JPH11297504A - Electronic device - Google Patents

Electronic device

Info

Publication number
JPH11297504A
JPH11297504A JP9954598A JP9954598A JPH11297504A JP H11297504 A JPH11297504 A JP H11297504A JP 9954598 A JP9954598 A JP 9954598A JP 9954598 A JP9954598 A JP 9954598A JP H11297504 A JPH11297504 A JP H11297504A
Authority
JP
Japan
Prior art keywords
degaussing
ptc element
resistance
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9954598A
Other languages
Japanese (ja)
Inventor
Hideaki Niimi
秀明 新見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP9954598A priority Critical patent/JPH11297504A/en
Publication of JPH11297504A publication Critical patent/JPH11297504A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electronic device comprising a PTC element without lead and sufficiently reduced in residual current by setting a rate of change of resistance in one of two PTC elements so as to satisfy a specified equation. SOLUTION: In a degaussing device 10, a rate of change of resistance α10-100 (%/ deg.C) in a heating PTC element 2 out of a degaussing and a heating PTCs 1 and 2 is set lower than a normal value and satisfies an equation, and satisfies 2<=α10-100 <=15 (where α10-100 =230×log(100/10)/(T100 -T10 ), T100 is a temperature at which a resistance becomes 100 times the reference resistance, and T10 is a temperature at which a resistance becomes ten times the reference resistance). The degaussing PTC element 1 is connected in series to a degaussing coil 3 and overcurrent attenuated at the degaussing PTC element 1 is degaussed by alternative current at the degaussing coil 3. A series circuit of the degaussing PTC element 1 and the degaussing coil 3 is connected in parallel to the heating PTC element 2. The degaussing PTC element 1 is thermally connected to the heating PTC element 2 and becomes high temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子装置、特に、
PTC素子を備えた電子装置に関する。
The present invention relates to an electronic device, and more particularly, to an electronic device,
The present invention relates to an electronic device including a PTC element.

【0002】[0002]

【従来の技術】BaTiO3系半導体材料からなるPT
C素子は、キュリー温度以上で急激に高抵抗化するとい
う正の抵抗温度特性を有する。このため、従来より、こ
のPTC素子は、過電流保護やカラーテレビジョンの消
磁用として使用されている。このうち、カラーテレビジ
ョンの消磁用としてPTC素子を使用する場合には、図
3に示すように、消磁用PTC素子21に消磁コイル2
2を電気的に直列接続した状態で使用される。消磁用P
TC素子21で減衰された過電流は消磁コイル22に流
れ、交流消磁される。
2. Description of the Related Art PT made of BaTiO 3 based semiconductor material
The C element has a positive resistance-temperature characteristic in which the resistance rapidly increases at or above the Curie temperature. For this reason, this PTC element has been conventionally used for overcurrent protection and degaussing of color television. Of these, when a PTC element is used for degaussing a color television, as shown in FIG.
2 are used in a state of being electrically connected in series. P for demagnetization
The overcurrent attenuated by the TC element 21 flows to the degaussing coil 22 and is subjected to AC degaussing.

【0003】さらに、この消磁用PTC素子21に加熱
用PTC素子23を電気的に並列接続させることも行わ
れている。加熱用PTC素子23で発生した熱によっ
て、消磁用PTC素子21を加熱してより高温にさせる
ことで、消磁完了後の残留電流を消磁用PTC素子21
によって低減させるためである。
Further, a heating PTC element 23 is electrically connected in parallel to the degaussing PTC element 21. By heating the degaussing PTC element 21 to a higher temperature by the heat generated by the heating PTC element 23, the residual current after the completion of the degaussing can be reduced.
It is for reducing by.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の加熱
用PTC素子23は自身を高温まで発熱させる必要があ
り、キュリー温度を150℃程度に設定していた。この
ため、加熱用PTC素子23を構成するBaTiO3
半導体材料には必ず鉛が含まれていた。キュリー温度を
125℃以上にするには、バリウム(Ba)を鉛で置換
する必要があるからである。しかしながら、近年の環境
意識の高揚から、鉛不使用の必要性が生じてきた。因み
に、消磁用PTC素子21のキュリー温度は50℃程度
であり、消磁用PTC素子21を構成するBaTiO3
系半導体材料には鉛を含有させる必要はない。
However, the conventional heating PTC element 23 needs to heat itself to a high temperature, and the Curie temperature is set to about 150 ° C. Therefore, the BaTiO 3 -based semiconductor material constituting the heating PTC element 23 always contains lead. This is because barium (Ba) must be replaced with lead in order to increase the Curie temperature to 125 ° C. or higher. However, recent environmental awareness has raised the need for lead-free use. Incidentally, the Curie temperature of the degaussing PTC element 21 is about 50 ° C., and the BaTiO 3
It is not necessary for lead-based semiconductor materials to contain lead.

【0005】そこで、本発明の目的は、鉛を含まないP
TC素子を備え、かつ、十分に残留電流を低減すること
ができる電子装置を提供をすることにある。
Therefore, an object of the present invention is to provide a lead-free P
It is an object of the present invention to provide an electronic device including a TC element and capable of sufficiently reducing a residual current.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
め、本発明に係る電子装置は、互いに熱的に結合しかつ
電気的に並列接続された少なくとも二つのBaTiO3
系半導体材料からなるPTC素子を備え、前記二つのP
TC素子のうち一方のPTC素子の抵抗変化率α10-100
(%/℃)が、 2≦α10-100≦15 ただし、α10-100=230×log(100/10)/
(T100−T10) T100:抵抗が所定の抵抗値の100倍になる温度 T10:抵抗が所定の抵抗値の10倍になる温度 を満足していることを特徴とする。この電子装置は、例
えばカラーテレビジョンの消磁用装置として使用され
る。
In order to achieve the above object, an electronic device according to the present invention comprises at least two BaTiO 3 layers thermally coupled to each other and electrically connected in parallel.
A PTC element made of a base semiconductor material.
Resistance change rate α 10-100 of one PTC element among TC elements
(% / ° C.) is 2 ≦ α 10-100 ≦ 15, where α 10-100 = 230 × log (100/10) /
(T 100 -T 10) T 100: Temperature T 10 resistance becomes 100 times the predetermined resistance: resistance characterized in that it satisfies the temperature at which 10 times the predetermined resistance value. This electronic device is used, for example, as a degaussing device for a color television.

【0007】[0007]

【作用】以上の構成により、少なくとも二つのPTC素
子のうち一方のPTC素子の抵抗変化率α10-100が通常
よりかなり低くなる。この抵抗変化率が通常よりかなり
低いPTC素子を加熱用とし、前記二つのPTC素子を
熱結合させると、加熱用PTC素子のBaTiO3系半
導体材料に鉛が含まれていなくても、他方のPTC素子
は十分高温に加熱される。
According to the above arrangement, the resistance change rate α10-100 of one of the at least two PTC elements is considerably lower than usual. When a PTC element having a resistance change rate much lower than usual is used for heating and the two PTC elements are thermally coupled, the other PTC element can be used even if the BaTiO 3 -based semiconductor material of the heating PTC element does not contain lead. The device is heated to a sufficiently high temperature.

【0008】[0008]

【発明の実施の形態】以下、本発明に係る電子装置の実
施形態について添付図面を参照して説明する。本実施形
態では、カラーテレビジョンの消磁用装置を例にして説
明するが、本発明は必らずしもこれに限るものではな
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of an electronic device according to the present invention will be described with reference to the accompanying drawings. In the present embodiment, a degaussing device for a color television will be described as an example, but the present invention is not necessarily limited to this.

【0009】図1は、カラーテレビジョンの消磁用装置
10を示すものである。消磁用PTC素子1は消磁コイ
ル3に電気的に直列接続している。消磁用PTC素子1
で減衰された過電流は消磁コイル3に流れ、交流消磁さ
れる。さらに、消磁用PTC素子1と消磁コイル3の直
列回路は、加熱用PTC素子2と電気的に並列接続して
いる。消磁用PTC素子1は、加熱用PTC素子2と熱
的に結合しており、加熱用PTC素子2で発生した熱に
よって加熱され、高温になる。これにより、消磁用PT
C素子1は、消磁完了後の残留電流を低減させることが
できる。
FIG. 1 shows an apparatus 10 for degaussing a color television. The degaussing PTC element 1 is electrically connected to the degaussing coil 3 in series. PTC element for degaussing 1
The overcurrent attenuated by the above flows into the degaussing coil 3 and is demagnetized by AC. Further, the series circuit of the degaussing PTC element 1 and the degaussing coil 3 is electrically connected in parallel with the heating PTC element 2. The degaussing PTC element 1 is thermally coupled to the heating PTC element 2, and is heated by the heat generated by the heating PTC element 2 to a high temperature. With this, the degaussing PT
The C element 1 can reduce the residual current after the completion of the degaussing.

【0010】図2は、図1に示した消磁用装置10に使
用されるPTC素子1,2の一つの具体例を示す図であ
る。PTC素子1,2は、直方体形状の素体12を有
し、その両端部には外部電極13,14が設けられてい
る。素体12はBaTiO3系半導体材料からなる。つ
まり、消磁用PTC素子1の原料として、BaC
3、SrCO3、TiO2、Sm23、SiO2、Mnを
次の組成となるように調合した。 原料:(Ba0.698Sr0.30Sm0.002)TiO3
0.001Mn+0.01SiO2
FIG. 2 is a diagram showing one specific example of the PTC elements 1 and 2 used in the degaussing device 10 shown in FIG. Each of the PTC elements 1 and 2 has a rectangular parallelepiped element body 12, and external electrodes 13 and 14 are provided at both ends. The element body 12 is made of a BaTiO 3 -based semiconductor material. That is, as a raw material of the degaussing PTC element 1, BaC
O 3 , SrCO 3 , TiO 2 , Sm 2 O 3 , SiO 2 , and Mn were prepared to have the following composition. Raw material: (Ba 0.698 Sr 0.30 Sm 0.002 ) TiO 3 +
0.001Mn + 0.01SiO 2

【0011】同様に、加熱用PTC素子2の原料とし
て、BaCO3、TiO2、Sm23、SiO2、Mnを
次の組成となるように調合した。 原料:(Ba0.998Sm0.002)TiO3+XMn+
0.01SiO2 ここに、加熱用PTC素子2は、Mn量Xを変えること
で、抵抗変化率α10-1 00(%/℃)を変化させることが
できる。
Similarly, as raw materials of the heating PTC element 2, BaCO 3 , TiO 2 , Sm 2 O 3 , SiO 2 and Mn were prepared so as to have the following composition. Raw material: (Ba 0.998 Sm 0.002 ) TiO 3 + XMn +
0.01SiO 2 Here, the heating PTC element 2, by changing the Mn amount X, the resistance change ratio α 10-1 00 (% / ℃) can be changed.

【0012】次に、これらの原料,をそれぞれ、ボ
ールミルで5時間混合、粉砕した。次に、これらの原料
,を、1100℃の温度で2時間仮焼した後、バイ
ンダを加えて混合し、メッシュ50#のふるいで造粒し
た。この造粒粉を成形型に注入してプレス成形した後、
1350℃の温度で2時間焼成し、PTC素子1,2の
それぞれの素体12を得た。さらに、この素体12の両
端部に、スパッタリング法、真空蒸着法、塗布焼付け法
等の方法により、Ni,Ag,Cu,Ag−Pd等から
なる外部電極13,14が形成される。
Next, these raw materials were mixed and pulverized in a ball mill for 5 hours. Next, after calcining these raw materials at a temperature of 1100 ° C. for 2 hours, a binder was added and mixed, and the mixture was granulated with a mesh 50 # sieve. After injecting this granulated powder into a mold and press molding,
It was fired at a temperature of 1350 ° C. for 2 hours to obtain the respective element bodies 12 of the PTC elements 1 and 2. Further, external electrodes 13 and 14 made of Ni, Ag, Cu, Ag-Pd or the like are formed on both ends of the element body 12 by a method such as a sputtering method, a vacuum evaporation method, and a coating and baking method.

【0013】こうして得られた消磁用及び加熱用PTC
素子1,2のうち、加熱用PTC素子2の抵抗変化率α
10-100(%/℃)は、通常よりかなり低く設定され、条
件式2≦α10-100≦15 ただし、α10-100=230×log(100/10)/
(T100−T10) T100:抵抗が標準抵抗値(例えば、室温(20℃)で
の抵抗値)の100倍になる温度 T10:抵抗が標準抵抗値の10倍になる温度 を満足している。この条件を満足することにより、鉛を
含まないPTC素子1,2を備え、かつ、十分に残留電
流を低減することができる消磁用装置10を得ることが
できる。
The degaussing and heating PTC thus obtained
Resistance change rate α of heating PTC element 2 among elements 1 and 2
10-100 (% / ° C.) is set considerably lower than usual, and the conditional expression 2 ≦ α 10-100 ≦ 15, where α 10-100 = 230 × log (100/10) /
(T 100 −T 10 ) T 100 : Temperature at which the resistance becomes 100 times the standard resistance value (for example, the resistance value at room temperature (20 ° C.)) T 10 : Satisfies the temperature at which the resistance becomes 10 times the standard resistance value doing. By satisfying this condition, it is possible to obtain a degaussing device 10 including the PTC elements 1 and 2 containing no lead and capable of sufficiently reducing the residual current.

【0014】表1は、Mn量Xを種々変更させることに
より、抵抗変化率α10-100が異なる加熱用PTC素子2
の試料を作成し、その抵抗変化率α10-100に対する消磁
用PTC素子1の温度とその温度の変動を測定した結果
を示す表である。測定に使用した回路は、図1に示した
消磁用装置10に100Vの交流電源15を接続した回
路である。
Table 1 shows that heating PTC elements 2 having different resistance change rates α 10-100 by variously changing the Mn amount X.
5 is a table showing the results of measuring the temperature of the demagnetizing PTC element 1 and the fluctuation of the temperature with respect to the resistance change rate α 10-100 of the sample. The circuit used for the measurement is a circuit in which a 100 V AC power supply 15 is connected to the degaussing device 10 shown in FIG.

【0015】[0015]

【表1】 [Table 1]

【0016】表1において、「消磁用PTC素子の温
度」は、消磁用装置10に24時間連続通電したときの
消磁用PTC素子1の平均温度を意味している。また
「消磁用PTC素子の温度変動」は、消磁用装置10に
24時間連続通電したときの消磁用PTC素子1の最高
温度と最低温度を意味している。なお、前述のように、
加熱用PTC素子2の抵抗変化率α10-100はMn量Xで
制御したが、加熱用PTC素子2の厚みを一定に保った
まま、抵抗変化率α10-100を小さくすると、交流電源1
5から供給される電圧によって加熱用PTC素子2が破
壊される心配がある。そこで、加熱用PTC素子2の耐
電圧がすべての試料において略200Vになるように、
加熱用PTC素子2の厚みを調整した。
In Table 1, "temperature of the degaussing PTC element" means the average temperature of the degaussing PTC element 1 when the degaussing device 10 is continuously energized for 24 hours. The “temperature fluctuation of the degaussing PTC element” means the maximum temperature and the minimum temperature of the degaussing PTC element 1 when the degaussing device 10 is continuously energized for 24 hours. As mentioned above,
Although the resistance change rate α 10-100 of the heating PTC element 2 was controlled by the Mn amount X, if the resistance change rate α 10-100 was reduced while the thickness of the heating PTC element 2 was kept constant, the AC power supply 1
There is a concern that the heating PTC element 2 is destroyed by the voltage supplied from 5. Therefore, the withstand voltage of the heating PTC element 2 is set to approximately 200 V in all the samples.
The thickness of the heating PTC element 2 was adjusted.

【0017】表1より、加熱用PTC素子2の抵抗変化
率α10-100が、2≦α10-100≦15の場合には、加熱用
PTC素子2は、BaTiO3系半導体材料に鉛を含ま
なくても、消磁用PTC素子1を十分高温(150〜2
00℃)に加熱することができる。しかも、その加熱温
度の変動を小さく抑えることができる。ところが、抵抗
変化率α10-100が2%/℃より小さい場合には、消磁用
PTC素子1を高温に加熱することができるが、加熱温
度の変動が大きく実用上問題となる。一方、抵抗変化率
α10-100が15%/℃より大きくなると、消磁用PTC
素子1を150℃より低い温度にしか加熱することがで
きない。このため、消磁用PTC素子1の消磁効果が低
下する。
From Table 1, when the resistance change rate α 10-100 of the heating PTC element 2 is 2 ≦ α 10-100 ≦ 15, the heating PTC element 2 is made of a BaTiO 3 based semiconductor material containing lead. Even if not included, the degaussing PTC element 1 is kept at a sufficiently high temperature (150 to 2
00 ° C.). In addition, fluctuations in the heating temperature can be kept small. However, if the resistance change rate α 10-100 is smaller than 2% / ° C., the degaussing PTC element 1 can be heated to a high temperature, but the heating temperature fluctuates greatly and poses a practical problem. On the other hand, if the resistance change rate α 10-100 is larger than 15% / ° C., the degaussing PTC
Element 1 can only be heated to a temperature lower than 150 ° C. For this reason, the degaussing effect of the degaussing PTC element 1 is reduced.

【0018】なお、本発明に係る電子装置は前記実施形
態に限定するものではなく、その要旨の範囲内で種々に
変更することができる。特に、PTC素子は仕様により
種々の形状のものが選択される。
The electronic device according to the present invention is not limited to the above embodiment, and can be variously modified within the scope of the invention. In particular, PTC elements of various shapes are selected according to specifications.

【0019】[0019]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、少なくとも二つのPTC素子のうち一方のPT
C素子の抵抗変化率α10-100(%/℃)が、条件式2≦
α10-1 00≦15を満足するように設定したので、このP
TC素子の抵抗変化率は通常よりかなり低くなる。この
抵抗変化率の低いPTC素子を加熱用PTC素子として
用いると、加熱用PTC素子のBaTiO3系半導体材
料に鉛が含まれていなくても、他方のPTC素子を十分
高温に加熱することができる。この結果、鉛を含まない
PTC素子を備え、かつ、十分に残留電流を低減するこ
とができる電子装置を得ることができる。
As is apparent from the above description, according to the present invention, one of at least two PTC elements
When the resistance change rate α 10-100 (% / ° C.) of the C element is less than the conditional expression 2 ≦
α 10-1 00 ≦ 15, so that this P
The resistance change rate of the TC element becomes considerably lower than usual. When the PTC element having a low rate of change in resistance is used as a heating PTC element, the other PTC element can be heated to a sufficiently high temperature even if the BaTiO 3 -based semiconductor material of the heating PTC element does not contain lead. . As a result, it is possible to obtain an electronic device including a PTC element that does not contain lead and capable of sufficiently reducing the residual current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電子装置を示す電気回路図。FIG. 1 is an electric circuit diagram showing an electronic device according to the present invention.

【図2】図1に示した電子装置に使用されるPTC素子
の一例を示す外観斜視図。
FIG. 2 is an external perspective view showing an example of a PTC element used in the electronic device shown in FIG.

【図3】従来の電子装置を示す電気回路図。FIG. 3 is an electric circuit diagram showing a conventional electronic device.

【符号の説明】[Explanation of symbols]

1…消磁用PTC素子 2…加熱用PTC素子 3…消磁コイル 10…消磁用装置 DESCRIPTION OF SYMBOLS 1 ... PTC element for degaussing 2 ... PTC element for heating 3 ... Degaussing coil 10 ... Device for degaussing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H05B 3/14 H05B 3/14 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H05B 3/14 H05B 3/14 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに熱的に結合しかつ電気的に並列接
続された少なくとも二つのBaTiO3系半導体材料か
らなるPTC素子を備え、前記二つのPTC素子のうち
一方のPTC素子の抵抗変化率α10-100(%/℃)が、 2≦α10-100≦15 ただし、α10-100=230×log(100/10)/
(T100−T10) T100:抵抗が所定の抵抗値の100倍になる温度 T10:抵抗が所定の抵抗値の10倍になる温度 を満足していることを特徴とする電子装置。
1. A semiconductor device comprising: at least two PTC elements made of a BaTiO 3 -based semiconductor material thermally coupled to each other and electrically connected in parallel; and a resistance change rate α of one of the two PTC elements. 10-100 (% / ° C), 2 ≦ α 10-100 ≦ 15, where α 10-100 = 230 × log (100/10) /
(T 100 -T 10) T 100: Temperature T 10 resistance becomes 100 times the predetermined resistance: resistance electronic device characterized in that it satisfies the temperature at which 10 times the predetermined resistance value.
【請求項2】 カラーテレビジョンの消磁用装置として
使用されることを特徴とする請求項1記載の電子装置。
2. The electronic device according to claim 1, wherein the electronic device is used as a degaussing device for a color television.
JP9954598A 1998-04-10 1998-04-10 Electronic device Pending JPH11297504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9954598A JPH11297504A (en) 1998-04-10 1998-04-10 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9954598A JPH11297504A (en) 1998-04-10 1998-04-10 Electronic device

Publications (1)

Publication Number Publication Date
JPH11297504A true JPH11297504A (en) 1999-10-29

Family

ID=14250162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9954598A Pending JPH11297504A (en) 1998-04-10 1998-04-10 Electronic device

Country Status (1)

Country Link
JP (1) JPH11297504A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047093A3 (en) * 2000-12-05 2003-02-20 Murata Manufacturing Co Positive temperature coefficient thermistor
WO2008025348A1 (en) * 2006-09-01 2008-03-06 Epcos Ag Heating element
EP3577662B1 (en) 2017-02-01 2022-08-17 TDK Electronics AG Ptc heater with reduced switch-on current

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002047093A3 (en) * 2000-12-05 2003-02-20 Murata Manufacturing Co Positive temperature coefficient thermistor
WO2008025348A1 (en) * 2006-09-01 2008-03-06 Epcos Ag Heating element
JP2010501988A (en) * 2006-09-01 2010-01-21 エプコス アクチエンゲゼルシャフト Heating element
US8373100B2 (en) 2006-09-01 2013-02-12 Epcos Ag Heating element
KR101465809B1 (en) * 2006-09-01 2014-11-26 에프코스 아게 Heating element
EP3577662B1 (en) 2017-02-01 2022-08-17 TDK Electronics AG Ptc heater with reduced switch-on current

Similar Documents

Publication Publication Date Title
EP3202746A1 (en) Semiconductor ceramic composition and ptc thermistor
US3619703A (en) Degaussing device having series connected ptc and ntc resistors
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JPH11297504A (en) Electronic device
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
US5733833A (en) Semiconductive ceramic
JPH05198405A (en) Barium titanate based semiconductor porcelain composition
US3991340A (en) Discharge lamp lighting apparatus including a sintered type oxide negative resistance starting element
JPH05198406A (en) Barium titanate based semiconductor porcelain composition
JPH07220902A (en) Barium titanate semiconductor ceramic
JPH06302402A (en) Positive temperature coefficient thermistor
JPH01143201A (en) Variable positive temperature coefficient resistance(ptcr) element
JPH04329601A (en) Ptc thermistor
JP2540048B2 (en) Voltage nonlinear resistor porcelain composition
JP2940182B2 (en) Method for manufacturing semiconductor porcelain having positive temperature coefficient of resistance
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP2990626B2 (en) Varistor manufacturing method
JPH10294203A (en) Method for manufacturing positive temperature coefficient thermistor
JPH06215905A (en) Positive characteristic thermistor element for demagnetization
KR100246298B1 (en) Semiconductive Ceramic
JPH0677005A (en) Barium titanate semiconductor porcelain composition
JPH05291630A (en) Titanic acid barium semiconductor porcelain material and its manufacture
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH04177803A (en) Positive characteristic thermistor and manufacture thereof
JPH08151261A (en) Semiconductor porcelain having positive resistance temperature characteristic