JPH11300203A - Manufacture of catalyst for exhaust gas purification - Google Patents

Manufacture of catalyst for exhaust gas purification

Info

Publication number
JPH11300203A
JPH11300203A JP10111078A JP11107898A JPH11300203A JP H11300203 A JPH11300203 A JP H11300203A JP 10111078 A JP10111078 A JP 10111078A JP 11107898 A JP11107898 A JP 11107898A JP H11300203 A JPH11300203 A JP H11300203A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
supported
amount
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111078A
Other languages
Japanese (ja)
Inventor
Shinichi Takeshima
伸一 竹島
Tetsuya Yamashita
哲也 山下
Toshiaki Tanaka
俊明 田中
Satoru Iguchi
哲 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10111078A priority Critical patent/JPH11300203A/en
Publication of JPH11300203A publication Critical patent/JPH11300203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a trouble wherein a NOx purification performance is deteriorated due to a high temperature endurance test by a method wherein in the case where a catalyst for purifying an exhaust gas is manufactured, noble metals contain at least Pt and Pd, and Pt and Pd are simultaneously supported by using a mixed solution of a Pt compound solution and a Pd compound solution. SOLUTION: An exhaust gas purifying catalyst for purifying an exhaust gas exhausted from an internal combustion engine of an automobile or the like is composed of a base material, a coat layer comprising a porous support formed on the surface of the base material, and noble metals and a NOx absorbing material which are supported by the coat layer. In the case such the exhaust gas purifying catalyst manufactured, the noble metals should contain at least Pt and Pd, and Pt and Pd are treated so as to be simultaneously supported by using a mixed solution of a Pt compound solution and a Pd compound solution. Thereby, Pt and Pd can be supported in a condition wherein they are uniformly highly dispersed, the degree of lowering of a front surface area of the noble metals is decreased even after the temperature endurance test, and decrease of a purification performance can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車などの内燃
機関から排出される排ガスを浄化する排ガス浄化用触媒
の製造方法に関し、さらに詳しくは、貴金属として少な
くともPtとPdとを担持し、かつNOx 吸蔵材を担持したNO
x 吸蔵還元型の排ガス浄化用触媒の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine of an automobile or the like, and more particularly, to a method for supporting at least Pt and Pd as precious metals and x NO with storage material
The present invention relates to a method for producing an occlusion reduction type exhaust gas purifying catalyst.

【0002】[0002]

【従来の技術】従来より自動車の排ガス浄化用触媒とし
て、理論空燃比(ストイキ)において排ガス中のCO及び
HCの酸化とNOx の還元とを同時に行って浄化する三元触
媒が用いられている。このような三元触媒としては、例
えばコーディエライトなどからなる耐熱性基材にγ−ア
ルミナからなるコート層を形成し、そのコート層に白金
(Pt)、ロジウム(Rh)などの貴金属を担持させたもの
が広く知られている。
2. Description of the Related Art Conventionally, as a catalyst for purifying exhaust gas of automobiles, CO and CO in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) have been used.
A three-way catalyst that purifies by simultaneously oxidizing HC and reducing NO x is used. As such a three-way catalyst, for example, a coat layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and a noble metal such as platinum (Pt) or rhodium (Rh) is supported on the coat layer. What has been known is widely known.

【0003】一方、近年、地球環境保護の観点から、自
動車などの内燃機関から排出される排ガス中の二酸化炭
素(CO2 )が問題とされ、その解決策として酸素過剰雰
囲気において希薄燃焼させるいわゆるリーンバーンが有
望視されている。このリーンバーンにおいては、燃費が
向上するために燃料の使用が低減され、その燃焼排ガス
であるCO2 の発生を抑制することができる。
On the other hand, in recent years, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem from the viewpoint of protection of the global environment. As a solution, lean combustion in an oxygen-excess atmosphere has been proposed. Burn is promising. In this lean burn, the use of fuel is reduced in order to improve fuel efficiency, and the generation of CO 2 as combustion exhaust gas can be suppressed.

【0004】排ガス浄化の観点から、従来のガソリン内
燃機関は空燃比が理論空燃比(ストイキ)において燃焼
されるため、三元触媒により排ガス中のCO,HC,NOx
同時に酸化・還元し排ガスを浄化することができる。そ
れに対しリーンバーンにおいては、排ガスは酸素過剰雰
囲気下であり、従来の三元触媒ではNOx の還元除去に対
して浄化性能を示さない。このため、酸素過剰雰囲気下
においてもNOx を浄化しうる触媒及び浄化システムの開
発が望まれていた。
[0004] From the viewpoint of exhaust gas purification, conventional gasoline internal combustion engine air-fuel ratio is combusted in the theoretical air-fuel ratio (stoichiometric), CO in the exhaust gas by a three-way catalyst, HC, the exhaust gas simultaneously oxidizing and reducing NO x Can be purified. In lean burn contrast, the exhaust gas is an oxygen-rich atmosphere, does not exhibit purification performance for reduction and removal of the NO x in the conventional three-way catalyst. Therefore, development of a catalyst and purification system has been desired can purify NO x even in an oxygen rich atmosphere.

【0005】そこで本願出願人は、先にBaなどのアルカ
リ土類金属とPtをアルミナなどの多孔質担体に担持した
排ガス浄化用触媒(例えば特開平5-317625号公報)を提
案している。この排ガス浄化用触媒を用い、空燃比をリ
ーン側からパルス状にストイキ〜リッチ側となるように
制御することにより、リーン側ではNOx がアルカリ土類
金属(NOx 吸蔵材)に吸蔵され、それがストイキ〜リッ
チ側でHCやCOなどの還元性成分と反応して浄化されるた
め、リーンバーンにおいてもNOx を効率良く浄化するこ
とができる。
Accordingly, the applicant of the present application has previously proposed an exhaust gas purifying catalyst in which an alkaline earth metal such as Ba and Pt are supported on a porous carrier such as alumina (for example, Japanese Patent Application Laid-Open No. Hei 5-317625). Using the exhaust gas-purifying catalyst, by controlling so that the stoichiometric-rich side in a pulsed manner the air-fuel ratio from the lean side, NO x is occluded in the alkaline earth metal (NO x storage material) in the lean side, it order to be cleaned reacts with the reducing components such as HC and CO in the stoichiometric-rich side, it is possible to efficiently purify NO x even in the lean burn.

【0006】上記排ガス浄化用触媒におけるNOx の浄化
反応は、排ガス中のNOを酸化してNO x とする第1ステッ
プと、NOx 吸蔵材上にNO2 を吸蔵する第2ステップと、
NOx吸蔵材から放出されたNOx を触媒上で還元する第3
ステップとからなることがわかっている。このようなNO
x 吸蔵還元型の触媒を製造するには、アルミナなどの多
孔質担体粉末とバインダーを含むスラリーを調製し、こ
のスラリーをコージェライトやメタル製のハニカム基材
にコートし焼成してコート層を形成する。そしてコート
層をもつ基材を貴金属化合物を溶解した溶液に浸漬し
て、吸水法あるいは含浸法などで貴金属を担持し、次い
でNOx 吸蔵材を溶解した溶液に浸漬する吸水法によりNO
x 吸蔵材を担持している。また、NOx 吸蔵材と貴金属を
予めアルミナ粉末などに担持させた触媒粉末とバインダ
ーとからスラリーを調製し、それをハニカム基材にコー
トし焼成する製造方法も知られている。
[0006] NO in the exhaust gas purifying catalystxPurification
The reaction oxidizes NO in the exhaust gas to NO xThe first step
And NOxNO on storage materialTwoA second step of storing ozone,
NOxNO released from the storage materialxThe third of which is reduced over a catalyst
It is known to consist of steps. NO like this
xTo manufacture a storage-reduction type catalyst, it is necessary to use a large amount of alumina or the like.
Prepare a slurry containing the porous carrier powder and binder,
Slurry of cordierite or honeycomb made of metal
And fired to form a coat layer. And coat
Immerse the substrate with the layer in a solution in which the noble metal compound is dissolved
Precious metal by water absorption or impregnation, etc.
NOxNO by the water absorption method of immersion in a solution in which the storage material is dissolved
xIt carries an occluding material. Also, NOxOcclusion material and precious metal
Catalyst powder and binder previously supported on alumina powder, etc.
From the slurry and coat it on the honeycomb substrate.
There is also known a production method of firing and firing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら従来の排
ガス浄化用触媒においては、リーン雰囲気においてPtに
粒成長が生じ、触媒活性点の減少により上記第2ステッ
プと第3ステップの反応性が低下するため、高温耐久試
験を行うとNOx 浄化性能が大きく低下するという不具合
があった。
However, in the conventional exhaust gas purifying catalyst, grain growth occurs in Pt in a lean atmosphere, and the reactivity of the second step and the third step decreases due to a decrease in the catalytic active point. , there was a problem that the NO x purification performance is greatly reduced when performing a high-temperature durability test.

【0008】一方、リーン雰囲気におけるこのような粒
成長が生じにくい貴金属として、Pdが知られているが酸
化能はPtには及ばない。そこでPtとPdを併用することが
考えられる。ところが、PdはPtの表面に覆い被さるため
にに、上記第1ステップの酸化反応が抑制され、第2ス
テップの吸蔵反応も生じにくくなる。したがってPtとPd
を併用すると、Pt単独の場合に比べてNOx 浄化能が低下
するという不具合があった。
On the other hand, Pd is known as a noble metal in which such grain growth hardly occurs in a lean atmosphere, but its oxidizing ability is inferior to Pt. Therefore, it is conceivable to use Pt and Pd together. However, since Pd covers the surface of Pt, the oxidation reaction in the first step is suppressed, and the occlusion reaction in the second step hardly occurs. Therefore Pt and Pd
When used in combination, NO x purifying ability was a problem of a decrease in comparison with the case of Pt alone.

【0009】またPdはNOの酸化能が低いためにPtのNOの
酸化能を抑制させることになり、Pdの添加量が多くなる
につれてNOを酸化してNO2 とする第1ステップの反応性
が低下し、第2ステップにおけるNO2 の吸蔵が低下する
という問題がある。本発明はこのような事情に鑑みてな
されたものであり、Pt及びPdと、NOx 吸蔵材とを担持し
た触媒の製造方法を改良することにより、Pdの長所を最
大に生かすとともにPdの短所の発現を抑制し、高温耐久
試験後にも高いNOx 浄化能を示す触媒とすることを目的
とする。
Further, Pd has a low NO oxidizing ability, so that Pt suppresses the NO oxidizing ability. As the amount of added Pd increases, the reactivity of the first step of oxidizing NO to NO 2 increases. And the occlusion of NO 2 in the second step is reduced. The present invention has been made in view of such circumstances, and Pt and Pd, by improving the method of manufacturing a catalyst supporting and the NO x storage material, Pd disadvantages with take maximum advantage of Pd a silencing, it is an object to a catalyst exhibiting high the NO x purification performance even after high-temperature durability test.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の製造方法の特徴は、基材と、基
材表面に形成された多孔質担体よりなるコート層と、コ
ート層に担持された貴金属及びNOx 吸蔵材と、よりなる
排ガス浄化用触媒の製造方法であって、貴金属は少なく
ともPt及びPdを含み、Pt化合物の溶液とPd化合物の溶液
との混合溶液を用いてPtとPdを同時に担持することにあ
る。
Means for Solving the Problems The features of the method for producing an exhaust gas purifying catalyst of the present invention which solves the above-mentioned problems include a substrate, a coat layer comprising a porous carrier formed on the surface of the substrate, and a coat layer. to a supported noble metal and NO x storage material, a process for the preparation of a more comprising an exhaust gas purifying catalyst, the noble metal comprises at least Pt and Pd, using a mixed solution of a solution of a solution of Pd compounds of Pt compound The purpose is to carry Pt and Pd simultaneously.

【0011】[0011]

【発明の実施の形態】従来の排ガス浄化用触媒の製造方
法においては、ハニカム形状あるいはペレット形状など
の基材にアルミナ粉末などの多孔質担体からコート層を
形成する。そしてコート層をもつ基材を、ジニトロジア
ンミン白金などが溶解した水溶液を用いてPtを担持して
いる。さらにPdを担持するには、さらに硝酸パラジウム
水溶液などを用いてPdを担持し、その後NOx 吸蔵材を担
持している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a conventional method for producing an exhaust gas purifying catalyst, a coat layer is formed from a porous carrier such as alumina powder on a honeycomb-shaped or pellet-shaped substrate. The substrate having the coat layer is loaded with Pt using an aqueous solution in which dinitrodiammine platinum or the like is dissolved. To further supporting Pd is further supports Pd by using a palladium nitrate aqueous solution, and then carrying the NO x storage material.

【0012】このように従来の製造方法ではPtとPdとを
別々に担持しているため、Pdが担持されたPt粒子の周囲
を囲むように担持されるものと推察され、PtのNO酸化特
性が低下すると考えられる。またPdを先に担持し次いで
Ptを担持する方法もあるが、この方法で得られた触媒で
は、PdとPtの分散度が低くなり、高分散担持とすること
が困難となることがわかっている。
As described above, since Pt and Pd are separately supported in the conventional production method, it is presumed that Pd is supported so as to surround the Pt particles on which Pd is supported, and NO oxidation characteristics of Pt are considered. Is thought to decrease. Also carry Pd first and then
There is also a method of supporting Pt, but it has been found that in the catalyst obtained by this method, the degree of dispersion of Pd and Pt is low, and it is difficult to achieve high dispersion.

【0013】そこで本発明の排ガス浄化用触媒の製造方
法では、Pt化合物の溶液とPd化合物の溶液との混合溶液
を用い、PtとPdを同時に担持している。これによりPtと
Pdは均一に高分散した状態で担持され、高温耐久試験後
にも貴金属の表面積の低下度合いが小さくなって、浄化
性能の低下が抑制される。また本発明の製造方法により
得られた触媒では、PdへのPt被覆が減少し、PtのNO酸化
能を抑制するPdの影響が小さいため、上記した第1〜3
ステップの反応が円滑に進行し、高いNOx 浄化能が得ら
れる。
Therefore, in the method for producing an exhaust gas purifying catalyst of the present invention, Pt and Pd are simultaneously supported by using a mixed solution of a Pt compound solution and a Pd compound solution. This allows Pt and
Pd is carried in a state of being uniformly and highly dispersed, and the degree of reduction in the surface area of the noble metal is reduced even after the high-temperature durability test, so that a reduction in purification performance is suppressed. Further, in the catalyst obtained by the production method of the present invention, Pt coating on Pd is reduced, and the effect of Pd, which suppresses the NO oxidizing ability of Pt, is small.
The reaction in the step proceeds smoothly, and a high NO x purification ability is obtained.

【0014】以下、調製工程に関する説明を行う。コー
ト層は、多孔質担体粉末とアルミナゾルなどのバインダ
などとを含むスラリーを調製し、その中に基材を浸漬し
引き上げて乾燥・焼成するスラリー法などを用いて、従
来と同様に形成することができる。Pt化合物の溶液とPd
化合物の溶液との混合溶液を用いて、PtとPdを同時に担
持する場合、コート層をもつ基材に混合溶液を減圧下で
含浸させ、細孔内部まで浸透させることが好ましい。こ
れにより多孔質担体であるアルミナの細孔の内部まで混
合溶液を吸水させることができ、担持担持効率が向上す
るとともに、PtとPdをより均一に高分散担持することが
できる。
Hereinafter, the preparation process will be described. The coat layer is formed in the same manner as in the past by preparing a slurry containing a porous carrier powder and a binder such as alumina sol, dipping the substrate into the slurry, pulling it up, drying and firing, and the like. Can be. Pt compound solution and Pd
When Pt and Pd are simultaneously supported using a mixed solution of a compound and a solution of the compound, it is preferable that the mixed solution is impregnated into a substrate having a coat layer under reduced pressure to penetrate into the pores. As a result, the mixed solution can be absorbed into the pores of alumina as a porous carrier, so that the carrying and carrying efficiency can be improved, and Pt and Pd can be more uniformly and highly dispersed and carried.

【0015】減圧の程度としては、真空度を 200mmHg以
下とすることが好ましい。真空度が200mmHgを超えると
細孔内部に気泡が残るので、アルミナの細孔の内部まで
の吸水が困難となり担持量が低下する。なお真空度が 2
00mmHg以下の範囲であれば、真空度の程度による吸水量
の差が小さいので、担持の状態は真空度には影響されな
い。したがって超真空とする必要はなく、工数の増大及
び装置の大型化を抑制できる。
As for the degree of pressure reduction, it is preferable that the degree of vacuum be 200 mmHg or less. If the degree of vacuum exceeds 200 mmHg, air bubbles remain inside the pores, so that it becomes difficult to absorb water to the inside of the pores of alumina, and the carrying amount is reduced. If the vacuum is 2
Within the range of 00 mmHg or less, the difference in the amount of water absorption depending on the degree of vacuum is small, and the state of loading is not affected by the degree of vacuum. Therefore, it is not necessary to use an ultra-vacuum, and an increase in man-hours and an increase in the size of the apparatus can be suppressed.

【0016】Pt及びPdの担持法としては、担持液の吸水
量から有効成分の担持量を決定する吸水法を用いること
が好ましい。濃度の低い溶液中に浸漬して担持する含浸
法では、コート層内部まで貴金属を担持することが困難
であり、担持濃度がコート層の深さ方向で変化して、相
対的に分散度が低下する。また、NOx 吸蔵材をPt及びPd
と同時に担持することも好ましい。これによりNO x 吸蔵
材がPt及びPdと近接担持されるため、NOx の吸蔵・還元
能が向上する。特にNOx 吸蔵材としてKを用いた場合に
は、同時吸水担持することで高温耐久性が一層向上す
る。もちろん含浸法を用いても、従来の方法で製造され
た触媒に比べると高温耐久性が向上する。
As a method for supporting Pt and Pd, water absorption of a supporting liquid is used.
Using the water absorption method to determine the loading amount of the active ingredient from the amount
Is preferred. Impregnation supported by immersion in a low concentration solution
Method, it is difficult to support the noble metal inside the coat layer
And the carrier concentration changes in the depth direction of the coat layer,
On the contrary, the degree of dispersion decreases. Also, NOxPt and Pd occlusion materials
At the same time, it is also preferable to carry them. This makes NO xOcclusion
Since the material is supported close to Pt and Pd, NOxOcclusion and reduction
Performance is improved. Especially NOxWhen K is used as the storage material
, Further improves high-temperature durability by supporting simultaneous water absorption
You. Of course, even if the impregnation method is used,
High-temperature durability is improved as compared with a catalyst that has been used.

【0017】なお、NOx 吸蔵材としてBaを用いた場合に
は、硝酸バリウムなどの水溶性塩の溶解度が小さいた
め、所定量の担持が困難となる。したがってこの場合
は、含浸法などで先ずBaを担持し、その後PtとPdを同時
に担持することが好ましい。Ptの担持量は、コート層を
もつ基材1リットルに対して1〜3gの範囲とすること
が望ましい。Ptの担持量がこの範囲より少ないと所望の
浄化性能が発現されず、この範囲より多く担持しても効
果が飽和するとともにコストが高騰する。
When Ba is used as the NO x occluding material, it is difficult to support a predetermined amount of Ba because of the low solubility of water-soluble salts such as barium nitrate. Therefore, in this case, it is preferable that Ba is first supported by an impregnation method or the like, and then Pt and Pd are simultaneously supported. The amount of Pt carried is desirably in the range of 1 to 3 g per liter of the substrate having the coat layer. If the amount of Pt carried is less than this range, the desired purification performance will not be exhibited, and if the amount of Pt carried exceeds this range, the effect will be saturated and the cost will rise.

【0018】またPdの担持量は、コート層をもつ基材1
リットルに対して1〜4gの範囲とすることが望まし
い。Pdの担持量がこの範囲より少ないと、高温耐久試験
時に貴金属の粒成長が生じ易くなり高温耐久性が低下す
る。Pdの担持量がこの範囲より多くなると、Pdの酸素吸
蔵能とCO吸着被毒により、還元能も低下するようにな
る。
The amount of Pd to be carried is determined according to the substrate 1 having the coat layer.
It is desirable that the amount be in the range of 1 to 4 g per liter. If the amount of Pd carried is less than this range, noble metal grains will easily grow during the high-temperature durability test, and the high-temperature durability will be reduced. If the amount of Pd carried exceeds this range, the reducing ability will decrease due to the oxygen storage ability and the CO adsorption poisoning of Pd.

【0019】PtとPdの担持比率は、重量比でPt/Pd=1
/3〜3/1とすることが望ましい。Pdの担持比率がこ
れより大きくなるとNO吸蔵性能の低下が起こり、Pdの担
持比率がこれより小さくなると耐熱性が低下する場合が
ある。なお、Pt及びPdに加えて、Rh、Ir、Agなど他の貴
金属を担持することもできる。またFe、Co、Mn、Wなど
の卑金属を担持してもよい。
The loading ratio of Pt and Pd is Pt / Pd = 1 by weight.
/ 3 to 3/1. If the loading ratio of Pd is higher than this, the NO storage performance may decrease, and if the loading ratio of Pd is lower than this, the heat resistance may decrease. Note that, in addition to Pt and Pd, other noble metals such as Rh, Ir, and Ag can be supported. Further, a base metal such as Fe, Co, Mn, and W may be supported.

【0020】基材としては、コージェライトなどの耐熱
性セラミックあるいはメタルから形成された多数の通路
をもつハニカム形状のものを用いることができる。また
コージェライトなどの耐熱性セラミックからなるペレッ
ト形状のものを用いてもよい。コート層を構成する多孔
質担体としては、アルミナ、シリカ、ジルコニア、シリ
カ−アルミナ、ゼオライトなどから選択することができ
る。このうちの一種でもよいし複数種類を混合あるいは
複合化して用いることもできる。
As the substrate, a honeycomb-shaped substrate having a large number of passages formed of a heat-resistant ceramic such as cordierite or a metal can be used. Alternatively, pellets made of a heat-resistant ceramic such as cordierite may be used. The porous carrier constituting the coat layer can be selected from alumina, silica, zirconia, silica-alumina, zeolite and the like. One of these may be used, or a plurality of them may be mixed or combined for use.

【0021】NOx 吸蔵材を構成するNOx 吸蔵元素として
は、アルカリ金属、アルカリ土類金属及び希土類金属か
ら選ばれる少なくとも一種の元素を用いることができ
る。アルカリ金属としてはリチウム(Li)、ナトリウム
(Na)、カリウム(K)、セシウム(Cs)が挙げられ
る。また、アルカリ土類金属とは周期表2A族元素をい
い、マグネシウム(Mg)、カルシウム(Ca)、ストロン
チウム(Sr)、バリウム(Ba)が挙げられる。また希土
類金属としてはランタン(La)、セリウム(Ce)、プラ
セオジム(Pr)などが挙げられる。
As the NO x occluding element constituting the NO x occluding material, at least one element selected from alkali metals, alkaline earth metals and rare earth metals can be used. Examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), and cesium (Cs). Further, the alkaline earth metal refers to a Group 2A element of the periodic table, and includes magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). Examples of the rare earth metal include lanthanum (La), cerium (Ce), praseodymium (Pr) and the like.

【0022】NOx 吸蔵材をコート層に担持するには、従
来と同様にコート層をもつ基材に所定濃度のNOx 吸蔵材
化合物の溶液を吸水させ、それを乾燥・焼成することで
行うことができる。このNOx 吸蔵材担持工程は、Pt及び
Ptの担持工程の前後のどちらに行ってもよいし、前述し
たようにPt及びPdの担持と同時に行うことも好ましい。
In order to carry the NO x occluding material on the coat layer, the substrate having the coat layer is made to absorb a solution of the NO x occluding material compound at a predetermined concentration, and then dried and fired as in the conventional case. be able to. This NO x storage material supporting step includes Pt and
It may be carried out before or after the step of carrying Pt, or as described above, simultaneously with carrying Pt and Pd.

【0023】NOx 吸蔵材の担持量は、その種類によって
も異なるが、コート層をもつ基材1リットルに対して
0.1〜 0.3モルとすることができる。NOx 吸蔵材の担持
量がこの範囲より少ないと十分なNOx 浄化能が得られ
ず、この範囲より多くなると耐熱性及び耐被毒性が低下
し好ましくない。なお、この範囲の上限は従来の触媒に
おけるNOx 担持量の上限より多くなっているが、本発明
の製造方法によれば、NOx吸蔵材を従来の担持量より多
く担持しても上記不具合が抑制される。したがってNOx
吸蔵材を多くしただけNOx を多く吸蔵することが可能と
なり、NOx 浄化能が向上する。
The amount of the NO x occluding material varies depending on the type of the NO x occluding material.
It can be 0.1 to 0.3 mol. If the loading amount of the NO x occluding material is less than this range, sufficient NO x purification ability cannot be obtained, and if it exceeds this range, heat resistance and poisoning resistance decrease, which is not preferable. Although the upper limit of this range is larger than the upper limit of the amount of NO x supported in the conventional catalyst, the above-described problem is caused even when the NO x storage material is supported in a larger amount than the conventional amount, according to the production method of the present invention. Is suppressed. Therefore NO x
It is possible to increase occluding NO x just by increasing the storage material, thereby improving the NO x purification performance.

【0024】[0024]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1)γ−アルミナ粉末とセリア−ジルコニア複
合酸化物粉末(Ce:Zr=1:1)とを重量比で1:1の
比率で混合した粉末を30重量部と、アルミナゾル(アル
ミナ濃度60重量%)を 200重量部と、純水を30重量部と
を混合してスラリーを調製した。
The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) 30 parts by weight of a powder obtained by mixing γ-alumina powder and ceria-zirconia composite oxide powder (Ce: Zr = 1: 1) at a weight ratio of 1: 1 and alumina sol (alumina concentration (60% by weight) and 30 parts by weight of pure water were mixed to prepare a slurry.

【0025】次にコージェライト製のハニカム基材を用
意し、上記スラリーに浸漬して引き上げ、余分なスラリ
ーを吹き払った後、 120℃で乾燥し 500℃で1時間焼成
して、ハニカム基材表面にコート層を形成し、モノリス
担体を得た。コート層は、ハニカム基材1リットルに対
して 135g形成されている。このモノリス担体につい
て、真空度 200mmHgの減圧下で純水を吸水させ、重量の
増加分から吸水量を測定した。そしてこの吸水量に基づ
いて、ジニトロジアンミン白金、硝酸パラジウム、硝酸
カリウム及び硝酸リチウムの担持量が後述の値となるよ
うにそれぞれの濃度を決定し、これらをその濃度でそれ
ぞれ溶解した混合水溶液を調製した。
Next, a honeycomb substrate made of cordierite is prepared, immersed in the above slurry, pulled up, and after blowing off excess slurry, dried at 120 ° C. and baked at 500 ° C. for 1 hour. A coat layer was formed on the surface to obtain a monolith carrier. The coat layer is formed in an amount of 135 g per liter of the honeycomb substrate. With respect to this monolithic carrier, pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the amount of water absorption, the concentrations of dinitrodiammine platinum, palladium nitrate, potassium nitrate, and lithium nitrate were determined so that the supported amounts would be the values described below, and mixed aqueous solutions were prepared by dissolving these at the respective concentrations. .

【0026】そして乾燥させたモノリス担体に、真空度
200mmHgの減圧下において上記混合水溶液の所定量を吸
水させ、 250℃で20分間乾燥後 500℃で1時間焼成して
本実施例の触媒を調製した。この触媒では、モノリス担
体1リットルに対して金属換算でPtが2g、Pdが3g、
Kが 0.2モル、Liが 0.1モル担持されている。 (実施例2)実施例1と同様のモノリス担体について、
真空度 200mmHgの減圧下で純水を吸水させ、重量の増加
分から吸水量を測定した。そしてこの吸水量に基づい
て、硝酸バリウムの担持量が後述の値となるように濃度
を決定し、その濃度の硝酸バリウム水溶液を調製した。
Then, the dried monolithic carrier is applied with a vacuum
A predetermined amount of the mixed aqueous solution was absorbed under a reduced pressure of 200 mmHg, dried at 250 ° C. for 20 minutes, and calcined at 500 ° C. for 1 hour to prepare a catalyst of this example. In this catalyst, 2 g of Pt and 3 g of Pd were calculated for 1 liter of the monolithic carrier in terms of metal.
0.2 mol of K and 0.1 mol of Li are supported. (Example 2) For the same monolithic carrier as in Example 1,
Pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the amount of water absorption, the concentration was determined so that the amount of barium nitrate carried would be the value described below, and an aqueous barium nitrate solution of that concentration was prepared.

【0027】そして乾燥させたモノリス担体に、真空度
200mmHgの減圧下において硝酸バリウム混合水溶液の所
定量を吸水させ、 250℃で20分間乾燥後 500℃で1時間
焼成してBa担持モノリス担体とした。た。次にジニトロ
ジアンミン白金、硝酸パラジウム及び硝酸リチウムの担
持量が後述の値となるようにそれぞれの濃度を決定し、
これらをその濃度でそれぞれ溶解した混合水溶液を調製
した。
Then, the dried monolithic carrier is evacuated to a vacuum degree.
A predetermined amount of a mixed aqueous solution of barium nitrate was absorbed under a reduced pressure of 200 mmHg, dried at 250 ° C for 20 minutes, and calcined at 500 ° C for 1 hour to obtain a Ba-supported monolithic carrier. Was. Next, determine the respective concentrations so that the amount of dinitrodiammine platinum, palladium nitrate and lithium nitrate carried becomes the value described below,
These were dissolved at the respective concentrations to prepare mixed aqueous solutions.

【0028】そして乾燥させたBa担持モノリス担体に、
真空度 200mmHgの減圧下において上記混合水溶液の所定
量を吸水させ、 250℃で20分間乾燥後 500℃で1時間焼
成して本実施例の触媒を調製した。この触媒では、モノ
リス担体1リットルに対して金属換算でPtが2g、Pdが
3g、Baが 0.1モル、Liが 0.1モル担持されている。 (比較例1)実施例1と同様のモノリス担体について、
真空度 200mmHgの減圧下で純水を吸水させ、重量の増加
分から吸水量を測定した。そしてこの吸水量に基づい
て、ジニトロジアンミン白金、硝酸カリウム及び硝酸リ
チウムの担持量が後述の値となるようにそれぞれの濃度
を決定し、これらをその濃度でそれぞれ溶解した混合水
溶液を調製した。
Then, the dried Ba-supported monolithic carrier is
A predetermined amount of the mixed aqueous solution was absorbed under a reduced pressure of 200 mmHg, dried at 250 ° C. for 20 minutes, and calcined at 500 ° C. for 1 hour to prepare a catalyst of this example. In this catalyst, 2 g of Pt, 3 g of Pd, 0.1 mol of Ba, and 0.1 mol of Li are supported per liter of the monolithic carrier in terms of metal. (Comparative Example 1) For the same monolithic carrier as in Example 1,
Pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the amount of water absorption, the respective concentrations were determined so that the amounts of dinitrodiammineplatinum, potassium nitrate, and lithium nitrate had the values described below, and mixed aqueous solutions were prepared by dissolving these at the respective concentrations.

【0029】そして乾燥させたモノリス担体に、真空度
200mmHgの減圧下において上記混合水溶液の所定量を吸
水させ、実施例1と同様に乾燥・焼成して本比較例の触
媒を調製した。この触媒では、モノリス担体1リットル
に対して金属換算でPtが2g、Kが 0.2モル、Liが 0.1
モル担持されている。 (比較例2)実施例1と同様のモノリス担体について、
真空度 200mmHgの減圧下で純水を吸水させ、重量の増加
分から吸水量を測定した。そしてこの吸水量に基づい
て、ジニトロジアンミン白金、硝酸カリウム及び硝酸リ
チウムの担持量が後述の値となるようにそれぞれの濃度
を決定し、これらをその濃度でそれぞれ溶解した混合水
溶液を調製した。
Then, the dried monolithic carrier is applied with a vacuum
A predetermined amount of the mixed aqueous solution was absorbed under a reduced pressure of 200 mmHg, and dried and calcined in the same manner as in Example 1 to prepare a catalyst of this comparative example. In this catalyst, 2 g of Pt, 0.2 mol of K, and 0.1 mol of Li were calculated for 1 liter of the monolith support in terms of metal.
Molar supported. (Comparative Example 2) For the same monolithic carrier as in Example 1,
Pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the amount of water absorption, the respective concentrations were determined so that the amounts of dinitrodiammineplatinum, potassium nitrate and lithium nitrate had the values described below, and mixed aqueous solutions were prepared by dissolving the respective concentrations.

【0030】そして乾燥させたモノリス担体に、真空度
200mmHgの減圧下において上記混合水溶液の所定量を吸
水させ、実施例1と同様に乾燥・焼成して本比較例の触
媒を調製した。この触媒では、モノリス担体1リットル
に対して金属換算でPtが4g、Kが 0.2モル、Liが 0.1
モル担持されている。 (比較例3)実施例1と同様のモノリス担体について、
真空度 200mmHgの減圧下で純水を吸水させ、重量の増加
分から吸水量を測定した。そしてこの吸水量に基づい
て、硝酸パラジウム、硝酸カリウム及び硝酸リチウムの
担持量が後述の値となるようにそれぞれの濃度を決定
し、これらをその濃度でそれぞれ溶解した混合水溶液を
調製した。
Then, the dried monolithic carrier is evacuated to a vacuum degree.
A predetermined amount of the mixed aqueous solution was absorbed under a reduced pressure of 200 mmHg, and dried and calcined in the same manner as in Example 1 to prepare a catalyst of this comparative example. In this catalyst, 4 g of Pt, 0.2 mol of K, and 0.1 mol of Li were calculated for 1 liter of the monolith support in terms of metal.
Molar supported. (Comparative Example 3) For the same monolithic carrier as in Example 1,
Pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the amount of water absorption, the respective concentrations were determined so that the amounts of palladium nitrate, potassium nitrate, and lithium nitrate had the values described below, and mixed aqueous solutions were prepared by dissolving these at the respective concentrations.

【0031】そして乾燥させたモノリス担体に、真空度
200mmHgの減圧下において上記混合水溶液の所定量を吸
水させ、実施例1と同様に乾燥・焼成して本比較例の触
媒を調製した。この触媒では、モノリス担体1リットル
に対して金属換算でPdが3g、Kが 0.2モル、Liが 0.1
モル担持されている。 (比較例4)実施例1と同様のモノリス担体について、
真空度 200mmHgの減圧下で純水を吸水させ、重量の増加
分から吸水量を測定した。そしてこの吸水量に基づい
て、ジニトロジアンミン白金、硝酸パラジウム、硝酸カ
リウム及び硝酸リチウムの担持量が後述の値となるよう
にそれぞれの濃度を決定し、それぞれの水溶液を調製し
た。なお硝酸カリウムと硝酸リチウムは混合水溶液とし
た。
Then, a vacuum degree is applied to the dried monolithic carrier.
A predetermined amount of the mixed aqueous solution was absorbed under a reduced pressure of 200 mmHg, and dried and calcined in the same manner as in Example 1 to prepare a catalyst of this comparative example. In this catalyst, 3 g of Pd, 0.2 mol of K, and 0.1 mol of Li were converted to 1 liter of the monolith support in terms of metal.
Molar supported. (Comparative Example 4) For the same monolithic carrier as in Example 1,
Pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the water absorption, the respective concentrations were determined so that the amounts of dinitrodiammineplatinum, palladium nitrate, potassium nitrate, and lithium nitrate had the values described below, and respective aqueous solutions were prepared. Note that potassium nitrate and lithium nitrate were mixed aqueous solutions.

【0032】そして乾燥させたモノリス担体に、真空度
200mmHgの減圧下において先ずジニトロジアンミン白金
水溶液の所定量を吸水させ、実施例1と同様に乾燥・焼
成してPtを担持した。次に真空度 200mmHgの減圧下にお
いて硝酸パラジウム水溶液の所定量を吸水させ、実施例
1と同様に乾燥・焼成してPdを担持した。さらに真空度
200mmHgの減圧下において硝酸カリウムと硝酸リチウム
の混合水溶液の所定量を吸水させ、実施例1と同様に乾
燥・焼成してKとLiを担持して、本比較例の触媒を調製
した。この触媒では、モノリス担体1リットルに対して
金属換算でPtが2g、Pdが3g、Kが 0.2モル、Liが
0.1モル担持されている。
Then, the dried monolithic carrier is applied with a vacuum
First, a predetermined amount of an aqueous solution of dinitrodiammine platinum was absorbed under a reduced pressure of 200 mmHg, and dried and calcined in the same manner as in Example 1 to carry Pt. Next, a predetermined amount of an aqueous solution of palladium nitrate was absorbed under a reduced pressure of 200 mmHg and dried and calcined in the same manner as in Example 1 to carry Pd. Further vacuum
Under a reduced pressure of 200 mmHg, a predetermined amount of a mixed aqueous solution of potassium nitrate and lithium nitrate was absorbed, dried and calcined in the same manner as in Example 1 to carry K and Li, thereby preparing a catalyst of this comparative example. In this catalyst, 2 g of Pt, 3 g of Pd, 0.2 mol of K and 0.2 mol of Li were calculated for each liter of the monolithic carrier in terms of metal.
0.1 mol is carried.

【0033】(比較例5)実施例1と同様のモノリス担
体について、真空度200mmHgの減圧下で純水を吸水さ
せ、重量の増加分から吸水量を測定した。そしてこの吸
水量に基づいて、ジニトロジアンミン白金、硝酸パラジ
ウム、硝酸カリウム及び硝酸リチウムの担持量が後述の
値となるようにそれぞれの濃度を決定し、それぞれの水
溶液を調製した。なお硝酸カリウムと硝酸リチウムは混
合水溶液とした。
(Comparative Example 5) With respect to the same monolithic carrier as in Example 1, pure water was absorbed under a reduced pressure of 200 mmHg, and the amount of water absorption was measured from the increase in weight. Based on the water absorption, the respective concentrations were determined so that the amounts of dinitrodiammineplatinum, palladium nitrate, potassium nitrate, and lithium nitrate had the values described below, and respective aqueous solutions were prepared. Note that potassium nitrate and lithium nitrate were mixed aqueous solutions.

【0034】そして乾燥させたモノリス担体に、先ず真
空度 200mmHgの減圧下において硝酸パラジウム水溶液の
所定量を吸水させ、実施例1と同様に乾燥・焼成してPd
を担持した。次に真空度 200mmHgの減圧下においてジニ
トロジアンミン白金水溶液の所定量を吸水させ、実施例
1と同様に乾燥・焼成してPtを担持した。さらに真空度
200mmHgの減圧下において硝酸カリウムと硝酸リチウム
の混合水溶液の所定量を吸水させ、実施例1と同様に乾
燥・焼成してKとLiを担持して、本比較例の触媒を調製
した。この触媒では、モノリス担体1リットルに対して
金属換算でPdが3g、Ptが2g、Kが 0.2モル、Liが
0.1モル担持されている。
Then, a predetermined amount of an aqueous solution of palladium nitrate was first absorbed in the dried monolithic carrier under a reduced pressure of 200 mmHg, and dried and calcined in the same manner as in Example 1 to obtain Pd.
Was carried. Next, a predetermined amount of an aqueous dinitrodiammine platinum solution was absorbed under a reduced pressure of 200 mmHg, and dried and calcined in the same manner as in Example 1 to carry Pt. Further vacuum
Under a reduced pressure of 200 mmHg, a predetermined amount of a mixed aqueous solution of potassium nitrate and lithium nitrate was absorbed, dried and calcined in the same manner as in Example 1 to carry K and Li, thereby preparing a catalyst of this comparative example. In this catalyst, 3 g of Pd, 2 g of Pt, 0.2 mol of K and 0.2 mol of Li were calculated for 1 liter of the monolithic carrier in terms of metal.
0.1 mol is carried.

【0035】(試験・評価)実施例1及び比較例1〜5
で得られた触媒について、排ガス中にて 800℃で50時間
加熱する高温耐久試験をそれぞれ行った。そして高温耐
久試験後の貴金属の比表面積をそれぞれ測定し、比較例
1の触媒の比表面積を1とした場合の相対値で表2に示
す。
(Test / Evaluation) Example 1 and Comparative Examples 1 to 5
Each of the catalysts obtained in the above was subjected to a high-temperature durability test in which the catalyst was heated at 800 ° C. for 50 hours in exhaust gas. Then, the specific surface areas of the noble metals after the high-temperature durability test were measured, and the relative values when the specific surface area of the catalyst of Comparative Example 1 was 1 are shown in Table 2.

【0036】また熱耐久試験後の各触媒を評価装置に配
置し、表1に示すリーン側のモデル排ガスとリッチ側の
モデル排ガスを2分毎に交互に繰り返して流速2 L/min
で流すことにより、NOx 吸蔵量とNO酸化率を測定した。
入りガス温度は 300℃、空間速度SVは42800h-1であ
り、結果を表2に示す。
Each catalyst after the heat endurance test was placed in an evaluation device, and the lean side model exhaust gas and the rich side model exhaust gas shown in Table 1 were alternately repeated every two minutes, and the flow rate was 2 L / min.
, The NO x occlusion amount and the NO oxidation rate were measured.
The incoming gas temperature was 300 ° C., the space velocity SV was 42800 h −1 , and the results are shown in Table 2.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表2より、貴金属としてPtのみを担持した
比較例1及び比較例2の触媒では、熱耐久後にPtの粒成
長が生じ、高温耐久後のNO酸化率は高いもののNOx 吸蔵
量が低くなっていることがわかる。またPdのみを担持し
た比較例3の触媒では、高温耐久後にも高い比表面積を
示しシンタリングが抑制されているものの、NOx 吸蔵量
及びNO酸化率はきわめて低い。
As can be seen from Table 2, in the catalysts of Comparative Examples 1 and 2 in which only Pt was supported as the noble metal, Pt grain growth occurred after heat endurance, and although the NO oxidation rate after high temperature endurance was high, the NO x storage amount was high. It can be seen that it is lower. In the catalyst of Comparative Example 3 carrying Pd alone, although sintering showed a high specific surface area even after a high temperature durability is suppressed, NO x storage amount and NO oxidation rate is very low.

【0040】一方、実施例1及び実施例2の製造方法か
ら得られた触媒は、高温耐久後にも比較例4,5の触媒
に比べて高い比表面積を示し、NOx 吸蔵量がきわめて多
く、NO酸化率はPtのみを担持した比較例1に近い性能を
示していることから、高いNO x 浄化能を有していること
がわかる。これはPtとPdを混合溶液から同時に担持した
効果であることが明らかである。
On the other hand, the production methods of the first and second embodiments
The catalysts obtained from the catalysts of Comparative Examples 4 and 5 even after endurance at high temperatures
Higher specific surface area than NOxExtremely large storage capacity
And the NO oxidation rate is close to that of Comparative Example 1 in which only Pt is supported.
High NO xHave purification ability
I understand. This supported Pt and Pd simultaneously from a mixed solution
The effect is clear.

【0041】[0041]

【発明の効果】すなわち本発明の排ガス浄化用触媒の製
造方法によれば、高温耐久試験によっても貴金属の粒成
長が抑制され、優れたNOx 浄化能をもつ耐久性に優れた
触媒を安定して容易に製造することができる。
According to the method of manufacturing the exhaust gas purifying catalyst of the Effect of the Invention] The present invention, grain growth of noble metal is suppressed by the high-temperature durability test, a stable and durable with superior the NO x purification performance catalyst And can be easily manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井口 哲 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tetsu Iguchi 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基材と、該基材表面に形成された多孔質
担体よりなるコート層と、該コート層に担持された貴金
属及びNOx 吸蔵材と、よりなる排ガス浄化用触媒の製造
方法であって、 該貴金属は少なくともPt及びPdを含み、Pt化合物の溶液
とPd化合物の溶液との混合溶液を用いてPtとPdを同時に
担持することを特徴とする排ガス浄化用触媒の製造方
法。
1. A method for producing an exhaust gas purifying catalyst comprising: a base material; a coat layer formed of a porous carrier formed on the surface of the base material; and a noble metal and a NO x storage material supported on the coat layer. A method for producing an exhaust gas purifying catalyst, wherein the noble metal contains at least Pt and Pd, and uses a mixed solution of a Pt compound solution and a Pd compound solution to simultaneously support Pt and Pd.
JP10111078A 1998-04-21 1998-04-21 Manufacture of catalyst for exhaust gas purification Pending JPH11300203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10111078A JPH11300203A (en) 1998-04-21 1998-04-21 Manufacture of catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111078A JPH11300203A (en) 1998-04-21 1998-04-21 Manufacture of catalyst for exhaust gas purification

Publications (1)

Publication Number Publication Date
JPH11300203A true JPH11300203A (en) 1999-11-02

Family

ID=14551835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111078A Pending JPH11300203A (en) 1998-04-21 1998-04-21 Manufacture of catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPH11300203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121700A (en) * 2012-11-22 2014-07-03 National Applied Research Laboratories Confinement type runner reaction vessel system and method of producing catalyst or supporting material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121700A (en) * 2012-11-22 2014-07-03 National Applied Research Laboratories Confinement type runner reaction vessel system and method of producing catalyst or supporting material

Similar Documents

Publication Publication Date Title
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
JP3362546B2 (en) Exhaust gas purification catalyst
JPH10263416A (en) Exhaust gas purifying catalyst
JP4923412B2 (en) Exhaust gas purification catalyst
JP3640130B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4450984B2 (en) Exhaust gas purification catalyst
JP3430823B2 (en) Exhaust gas purification catalyst
JPH09253454A (en) Catalyst for purifying exhaust gas
JP3378096B2 (en) Exhaust gas purification catalyst
JP3741292B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JPH10165817A (en) Catalyst for cleaning of exhaust gas
JP3417702B2 (en) Nitrogen oxide storage composition and exhaust gas purification method
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH11300203A (en) Manufacture of catalyst for exhaust gas purification
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3589376B2 (en) Exhaust gas purification catalyst
JP4131370B2 (en) Method for producing exhaust gas purification catalyst
JP3739226B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3596246B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3508969B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH10225636A (en) Waste gas purifying catalyst
JP3896706B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3817679B2 (en) Exhaust gas purification catalyst