496505B2 (en) 2010-10-04 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US9564609B2 (en) 2011-02-11 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including electrode of three layers
US9088002B2 (en) 2011-02-11 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US9831435B2 (en) 2011-03-23 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US10121972B2 (en) 2011-03-23 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US10535823B2 (en) 2011-03-23 2020-01-14 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US9385328B2 (en) 2011-03-23 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, and lighting device
US9647228B2 (en) 2011-05-13 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element and light-emitting device
US9419239B2 (en) 2011-07-08 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, electronic device, lighting device, and organic compound
US9159939B2 (en) 2011-07-21 2015-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US8994009B2 (en) 2011-09-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
CN102610759A (en) * 2012-03-30 2012-07-25 中国科学院长春应用化学研究所 Conjugated thin polymer film solar cell and method for producing same

Similar Documents

Publication Publication Date Title
JPH11307259A (en) Organic el element
JP4142782B2 (en) Organic EL device
JP3776600B2 (en) Organic EL device
JP3824798B2 (en) Organic EL device
JPH11307261A (en) Organic el element
JP2000040589A (en) Organic el element
JP2000208276A (en) Organic electroluminescent element
JP2000294375A (en) Organic el element
JPH1060427A (en) Organic el element produced by using coumarin derivative
JPH1167444A (en) Organic el element
JP2000100575A (en) Organic el element
JP2000340364A (en) Organic el element
JPH1140352A (en) Organic el element and manufacture thereof
JP2000268965A (en) Organic el element
JPH11312584A (en) Organic el element
JPH11312585A (en) Organic el element
JP2000012234A (en) Organic el element
JPH11260546A (en) Organic el element
JP2000091079A (en) Organic el element
JP2000030870A (en) Organic el element
JP2001196175A (en) Organic el display device
JP2001068264A (en) Organic el element, and manufacture thereof
JP2001060495A (en) Organic el element
JP2000048962A (en) Organic el element
JPH11307267A (en) Organic el element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040601

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705