JPH11294986A - Heat transfer tube having grooved inner surface - Google Patents

Heat transfer tube having grooved inner surface

Info

Publication number
JPH11294986A
JPH11294986A JP9898698A JP9898698A JPH11294986A JP H11294986 A JPH11294986 A JP H11294986A JP 9898698 A JP9898698 A JP 9898698A JP 9898698 A JP9898698 A JP 9898698A JP H11294986 A JPH11294986 A JP H11294986A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
fins
transfer tube
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9898698A
Other languages
Japanese (ja)
Inventor
Yasutoshi Mori
康敏 森
Koji Yamamoto
孝司 山本
Kenji Nakamizo
賢治 中溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9898698A priority Critical patent/JPH11294986A/en
Publication of JPH11294986A publication Critical patent/JPH11294986A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat transfer tube having grooved inner surface in which pressure loss is reduced while enhancing heat transfer performance when the heat transfer tube is assembled in a heat exchanger. SOLUTION: Inner surface of a metal tube 1 is sectioned into a plurality of regions R1, R2,..., Rn along the circumferential direction through smooth parts 10 of specified width extending in the axial direction of tube L. A large number of fins 11, 12 are formed in parallel in the adjacent regions R1, R2 at lead angles θ, θ' in the direction reverse to the axial direction of tube L. At least one rectifying fin 13 is formed along the axial direction of tube L entirely or partially in each smooth part 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍機や空調機
などの熱交換器に使用される内面溝付伝熱管に関するも
のである。さらに具体的には、金属管内面が周方向に沿
って複数の領域に区分され、隣合う領域に、管軸方向に
対してそれぞれ逆向きのリード角を有するフィンが多数
形成されている内面溝付伝熱管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved heat transfer tube used for a heat exchanger such as a refrigerator or an air conditioner. More specifically, an inner surface groove in which the inner surface of the metal tube is divided into a plurality of regions along the circumferential direction, and a large number of fins having lead angles opposite to the tube axis direction are formed in adjacent regions. It relates to an attached heat transfer tube.

【0002】[0002]

【従来の技術】金属管内面が周方向に沿って複数の領域
に区分され、隣合う領域に、管軸方向に対してそれぞれ
逆向きのリード角を有するフィンが多数形成されている
内面溝付伝熱管は、例えば特開平9−26279号に記
載されている。前記公開特許公報に記載されている内面
溝付伝熱管を、図4を参照しながら説明する。金属管1
の内面は、管軸方向Lに沿う狭い幅の平滑部10を介し
て、周方向に沿って複数の領域R1〜R4に区分されて
おり、隣合う領域R1とR2、R2とR3及びR3とR
4には、それぞれ管軸方向Lに対してそれぞれ逆方向の
リード角θ,θ’を有するフィン11,12が多数平行
に形成されている。
2. Description of the Related Art An inner surface of a metal tube is divided into a plurality of regions along a circumferential direction, and a plurality of fins having lead angles opposite to each other with respect to the tube axis direction are formed in adjacent regions. The heat transfer tube is described in, for example, JP-A-9-26279. An inner grooved heat transfer tube described in the above-mentioned patent publication will be described with reference to FIG. Metal tube 1
Is divided into a plurality of regions R1 to R4 along the circumferential direction via a smooth portion 10 having a narrow width along the tube axis direction L, and adjacent regions R1 and R2, R2 and R3, and R3. R
4, a plurality of fins 11 and 12 having lead angles θ and θ ′ in opposite directions to the tube axis direction L are formed in parallel.

【0003】図4の内面溝付伝熱管を製造するには、例
えば銅又は銅合金よりなる一定幅の帯状の金属条を、前
記フィン11,12に対応する凹凸を有する圧延ロール
と、この圧延ロールに押し付けられる受けロールとの間
に通し、前記金属条の一面へ圧延ロールの凹凸を転写す
る。次いで、前記金属条を、その凹凸転写面が内側にな
る状態で電縫装置にセットし、この電縫装置へ多段状に
設置された各対の成形ロール群の間に通して幅方向に丸
め、幅方向の突き合わされた端部相互を溶接して管状に
成形する。さらに、管状成形品の溶接ビード部を削除
し、これを所定の引抜き装置で空引きすることによって
所定の径に縮径するとともに成形する。
In order to manufacture the heat transfer tube with an inner groove shown in FIG. 4, a strip-shaped metal strip having a certain width made of, for example, copper or a copper alloy is rolled into a rolling roll having projections and depressions corresponding to the fins 11 and 12. It passes between a receiving roll pressed against the roll and transfers the unevenness of the rolling roll to one surface of the metal strip. Next, the metal strip is set in an electric resistance sewing machine with its uneven transfer surface facing inward, and is passed through the pair of forming rolls installed in a multi-stage in the electric resistance sewing apparatus and rounded in the width direction. Then, the butted ends in the width direction are welded to each other to form a tubular shape. Further, the weld bead portion of the tubular molded product is removed, and the tubular bead is evacuated by a predetermined drawing device to reduce the diameter to a predetermined diameter and form the product.

【0004】図4の伝熱管によれば、内部を冷媒が流れ
るときに、冷媒はフィン11,12に案内されてそれぞ
れ異なる流れ方向性が付与され、合流部である平滑部1
0で衝突・合流し、その後は前記平滑部10に沿って管
軸方向Lに沿って流れる。この過程において、冷媒の不
規則な乱流を生じさせることにより、冷媒の流れの中に
温度勾配が生じるのを防ぐとともに、衝突・合流後の冷
媒を前記平滑部10の部分で管軸方向Lへ導くことによ
り、管内の圧力損失を小さくすることができる。
According to the heat transfer tube shown in FIG. 4, when the refrigerant flows through the inside, the refrigerant is guided by the fins 11 and 12 so as to be given different flow directions, and the smooth portion 1 which is a merging portion is provided.
At 0, they collide and merge, and then flow along the smooth portion 10 along the pipe axis direction L. In this process, an irregular turbulent flow of the refrigerant is generated to prevent a temperature gradient from being generated in the flow of the refrigerant, and the refrigerant after the collision / combination is caused to flow through the smooth portion 10 in the tube axis direction L. , Pressure loss in the pipe can be reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た従来の伝熱管は、これを熱交換器に組み込んだ場合、
管軸方向Lに対する純方向のリード角θと逆方向のリー
ド角θ’を有するフィン11,12により凝縮時の性能
は向上するが、蒸発時には各領域間の前記平滑部10に
おける冷媒の衝突が激しく、圧力損失が大きくなるとい
う課題があった。この発明の目的は、熱交換器に組み込
んだ場合に、圧力損失がより小さくかつ伝熱性能がより
向上した内面溝付伝熱管を提供することにある。
However, when the above-described conventional heat transfer tube is incorporated in a heat exchanger,
The fins 11 and 12 having a lead angle θ ′ in the pure direction with respect to the tube axis direction L and a lead angle θ ′ in the opposite direction improve the performance at the time of condensation, but the collision of the refrigerant in the smoothing portion 10 between the respective regions at the time of evaporation. There was a problem that the pressure loss was large. An object of the present invention is to provide a heat transfer tube with an inner surface groove which has a smaller pressure loss and more improved heat transfer performance when incorporated into a heat exchanger.

【0006】[0006]

【課題を解決するための手段】この発明による内面溝付
伝熱管は、前述の課題を解決するため以下のように構成
したものである。すなわち、請求項1に記載の内面溝付
伝熱管は、金属管1の内面が、管軸方向Lに沿う所定幅
の平滑部10を介して周方向に沿って複数の領域R1,
R2・・・Rnに区分され、隣合う領域には、管軸方向
Lに対してそれぞれ逆方向のリード角θ,θ’を有する
フィン11,12が多数平行に形成され、前記各平滑部
10の中の全部又は一部には、管軸方向Lに沿う少なく
とも一条の整流フィン13が形成されていることを特徴
としている。
An inner grooved heat transfer tube according to the present invention has the following configuration to solve the above-mentioned problems. That is, in the heat transfer tube with the inner surface groove according to the first aspect, the inner surface of the metal tube 1 has a plurality of regions R 1, along the circumferential direction, via the smooth portion 10 having a predetermined width along the tube axis direction L.
Rn are formed in parallel with each other, and a large number of fins 11 and 12 having lead angles θ and θ ′, which are opposite to the tube axis direction L, are formed in parallel in adjacent regions. Is characterized in that at least one straightening fin 13 along the pipe axis direction L is formed in all or a part of them.

【0007】請求項2に記載の内面溝付伝熱管は、請求
項1に記載の内面溝付伝熱管において、前記隣合う各領
域R1,R2の中の一方の領域R1の各フィン11の前
記管軸方向Lに対するリード角θが30°〜50°であ
り、他方の領域R2の各フィン12の前記管軸方向Lに
対するリード角θ’が−30°〜−50°であることを
特徴としている。
According to a second aspect of the present invention, in the heat transfer tube with the inner groove according to the first aspect, the fins 11 of the one region R1 of the adjacent regions R1 and R2 are different from each other. The lead angle θ with respect to the tube axis direction L is 30 ° to 50 °, and the lead angle θ ′ of each fin 12 in the other region R2 with respect to the tube axis direction L is -30 ° to -50 °. I have.

【0008】請求項3に記載の内面溝付伝熱管は、請求
項1又は2に記載の内面溝付伝熱管において、各フィン
11,12の端部と、当該各フィン11,12の端部へ
最も近接して面する前記整流フィン13の側部との間隔
W1が、前記金属管1の周長Wの1/30〜1/200
であることを特徴としている。
According to a third aspect of the present invention, there is provided the heat transfer tube with an inner groove according to the first or second aspect, wherein the end of each of the fins 11 and 12 and the end of each of the fins 11 and 12 are provided. The distance W1 from the side of the rectifying fin 13 which is closest to the metal pipe 1 is 1/30 to 1/200 of the circumferential length W of the metal tube 1.
It is characterized by being.

【0009】[0009]

【発明の実施の形態】図1〜図3を参照しながら、この
発明による内面溝付伝熱管の好ましい実施形態を説明す
る。 第1実施形態 図1は、この発明による第1実施形態の内面溝付伝熱管
の部分展開平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of a heat transfer tube with an inner groove according to the present invention will be described with reference to FIGS. First Embodiment FIG. 1 is a partially developed plan view of an internally grooved heat transfer tube according to a first embodiment of the present invention.

【0010】脱酸銅からなる厚み0.25mm、周長W=
20mm(外径6.4mm)の金属管1の内面は、周方向に
沿って4つの均一な幅の領域R1〜R4に区分され、各
領域R1〜R4の間には、それぞれ一定幅の平滑部10
が形成されている。奇数番目の領域R1とR3には、管
軸方向Lに対するリード角θ=35°、高さ(溝底から
の高さ)0.2mm、頂角が30°のフィン11が平行に
多数形成され、前記領域R1,R3と隣合う偶数番目の
領域R2,R4には、管軸方向Lに対して逆方向のリー
ド角θ’=−35°、高さ0.2mm、頂角30mmのフィ
ン12が平行に多数形成されている。各フィン11,1
2の形成ピッチは、隣合う各フィン11,12の頂部相
互の間隔が、管軸に対する垂直断面における金属管1の
外周で0.31mmになるように設定されている。
[0010] A thickness of 0.25 mm made of deoxidized copper and a circumference W =
The inner surface of the metal tube 1 having a diameter of 20 mm (outer diameter of 6.4 mm) is divided into four regions R1 to R4 having a uniform width along the circumferential direction. Part 10
Are formed. In the odd-numbered regions R1 and R3, many fins 11 having a lead angle θ = 35 ° with respect to the tube axis direction L, a height (height from the groove bottom) of 0.2 mm, and a vertex angle of 30 ° are formed in parallel. In the even-numbered regions R2 and R4 adjacent to the regions R1 and R3, fins 12 having a lead angle θ ′ = − 35 °, a height of 0.2 mm, and a vertex angle of 30 mm in a direction opposite to the tube axis direction L are provided. Are formed in parallel. Each fin 11, 1
The formation pitch of 2 is set such that the distance between the tops of the adjacent fins 11 and 12 is 0.31 mm on the outer periphery of the metal tube 1 in a cross section perpendicular to the tube axis.

【0011】領域R1とR2との間、領域R2とのR3
の間、及び領域R3とR4との間の各平滑部10には、
高さ0.2mm、頂角が30°で一条の整流フィン13が
それぞれ形成されている。これらの平滑部10における
各フィン11,12の端部と、当該各フィン11,12
の端部へ近接して面する前記整流フィン13の側部との
間隔W1は、金属管1の周長Wの1/50(0.4mm)
になるように設計されている。この実施形態の内面溝付
伝熱管を製造する要領は、前述した従来の内面溝付伝熱
管の製造方法と同じである。
The region R3 between the regions R1 and R2 and the region R2
, And in each smoothing portion 10 between the regions R3 and R4,
A single straightening fin 13 having a height of 0.2 mm and an apex angle of 30 ° is formed. The ends of the fins 11 and 12 in these smooth portions 10 and the fins 11 and 12
The distance W1 from the side of the rectifying fin 13 facing the end of the metal tube 1 is 1/50 (0.4 mm) of the circumferential length W of the metal tube 1.
It is designed to be. The procedure for manufacturing the heat transfer tube with an inner surface groove of this embodiment is the same as the above-described method for manufacturing the heat transfer tube with an inner surface groove.

【0012】この実施形態の内面溝付伝熱管によれば、
管軸方向Lに沿って流れる冷媒は、各領域R1〜R4の
各フィン11,12に沿って平滑部10の方向へ集めら
れ、この平滑部10の部分で整流フィン13により管軸
方向Lへ導かれる。この過程において、冷媒は、逆方向
に傾斜したリード角θ,θ’の各フィン11,12によ
って乱流を生じるため伝熱性能が高められる。また、各
フィン11,12に沿って合流するように流れた冷媒
は、平滑部10に達したとき整流フィン13により互い
に強く衝突することなく管軸方向Lへ導かれるため、圧
力損失をより小さく抑えることができる。
According to the heat transfer tube with an inner surface groove of this embodiment,
The refrigerant flowing along the tube axis direction L is collected in the direction of the smooth portion 10 along each of the fins 11 and 12 in each of the regions R1 to R4. Be guided. In this process, the turbulent flow of the refrigerant is generated by the fins 11 and 12 having the lead angles θ and θ ′ inclined in opposite directions, so that the heat transfer performance is enhanced. Further, the refrigerant that has flowed so as to merge along the fins 11 and 12 is guided in the tube axis direction L without colliding with each other by the rectifying fins 13 when the refrigerant reaches the smoothing portion 10. Can be suppressed.

【0013】第2実施形態 図2は、この発明による第2実施形態の内面溝付伝熱管
の部分展開斜視図である。この実施形態では、隣合う領
域R1,R2の間の管軸方向Lに沿う平滑部10へ、三
条の整流フィン13,13,13が形成され、中央の整
流フィン13は両側の整流フィン13よりその高さが高
く、両側の整流フィン13,13は領域R1,R2に形
成されている多数のフィン11,12と同じ高さになる
ように設計されている。この実施形態の内面溝付伝熱管
は、平滑部10に複数の整流フィン13が形成されてい
るので、これらの整流フィン13により冷媒の整流効果
が高く、しかも中央の整流フィン13の高さが高いた
め、隣合う領域R1,R2のフィン11,12によって
集められる冷媒の平滑部10における衝突がより良く防
止され、冷媒の乱流を促進しつつ圧力損失をより小さく
することができる。第2実施形態の内面溝付伝熱管の他
の構成や作用,効果は、第1実施形態の内面溝付伝熱管
と同じである。
Second Embodiment FIG. 2 is a partially developed perspective view of a heat transfer tube with an inner groove according to a second embodiment of the present invention. In this embodiment, three straightening fins 13, 13, 13 are formed on the smoothing portion 10 along the tube axis direction L between the adjacent regions R1, R2, and the center rectifying fin 13 is more than the rectifying fins 13 on both sides. Its height is high, and the rectifying fins 13 on both sides are designed to be the same height as the many fins 11 and 12 formed in the regions R1 and R2. In the heat transfer tube with inner grooves according to this embodiment, since a plurality of rectifying fins 13 are formed in the smooth portion 10, the rectifying fins 13 have a high rectifying effect on the refrigerant, and the height of the central rectifying fin 13 is increased. Since the height is high, the collision of the refrigerant collected by the fins 11 and 12 in the adjacent regions R1 and R2 in the smooth portion 10 is better prevented, and the pressure loss can be reduced while promoting the turbulent flow of the refrigerant. Other configurations, functions, and effects of the heat transfer tube with the inner surface groove of the second embodiment are the same as those of the heat transfer tube with the inner surface groove of the first embodiment.

【0014】第3実施形態 前記第1,第2実施形態では、隣合う領域R1,R2の
各フィン11,12は、平滑部10へ臨む端部が相対す
るように形成されているが、平滑部10へ臨む各フィン
11,12の端部は、図3のように互い違いに位置する
ように形成されていても差し支えない。
Third Embodiment In the first and second embodiments, the fins 11 and 12 of the adjacent regions R1 and R2 are formed so that the ends facing the smooth portion 10 are opposed to each other. The ends of the fins 11 and 12 facing the part 10 may be formed so as to be located alternately as shown in FIG.

【0015】実施例1 第1実施形態に準ずる実施例の伝熱管サンプル20本を
製造するとともに、平滑部10に整流フィン13を形成
せず、他の構成を第1実施形態の伝熱管に準じた比較例
(図4の構成とほぼ同様)の伝熱管サンプル20本を製
造した。前記実施例の伝熱管のサンプルと、比較例の伝
熱管サンプルについて、冷媒流速を変化させ、各冷媒流
速ごとの管内凝縮熱伝達率(各20本平均)及び管内蒸
発熱伝達率(各20本平均)を測定し、それぞれ比較例
の伝熱管サンプルの測定値を100として両者の伝熱性
能を比較した。その結果を表1(凝縮熱伝達率比)及び
表2(蒸発熱伝達率比)に示した。表1及び表2で示さ
れているように、実施例の伝熱管サンプルは比較例の伝
熱管サンプルに対し、冷媒流速150kg/m2 s以上
で、管内凝縮熱伝達率は30%以上、管内蒸発熱伝達率
は20%以上それぞれ向上している。
Example 1 In addition to manufacturing 20 heat transfer tube samples of an example according to the first embodiment, the rectifying fins 13 were not formed in the smoothing portion 10 and the other configuration was the same as that of the heat transfer tube of the first embodiment. Twenty heat transfer tube samples of the comparative example (substantially the same as the configuration in FIG. 4) were manufactured. The refrigerant flow rate was changed for the heat transfer tube sample of the above example and the heat transfer tube sample of the comparative example, and the condensed heat transfer coefficient in the pipe (average of 20 pipes) and the heat transfer coefficient of evaporation in the pipe (20 pipes each) for each refrigerant flow rate. (Average) was measured, and the heat transfer performance of each of the heat transfer tube samples of the comparative example was compared with 100 as the measured value. The results are shown in Table 1 (condensation heat transfer ratio) and Table 2 (evaporation heat transfer ratio). As shown in Tables 1 and 2, the heat transfer tube sample of the example is different from the heat transfer tube sample of the comparative example in that the refrigerant flow rate is 150 kg / m 2 s or more, the condensed heat transfer coefficient in the tube is 30% or more, The heat transfer coefficient of evaporation is improved by 20% or more.

【0016】前記実施例の伝熱管サンプルと、前記比較
例の伝熱管サンプルをそれぞれ同じ構造の熱交換器ユニ
ットに組み込み、冷媒流速を変化させ、各冷媒流速ごと
の凝縮熱伝達率と蒸発熱伝達率を測定し、それぞれ比較
例の伝熱管サンプルの測定値を100として両者の伝熱
性能を比較した。その結果を表3(凝縮熱伝達率比)及
び表4(蒸発熱伝達率比)に示した。表3及び表4で示
されているように、実施例の伝熱管サンプルは比較例の
伝熱管サンプルに対し、熱交換器ユニットに組み込み状
態において、冷媒流速150kg/m2 s以上で、管内
凝縮熱伝達率及び管内蒸発熱伝達率とも8%以上向上し
ている。
The heat transfer tube sample of the embodiment and the heat transfer tube sample of the comparative example are incorporated in a heat exchanger unit having the same structure, and the flow rate of the refrigerant is changed. The ratios were measured, and the heat transfer performances of the heat transfer tube samples of the comparative examples were set to 100, and the heat transfer performances of both samples were compared. The results are shown in Table 3 (condensation heat transfer ratio) and Table 4 (evaporation heat transfer ratio). As shown in Tables 3 and 4, the heat transfer tube sample of the example was different from the heat transfer tube sample of the comparative example in a state where the refrigerant flow rate was 150 kg / m 2 s or more in the state where the sample was incorporated in the heat exchanger unit. Both the heat transfer coefficient and the in-pipe evaporation heat transfer coefficient are improved by 8% or more.

【0017】前記実施例の伝熱管サンプルと、前記比較
例の伝熱管サンプルとをそれぞれ同じ構造の熱交換器ユ
ニットに組み込み、冷媒流速を変化させ、各冷媒流速ご
とに凝縮圧力損失と蒸発圧力損失とを測定し、それぞれ
比較例の伝熱管サンプルの圧力損失を100として、両
者の圧力損失を比較した。その結果を表5(凝縮圧力損
失比)及び表6(蒸発圧力損失比)に示した。これによ
れば、実施例の伝熱管サンプルは比較例の伝熱管サンプ
ルに対し、ほぼ20%以上圧力損失が低減している。
The heat transfer tube sample of the above-described embodiment and the heat transfer tube sample of the comparative example are incorporated in a heat exchanger unit having the same structure, the refrigerant flow rate is changed, and the condensation pressure loss and the evaporation pressure loss are changed for each refrigerant flow rate. Were measured, and the pressure loss of the heat transfer tube sample of the comparative example was set to 100, and the pressure losses of both samples were compared. The results are shown in Table 5 (condensation pressure loss ratio) and Table 6 (evaporation pressure loss ratio). According to this, the heat transfer tube sample of the example has a pressure loss reduced by about 20% or more compared to the heat transfer tube sample of the comparative example.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】[0022]

【表5】 [Table 5]

【0023】[0023]

【表6】 [Table 6]

【0024】実施例2 管軸方向Lに対する各フィン11のリード角θ及び角フ
ィン12のリード角θ’を±20°〜60°の範囲で段
階的に変化させ、他の構成は第1実施形態の伝熱管に準
じた実施例の伝熱管サンプルを製造し、前記リード角
θ,θ’の変化と凝縮熱伝達率(但し、冷媒流速は20
0kg/m2 s)との関係を調べた。その結果を表7に
示した。なお、表7は前記リード角θ,θ’が±20°
であるときの凝縮熱伝達率を100とした場合の比較値
で示されている。表7で示されているように、フィン1
1,12の管軸方向Lに対するリード角θ,θ’を±2
0°とした場合との比較値において、前記リード角θ,
θ’が±30〜50°である場合はそれぞれ20%以上
伝熱性能が向上している。したがって、管軸方向Lに対
するフィン11,12の前記リード角θ,θ’は±30
〜50°であるのが好ましい。
Embodiment 2 The lead angle θ of each fin 11 and the lead angle θ ′ of each square fin 12 with respect to the tube axis direction L are changed stepwise within a range of ± 20 ° to 60 °, and the other configuration is the first embodiment. The heat transfer tube sample of the embodiment according to the heat transfer tube of the embodiment is manufactured, and the change of the lead angles θ and θ ′ and the heat transfer coefficient of condensation (however, the refrigerant flow rate is 20
0 kg / m 2 s). Table 7 shows the results. Table 7 shows that the lead angles θ and θ ′ are ± 20 °.
Is shown as a comparative value when the condensation heat transfer coefficient is 100. As shown in Table 7, fin 1
The lead angles θ and θ ′ with respect to the pipe axis direction L of
The lead angle θ,
When θ ′ is ± 30 to 50 °, the heat transfer performance is improved by 20% or more. Therefore, the lead angles θ and θ ′ of the fins 11 and 12 with respect to the pipe axis direction L are ± 30.
Preferably it is 5050 °.

【0025】[0025]

【表7】 [Table 7]

【0026】実施例3 隣合う領域R1,R2、R2,R3及びR3,R4相互
間において、各フィン11,12の端部と、当該各フィ
ン11,12の端部へ面する前記整流フィン13の側部
との間隔W1を、金属管1の周長Wの1/20〜1/3
00の範囲で段階的に変化させ、他の構成は第1実施形
態の伝熱管に準じた実施例の伝熱管サンプルを製造し、
前記間隔W1の変化と蒸発熱伝達率及び蒸発圧力損失と
の関係(但し、冷媒流速は200kg/m2 s)を調べ
た。その結果を表8(蒸発熱伝達率)及び表9(蒸発圧
力損失)に示した。なお、表8,9は、前記間隔W1が
金属管1の周長Wの1/20であるときの値を100と
した場合の比較値で示されている。表8によれば、フィ
ン11,12の端部とこれに面する整流フィン13の側
部との間隔W1を、金属管1の周長Wの1/20とした
場合との比較値において、前記間隔W1が金属管1の周
長Wの1/30以下である場合には、蒸発性能がそれぞ
れ30%以上向上している。他方、表9によれば、前記
のような比較値において、前記間隔W1が金属管1の周
長Wの1/200以上である場合には、圧力損失が10
%程度増大するにとどまっている。したがって、フィン
11,12の端部とこれに面する整流フィン13の側部
との間隔W1は、前記蒸発熱伝達率の向上と蒸発圧力損
失の増大とのかねあいから、金属管1の周長Wの1/3
0〜1/200であることが望ましい。
Embodiment 3 Between the adjacent regions R1, R2, R2, R3 and R3, R4, the ends of the fins 11, 12 and the rectifying fins 13 facing the ends of the fins 11, 12 are described. Is set to 1/20 to 1/3 of the circumference W of the metal tube 1.
The heat transfer tube sample of the example according to the heat transfer tube of the first embodiment is manufactured by changing the temperature in a stepwise manner within the range of 00.
The relationship between the change in the interval W1 and the evaporation heat transfer coefficient and the evaporation pressure loss (however, the refrigerant flow rate was 200 kg / m 2 s) was examined. The results are shown in Table 8 (evaporation heat transfer coefficient) and Table 9 (evaporation pressure loss). Tables 8 and 9 show comparison values when the value when the interval W1 is 1/20 of the circumferential length W of the metal tube 1 is 100. According to Table 8, in comparison with the case where the distance W1 between the end of the fins 11 and 12 and the side of the rectifying fin 13 facing the end is set to 1/20 of the circumferential length W of the metal tube 1, When the interval W1 is equal to or less than 1/30 of the circumferential length W of the metal tube 1, the evaporation performance is improved by 30% or more. On the other hand, according to Table 9, when the interval W1 is 1/200 or more of the circumferential length W of the metal tube 1 in the comparative value as described above, the pressure loss is 10
Only about a percent increase. Therefore, the distance W1 between the end portions of the fins 11 and 12 and the side portion of the rectifying fin 13 facing the end portion is determined by the circumferential length of the metal tube 1 in consideration of the improvement of the evaporation heat transfer coefficient and the increase of the evaporation pressure loss. 1/3 of W
It is desirably 0 to 1/200.

【0027】[0027]

【表8】 [Table 8]

【0028】[0028]

【表9】 [Table 9]

【0029】[0029]

【発明の効果】請求項1の発明に係る内面溝付伝熱管に
よれば、管軸方向Lに沿って流れる冷媒は、各領域R1
〜Rnの各フィン11,12に沿って平滑部10の方向
へ集められ、この平滑部10の部分で整流フィン13に
より管軸方向Lへ導かれる。この過程において、冷媒
は、逆方向に傾斜したリード角θ,θ’の各フィン1
1,12によって乱流を生じるため伝熱性能が高められ
る。また、各フィン11,12に沿って合流する方向へ
流れた冷媒は、平滑部10に達したとき整流フィン13
により互いに強く衝突することなく管軸方向Lへ導かれ
るため、圧力損失をより小さく抑えることができる。
According to the heat transfer tube with inner grooves according to the first aspect of the present invention, the refrigerant flowing along the tube axis direction L flows through each region R1.
RRn are collected in the direction of the smooth portion 10 along the fins 11 and 12, and are guided in the tube axis direction L by the rectifying fins 13 at the portion of the smooth portion 10. In this process, the refrigerant is supplied to each of the fins 1 having lead angles θ and θ ′ inclined in opposite directions.
Since turbulence is generated by the elements 1 and 12, the heat transfer performance is enhanced. Further, the refrigerant flowing in the direction of merging along the fins 11 and 12 reaches the smoothing part 10 when the rectifying fin 13
Thus, the pressure loss is guided in the tube axis direction L without strongly colliding with each other, so that the pressure loss can be further reduced.

【0030】請求項2の発明に係る内面溝付伝熱管によ
れば、隣合う各領域R1,R2の中の一方の領域R1の
各フィン11の前記管軸方向Lに対するリード角θが3
0°〜50°であり、他方の領域R2の各フィン12の
前記管軸方向Lに対するリード角θ’が−30°〜−5
0°であるので、伝熱性能がより向上する。
According to the heat transfer tube with inner grooves according to the second aspect of the present invention, the lead angle θ of each of the fins 11 in one region R1 of the adjacent regions R1 and R2 with respect to the tube axis direction L is 3
0 ° to 50 °, and the lead angle θ ′ of each fin 12 in the other region R2 with respect to the tube axis direction L is −30 ° to −5.
Since it is 0 °, the heat transfer performance is further improved.

【0031】請求項3の発明に係る内面溝付伝熱管によ
れば、隣合う領域R1,R2における各フィン11,1
2の端部と、当該各フィン11,12の端部へ最も近接
して面する前記整流フィン13の側部との間隔W1が、
前記金属管1の周長Wの1/30〜1/200であるの
で、圧力損失を抑えつつ伝熱性能をより向上させること
ができる。
According to the heat transfer tube with inner grooves according to the third aspect of the present invention, the fins 11, 1 in the adjacent regions R1, R2 are provided.
The distance W1 between the end of the rectifier fin 13 and the side of the rectifying fin 13 closest to the end of each of the fins 11 and 12 is:
Since it is 1/30 to 1/200 of the circumferential length W of the metal tube 1, it is possible to further improve the heat transfer performance while suppressing the pressure loss.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による第1実施形態の内面溝付伝熱管
の部分展開平面図である。
FIG. 1 is a partially developed plan view of a heat transfer tube with an inner surface groove according to a first embodiment of the present invention.

【図2】この発明による第2実施形態の内面溝付伝熱管
の部分展開斜視図である。
FIG. 2 is a partially developed perspective view of a heat transfer tube with an inner surface groove according to a second embodiment of the present invention.

【図3】この発明による第3実施形態の内面溝付伝熱管
の部分展開平面図である。
FIG. 3 is a partially developed plan view of a heat transfer tube with an inner surface groove according to a third embodiment of the present invention.

【図4】特開平9−26279号公報に記載されている
内面溝付伝熱管の部分展開図である。
FIG. 4 is a partially developed view of a heat transfer tube with an inner surface groove described in Japanese Patent Application Laid-Open No. 9-26279.

【符号の説明】[Explanation of symbols]

1 金属管 10 平滑部 11,12 フィン 13 整流フィン R1,R2・・・Rn 領域 L 管軸方向 θ,θ’ リード角 W 金属管の周長 W1 フィンの端部からそれに面する整流フィンの側部
までの間隔
DESCRIPTION OF SYMBOLS 1 Metal tube 10 Smooth part 11,12 Fin 13 Rectifier fin R1, R2 ... Rn area L Tube axis direction θ, θ 'Lead angle W Perimeter of metal tube W1 Side of rectifier fin facing it from end of fin Spacing to parts

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属管1の内面が、管軸方向Lに沿う所
定幅の平滑部10を介して周方向に沿って複数の領域R
1,R2・・・Rnに区分され、 隣合う領域には、管軸方向Lに対してそれぞれ逆方向の
リード角θ,θ’を有するフィン11,12が多数平行
に形成され、 前記各平滑部10の中の全部又は一部には、管軸方向L
に沿う少なくとも一条の整流フィン13が形成されてい
ることを特徴とする、 内面溝付伝熱管。
1. An inner surface of a metal tube 1 has a plurality of regions R along a circumferential direction via a smooth portion 10 having a predetermined width along a tube axis direction L.
1, R2,..., Rn, and in adjacent regions, a large number of fins 11, 12 having lead angles .theta., .Theta. ' In all or a part of the part 10, the pipe axis direction L
Characterized in that at least one straightening fin 13 is formed along the inner surface of the heat transfer tube.
【請求項2】 前記隣合う各領域R1,R2の中の一方
の領域R1の各フィン11の前記管軸方向Lに対するリ
ード角θが30°〜50°であり、他方の領域R2の各
フィン12の前記管軸方向Lに対するリード角θ’が−
30°〜−50°であることを特徴とする、請求項1に
記載の内面溝付伝熱管。
2. The lead angle θ of each of the fins 11 of one of the adjacent regions R1 and R2 with respect to the tube axis direction L is 30 ° to 50 °, and each of the fins of the other region R2 is 12, the lead angle θ ′ with respect to the tube axis direction L is −
The heat transfer tube with an inner surface groove according to claim 1, wherein the heat transfer tube has an angle of 30 ° to −50 °.
【請求項3】 前記隣合う領域R1,R2の中におい
て、各フィン11,12の端部と、当該各フィン11,
12の端部へ最も近接して面する前記整流フィン13の
側部との間隔W1が、前記金属管1の周長Wの1/30
〜1/200であることを特徴とする、請求項1又は2
に記載の内面溝付伝熱管。
3. An end of each of the fins 11, 12 in the adjacent regions R1, R2,
12 is 1/30 of the circumferential length W of the metal tube 1.
3. The method according to claim 1, wherein the ratio is about 1/200.
The heat transfer tube with an inner surface groove according to the above.
JP9898698A 1998-04-10 1998-04-10 Heat transfer tube having grooved inner surface Pending JPH11294986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9898698A JPH11294986A (en) 1998-04-10 1998-04-10 Heat transfer tube having grooved inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9898698A JPH11294986A (en) 1998-04-10 1998-04-10 Heat transfer tube having grooved inner surface

Publications (1)

Publication Number Publication Date
JPH11294986A true JPH11294986A (en) 1999-10-29

Family

ID=14234332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9898698A Pending JPH11294986A (en) 1998-04-10 1998-04-10 Heat transfer tube having grooved inner surface

Country Status (1)

Country Link
JP (1) JPH11294986A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526262A (en) * 2009-05-08 2012-10-25 アルストム テクノロジー リミテッド Heat transfer sheet for rotary regenerative heat exchanger
US10094626B2 (en) 2015-10-07 2018-10-09 Arvos Ljungstrom Llc Alternating notch configuration for spacing heat transfer sheets
US10175006B2 (en) 2013-11-25 2019-01-08 Arvos Ljungstrom Llc Heat transfer elements for a closed channel rotary regenerative air preheater
US10378829B2 (en) 2012-08-23 2019-08-13 Arvos Ljungstrom Llc Heat transfer assembly for rotary regenerative preheater
JP2020088377A (en) * 2018-11-15 2020-06-04 東京エレクトロン株式会社 Vacuum processing device
US10914527B2 (en) 2006-01-23 2021-02-09 Arvos Gmbh Tube bundle heat exchanger

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914527B2 (en) 2006-01-23 2021-02-09 Arvos Gmbh Tube bundle heat exchanger
JP2012526262A (en) * 2009-05-08 2012-10-25 アルストム テクノロジー リミテッド Heat transfer sheet for rotary regenerative heat exchanger
US9557119B2 (en) 2009-05-08 2017-01-31 Arvos Inc. Heat transfer sheet for rotary regenerative heat exchanger
US10197337B2 (en) 2009-05-08 2019-02-05 Arvos Ljungstrom Llc Heat transfer sheet for rotary regenerative heat exchanger
US10982908B2 (en) 2009-05-08 2021-04-20 Arvos Ljungstrom Llc Heat transfer sheet for rotary regenerative heat exchanger
US10378829B2 (en) 2012-08-23 2019-08-13 Arvos Ljungstrom Llc Heat transfer assembly for rotary regenerative preheater
US11092387B2 (en) 2012-08-23 2021-08-17 Arvos Ljungstrom Llc Heat transfer assembly for rotary regenerative preheater
US10175006B2 (en) 2013-11-25 2019-01-08 Arvos Ljungstrom Llc Heat transfer elements for a closed channel rotary regenerative air preheater
US10094626B2 (en) 2015-10-07 2018-10-09 Arvos Ljungstrom Llc Alternating notch configuration for spacing heat transfer sheets
JP2020088377A (en) * 2018-11-15 2020-06-04 東京エレクトロン株式会社 Vacuum processing device

Similar Documents

Publication Publication Date Title
US5791405A (en) Heat transfer tube having grooved inner surface
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JPH05106990A (en) Heat transfer tube with inner surface groove and manufacture thereof
US6631758B2 (en) Internally finned heat transfer tube with staggered fins of varying height
JPH11294986A (en) Heat transfer tube having grooved inner surface
JP2842810B2 (en) Heat transfer tube with internal groove
WO2000031486A1 (en) Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
JPH08168817A (en) Production of heat exchanger having inner groove
JP2001153580A (en) Heat transfer pipe
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH11325754A (en) Heat-exchanger and u-shaped pipe for heat-exchanger
JP3779794B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2000009392A (en) Internally grooved heating tube and metal rod machining roll therefor
JP2922824B2 (en) Heat transfer tube with internal groove
JPH11337285A (en) Both-side grooved pipe and heat exchanger
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP2002292411A (en) Crossing groove forming apparatus, manufacturing method of rolling stripe with crossing groove used for its apparatus, manufacturing method of welded tube with crossing groove, rolling stripe with crossing groove and welded tube with crossing groove
JP3752046B2 (en) Heat transfer tube and manufacturing method thereof
JPH1047880A (en) Heat transfer tube with inner surface groove
JP2000274983A (en) Inner surface grooved pipe
JPH02161290A (en) Inner face processed heat transfer tube
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JP2001280881A (en) Heat transfer tube with internal surface groove
JPH09318288A (en) Heat transfer pipe with inner surface groove