JPH11293450A - Production of silicon steel sheet having silicon concentration distribution using siliconizing method - Google Patents

Production of silicon steel sheet having silicon concentration distribution using siliconizing method

Info

Publication number
JPH11293450A
JPH11293450A JP11435898A JP11435898A JPH11293450A JP H11293450 A JPH11293450 A JP H11293450A JP 11435898 A JP11435898 A JP 11435898A JP 11435898 A JP11435898 A JP 11435898A JP H11293450 A JPH11293450 A JP H11293450A
Authority
JP
Japan
Prior art keywords
steel sheet
furnace
treatment
siliconizing
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11435898A
Other languages
Japanese (ja)
Inventor
Katsuji Kasai
勝司 笠井
Tsunehiro Yamaji
常弘 山路
Yoshiichi Takada
芳一 高田
Hironori Ninomiya
弘憲 二宮
Tatsuhiko Hiratani
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11435898A priority Critical patent/JPH11293450A/en
Publication of JPH11293450A publication Critical patent/JPH11293450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a prescribed Si concn. distribution, to suppress the generation of pushing flaws on a steel sheet surface in a furnace and to improve a surface shape by penetrating Si into the steel sheet from its surface by using a vertical type furnace, then executing a diffusing treatment and stopping the diffusing treatment while there is an Si concn. gradient in the thickness direction of the steel sheet. SOLUTION: The steel sheet S is continuously treated by using the vertical type furnace arranged with a heating furnace 1, a siliconizing treatment furnace 2, a diffusing treatment furnace 3 and a cooling furnace 4 successively from below in a perpendicular direction. The steel sheet S is heated at about 1200 deg.C in the heating furnace 1 and thereafter, gaseous SiCl4 is introduced into the siliconizing treatment furnace 2 and the Si is penetrated into the steel sheet S surface in a non-oxidizing gaseous atmosphere contg. the gaseous SiCl4 . The steel sheet is then subjected to the diffusing treatment in the non-oxidizing gaseous atmosphere in the diffusing treatment furnace 3. While the Si concn. gradient exists in this diffusing treatment, the diffusing treatment is stopped and the diffusing rate is so controlled that the desired Si concn. distribution is formed. The in-furnace residence time of the steel sheet is, therefore, shortened and the probability of the deformation by high-temp. creep and the breakage in the furnace may be lowered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、浸珪法を用いたS
i濃度分布を有する珪素鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for manufacturing a silicon steel sheet having an i concentration distribution.

【0002】[0002]

【従来の技術】高珪素鋼板は、トランスやモーターの鉄
心材料に使用され、Siの含有量が増すほど鉄損が低減
し、Si:6.5wt.%では磁歪が0となり、最大透
磁率のピークとなる等、優れた磁気特性を示すことが知
られている。
2. Description of the Related Art High silicon steel sheets are used for core materials of transformers and motors. As the Si content increases, the iron loss decreases. %, It is known that the magnetostriction becomes 0 and the magnetic permeability becomes excellent, such as the peak of the maximum magnetic permeability.

【0003】従来、高珪素鋼板の製造方法として、低珪
素鋼を圧延により薄板とした後、鋼板表面からSiを浸
透拡散させる、いわゆる浸珪法が知られている。しか
し、拡散により均一Si濃度の高珪素鋼板を製造しよう
とすると極めて時間がかかる。また、従来このような浸
珪法で高珪素鋼板を製造する場合には、高温で長時間、
鋼板を保持するため、クリープによる変形および炉内破
断の問題があり、水平炉での低張力通板技術が必要とさ
れてきた。
Conventionally, as a method for manufacturing a high silicon steel sheet, a so-called siliconizing method has been known in which low silicon steel is made into a thin sheet by rolling, and then Si is diffused from the surface of the steel sheet. However, it takes an extremely long time to produce a high silicon steel sheet having a uniform Si concentration by diffusion. Further, conventionally, when manufacturing a high silicon steel sheet by such a siliconizing method, at a high temperature for a long time,
Since the steel sheet is retained, there is a problem of deformation due to creep and rupture in the furnace, and a low-tensile threading technique in a horizontal furnace has been required.

【0004】そこで、特開昭62−227033号ない
し特開昭62−227036号公報、特公平5−497
44号公報には、表層のSi濃度が6.5wt.%とな
って、板厚方向にSiの濃度分布が存在する時点で拡散
処理を打ち切り、全体の処理時間を短くすることが提案
されている。また、このようにしてSi分布を形成した
珪素鋼板は鉄損が低いことが示されている。
Therefore, Japanese Patent Application Laid-Open Nos. 62-22703 and 62-227036, and Japanese Patent Publication No. 5-497
No. 44 discloses that the Si concentration in the surface layer is 6.5 wt. %, It is proposed that the diffusion process be stopped when the Si concentration distribution exists in the plate thickness direction to shorten the overall processing time. Further, it is shown that the silicon steel sheet on which the Si distribution is formed in this manner has a low iron loss.

【0005】一方、特開平9−184051号公報に
は、偏磁の原因である残留磁束密度を低下させるには板
厚方向にSiの濃度勾配を形成することが有効なことが
開示されている。
On the other hand, Japanese Patent Application Laid-Open No. 9-184051 discloses that it is effective to form a Si concentration gradient in the thickness direction in order to reduce the residual magnetic flux density, which is a cause of magnetic declination. .

【0006】しかしながら、上記公報に開示されている
従来の浸珪法では、水平炉を用いた連続処理であるた
め、炉長が数十mにもなり、一定間隔で鋼板を支持する
ためのロールを設置する必要がある。この搬送用ロール
は、炉内での耐火物の付着や炉内生成物(SiO2)等
の付着により、鋼板表面へ押し疵傷を生成させる問題を
有している。
[0006] However, in the conventional siliconizing method disclosed in the above-mentioned publication, since the continuous processing is performed using a horizontal furnace, the furnace length becomes several tens of meters, and rolls for supporting the steel sheet at regular intervals are provided. Need to be installed. This transport roll has a problem that a press flaw is generated on the surface of the steel sheet due to the adhesion of refractory material in the furnace or the product (SiO2) in the furnace.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、炉内での鋼板表面への押
し疵の発生を抑制することができ表面性状の良好な、板
厚方向にSi濃度勾配を有する珪素鋼板を製造すること
ができる、浸珪法を用いたSi濃度分布を有する珪素鋼
板の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and it is possible to suppress the occurrence of a press flaw on the surface of a steel sheet in a furnace and to obtain a sheet having a good surface property. An object of the present invention is to provide a method for manufacturing a silicon steel sheet having a Si concentration distribution using a siliconizing method, which can manufacture a silicon steel sheet having a Si concentration gradient in a direction.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、縦型炉を用い、鋼板表面からSiを浸透
させる浸珪処理および浸透させたSiを鋼板内に拡散さ
せる拡散処理を行い、拡散処理を鋼板の厚さ方向にSi
の濃度勾配があるうちに打ち切り、所定のSi濃度分布
を形成することを特徴とする、浸珪法を用いたSi濃度
分布を有する珪素鋼板の製造方法を提供する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention uses a vertical furnace, and a siliconizing treatment for infiltrating Si from the surface of a steel sheet and a diffusion treatment for diffusing Si into the steel sheet. And diffusion treatment is performed in the thickness direction of the steel sheet.
A method for producing a silicon steel sheet having a Si concentration distribution using a silicon silicification method, wherein the silicon steel sheet is cut off while a concentration gradient is present to form a predetermined Si concentration distribution.

【0009】この場合に、鋼板をSi系化合物を含む無
酸化性ガス雰囲気で浸珪処理し、次いで、Si系化合物
を含まない無酸化性ガス雰囲気でSiの拡散処理を行っ
てSiの拡散速度を制御することにより、所定のSi濃
度分布を形成することができる。
In this case, the steel sheet is subjected to a siliconizing treatment in a non-oxidizing gas atmosphere containing a Si-based compound, and then is subjected to a Si diffusion treatment in a non-oxidizing gas atmosphere containing no Si-based compound to thereby diffuse the Si. , A predetermined Si concentration distribution can be formed.

【0010】また、鋼板表面からSiを浸透させる浸珪
処理および浸透さたSiを鋼板内に拡散させる拡散処理
をSi化合物を含む無酸化性雰囲気で同時的に行って浸
珪および拡散速度を制御することにより、所定のSi濃
度分布を形成することができる。
In addition, the siliconizing treatment for infiltrating Si from the surface of the steel sheet and the diffusion treatment for diffusing permeated Si into the steel sheet are simultaneously performed in a non-oxidizing atmosphere containing a Si compound to control the siliconizing and diffusion rate. By doing so, a predetermined Si concentration distribution can be formed.

【0011】本発明によれば、縦型炉を用いて浸珪処
理、拡散処理を行うので、炉内のハースロールの設置数
を水平炉よりも減少させることができるため、炉内での
鋼板表面への押し疵の発生を抑制することができ、表面
性状の良好な珪素鋼板の製造が可能となる。
According to the present invention, since the siliconizing treatment and the diffusion treatment are performed using a vertical furnace, the number of hearth rolls to be installed in the furnace can be reduced as compared with the horizontal furnace. It is possible to suppress the occurrence of press flaws on the surface, and it is possible to manufacture a silicon steel sheet having good surface properties.

【0012】また、表層のSi濃度が板厚中心部のSi
濃度よりも高いうちに拡散処理を打ち切り、所定のSi
濃度分布を形成するので、鋼板の在炉時間を短縮するこ
とができ、高温クリープによる変形および炉内破断の可
能性を低下させることができる。さらに、表層Si濃度
が板厚中心部のSi濃度よりも高いSi濃度勾配を有し
ているので、加工性が良好で、かつ高周波鉄損および残
留磁束密度の低い珪素鋼板を得ることができる。
Further, the Si concentration in the surface layer is set to
The diffusion process is terminated while the concentration is higher than the predetermined
Since the concentration distribution is formed, the time in the furnace of the steel sheet can be shortened, and the possibility of deformation due to high-temperature creep and fracture in the furnace can be reduced. Further, since the surface Si concentration has a higher Si concentration gradient than the Si concentration at the center of the plate thickness, it is possible to obtain a silicon steel sheet having good workability, high-frequency iron loss and low residual magnetic flux density.

【0013】[0013]

【発明の実施の形態】以下本発明について具体的に説明
する。本発明においては、浸珪法を用いたSi濃度分布
を有する珪素鋼板を製造するにあたり、縦型炉を用い、
鋼板表面からSiを浸透させる浸珪処理および浸透させ
たSiを鋼板内に拡散させる拡散処理を行い、拡散処理
を鋼板の厚さ方向にSiの濃度勾配があるうちに打ち切
り、所定のSi濃度分布を形成する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. In the present invention, in manufacturing a silicon steel sheet having a Si concentration distribution using a siliconizing method, using a vertical furnace,
Perform siliconizing treatment to infiltrate Si from the surface of the steel sheet and diffusion treatment to diffuse the infiltrated Si into the steel sheet, and discontinue the diffusion processing while there is a concentration gradient of Si in the thickness direction of the steel sheet. To form

【0014】ここで、鋼板をSi系化合物を含む無酸化
性ガス雰囲気で浸珪処理し、次いで、Si系化合物を含
まない無酸化性ガス雰囲気でSiの拡散処理を行ってS
iの拡散速度を制御し、表層のSi濃度が板厚中心部の
Si濃度よりも高い状態にあるうちに打ち切ることによ
り、上述のようなSi濃度分布を形成することができ
る。
Here, the steel sheet is subjected to a siliconizing treatment in a non-oxidizing gas atmosphere containing a Si-based compound, and then a diffusion treatment of Si is carried out in a non-oxidizing gas atmosphere containing no Si-based compound.
The above-described Si concentration distribution can be formed by controlling the diffusion speed of i and cutting off while the Si concentration in the surface layer is higher than the Si concentration in the center of the plate thickness.

【0015】また、鋼板表面からSiを浸透させる浸珪
処理および浸透させたSiを鋼板内に拡散させる拡散処
理をSi化合物を含む無酸化性雰囲気で同時的に行って
浸珪および拡散速度を制御し、表層のSi濃度が板厚中
心部のSi濃度よりも高い状態にあるうちに打ち切り、
上述のようなSi濃度分布を形成することもできる。
Further, the siliconizing treatment for infiltrating Si from the surface of the steel sheet and the diffusion treatment for diffusing the infiltrated Si into the steel sheet are simultaneously performed in a non-oxidizing atmosphere containing a Si compound to control the siliconizing and diffusion rate. Then, while the Si concentration in the surface layer is higher than the Si concentration in the center of the plate thickness, the cutting is performed.
The above-described Si concentration distribution can also be formed.

【0016】後者の方法によれば、浸珪処理および拡散
処理を同一雰囲気で同時的に行うことにより、炉の構造
を簡略化することができるとともに、従来拡散炉で問題
となっていた鋼板酸化も抑制することができ、また、浸
珪・拡散処理炉における雰囲気調整、Si化合物ガスの
導入箇所およびその流量、ならびに鋼板Sの移動速度等
を調節することにより、Si濃度分布を制御しやすく、
極めて自由度の高い処理を行うことができる。
According to the latter method, the structure of the furnace can be simplified by simultaneously performing the siliconizing treatment and the diffusion treatment in the same atmosphere. It is also possible to easily control the Si concentration distribution by adjusting the atmosphere in the siliconizing / diffusion treatment furnace, adjusting the introduction position and flow rate of the Si compound gas, and the moving speed of the steel sheet S.
An extremely flexible process can be performed.

【0017】ここで、浸珪処理はSi含有ガスによる化
学気相蒸着(CVD)法による処理により行う。処理に
用いるSi含有ガスは、特に限定されるものではなく、
SiH4、Si25、SiCl4等を用いることができる
が、中でもSiCl4が好ましい。処理ガスとしてSi
Cl4を用いる場合には、処理温度を1023〜125
0℃の範囲にすることが好ましい。また、浸珪処理およ
び拡散処理の際のSiCl4の濃度は0.02〜35m
ol%とすることが好ましい。
The siliconizing treatment is performed by a chemical vapor deposition (CVD) method using a Si-containing gas. The Si-containing gas used for the treatment is not particularly limited,
SiH 4 , Si 2 H 5 , SiCl 4 and the like can be used, and among them, SiCl 4 is preferable. Si as processing gas
When Cl 4 is used, the treatment temperature is set to 1023 to 125
It is preferable that the temperature be in the range of 0 ° C. The concentration of SiCl 4 during the siliconizing treatment and the diffusion treatment is 0.02 to 35 m.
ol% is preferable.

【0018】本発明の処理は、例えば、図1に示す装置
で行うことができる。この装置は、加熱炉1と、浸珪処
理炉2と、拡散処理炉3と、冷却炉4とが下から順に垂
直方向に配置された縦型炉であり、鋼板Sが連続的に処
理される。すなわち、加熱炉1で所定温度、例えば12
00℃で加熱された後、浸珪処理炉2においてSiCl
4ガスを導入し、SiCl4ガスを含む無酸化性ガス雰囲
気で鋼板表層にSiを浸透させ、次いで拡散処理炉3に
おいてSiCl4ガスを含まない無酸化性ガス雰囲気で
拡散処理を行う。この拡散処理では、Si濃度勾配が存
在するうちに拡散処理を打ち切り、所望のSi濃度分布
が形成されるように拡散速度を制御する。その後、冷却
炉4にて冷却し、巻き取る。なお、この際の処理は例え
ば図2に示す温度パターンで行われる。
The processing of the present invention can be performed, for example, by the apparatus shown in FIG. This apparatus is a vertical furnace in which a heating furnace 1, a siliconizing furnace 2, a diffusion furnace 3, and a cooling furnace 4 are vertically arranged in order from the bottom, and the steel sheet S is continuously processed. You. That is, a predetermined temperature, for example, 12
After being heated at 00 ° C., the SiCl 2
Four gases are introduced, Si is infiltrated into the surface layer of the steel sheet in a non-oxidizing gas atmosphere containing SiCl 4 gas, and then diffusion processing is performed in a diffusion processing furnace 3 in a non-oxidizing gas atmosphere containing no SiCl 4 gas. In this diffusion process, the diffusion process is stopped while the Si concentration gradient exists, and the diffusion speed is controlled so that a desired Si concentration distribution is formed. Then, it cools in the cooling furnace 4, and winds up. The process at this time is performed, for example, according to the temperature pattern shown in FIG.

【0019】また、本発明の処理は、図3に示す装置に
よっても行うことができる。この装置は、加熱炉11
と、浸珪・拡散処理炉12と、冷却炉13とが下から順
に垂直方向に配置された縦型炉であり、鋼板Sが連続的
に処理される。すなわち、加熱炉11で所定温度、例え
ば1200℃で加熱された後、浸珪・拡散処理炉12に
おいてSiCl4ガスを導入し、SiCl4ガスを含む無
酸化性ガス雰囲気で浸珪処理および拡散処理を行う。浸
珪・拡散処理炉12は加熱炉側から第1ゾーン12a、
第2ゾーン12b、第3ゾーン12c、第4ゾーン12
d、第5ゾーン12eを有しており、各ゾーンにSiC
4ガス導入ノズルが設けられている。したがって、各
ゾーン毎のSiCl4ガス流量を制御することにより、
浸珪処理および拡散処理の処理時間および処理間隔を制
御することができる。例えば、数回の珪素添加(浸珪)
および拡散を連続的に実施することができる。このよう
に各ゾーンのSiCl4ガス流量を制御し、さらに必要
に応じて鋼板Sの移動速度を調整することにより、鋼板
Sに対する浸珪および拡散速度を制御することができ、
鋼板の板厚方向のSi濃度分布を任意に制御することが
できる。その後、このようにSi濃度分布が制御された
鋼板Sを冷却炉13で冷却し、巻き取る。なお、この際
の処理は例えば図4に示す温度パターンで行われる。
The processing of the present invention can also be performed by the apparatus shown in FIG. This apparatus includes a heating furnace 11
Is a vertical furnace in which the siliconizing / diffusion processing furnace 12 and the cooling furnace 13 are vertically arranged in order from the bottom, and the steel sheet S is continuously processed. That is, after being heated at a predetermined temperature, for example, 1200 ° C. in the heating furnace 11, SiCl 4 gas is introduced in the siliconizing / diffusion processing furnace 12, and the siliconizing processing and the diffusion processing are performed in a non-oxidizing gas atmosphere containing the SiCl 4 gas. I do. The siliconizing / diffusion processing furnace 12 has a first zone 12a from the heating furnace side,
Second zone 12b, third zone 12c, fourth zone 12
d, a fifth zone 12e, each zone having SiC
l 4 gas introducing nozzle is provided. Therefore, by controlling the flow rate of SiCl 4 gas for each zone,
The processing time and processing interval of the siliconizing treatment and the diffusion treatment can be controlled. For example, adding silicon several times (siliconization)
And the diffusion can be performed continuously. Thus, by controlling the flow rate of the SiCl 4 gas in each zone, and further adjusting the moving speed of the steel sheet S as necessary, it is possible to control the rate of siliconizing and diffusion of the steel sheet S,
The Si concentration distribution in the thickness direction of the steel sheet can be arbitrarily controlled. Thereafter, the steel sheet S whose Si concentration distribution is controlled in this way is cooled in the cooling furnace 13 and wound up. The process at this time is performed, for example, according to the temperature pattern shown in FIG.

【0020】さらに、本発明の処理は、図5に示す装置
によっても行うことができる。この装置は、加熱炉21
と、浸珪処理炉22と、拡散処理炉23と、冷却炉24
とを有し、鋼板Sが加熱炉21に入った後、垂直方向上
方へ移動し、浸珪炉22を経て拡散処理炉23に入った
後、垂直方向下方へ移動し、冷却炉24内で水平方向に
向きが変えられ巻き取られるように構成された縦型炉で
ある。この装置においては、加熱炉21で所定温度、例
えば1200℃で加熱された後、浸珪処理炉22におい
てSiCl4ガスを導入し、SiCl4ガスを含む無酸化
性ガス雰囲気で鋼板表層にSiを浸透させ、次いで拡散
処理炉23においてSiCl4ガスを含まない無酸化性
ガス雰囲気で拡散処理を行う。この拡散処理では、Si
濃度勾配が存在するうちに拡散処理を打ち切り、所望の
Si濃度分布が形成されるように拡散速度を制御する。
その後、冷却炉24にて冷却し、巻き取る。なお、この
際の処理は例えば図6に示す温度パターンで行われる。
Further, the processing of the present invention can also be performed by the apparatus shown in FIG. This apparatus includes a heating furnace 21
, A siliconizing furnace 22, a diffusion furnace 23, and a cooling furnace 24.
After the steel sheet S enters the heating furnace 21, moves vertically upward, enters the diffusion processing furnace 23 via the siliconizing furnace 22, moves vertically downward, and moves in the cooling furnace 24. This is a vertical furnace configured to be turned in the horizontal direction and wound up. In this apparatus, after heating at a predetermined temperature, for example, 1200 ° C. in a heating furnace 21, SiCl 4 gas is introduced in a siliconizing furnace 22, and Si is applied to the surface layer of the steel sheet in a non-oxidizing gas atmosphere containing SiCl 4 gas. Then, diffusion treatment is performed in a diffusion treatment furnace 23 in a non-oxidizing gas atmosphere containing no SiCl 4 gas. In this diffusion process, Si
The diffusion process is terminated while the concentration gradient exists, and the diffusion speed is controlled so that a desired Si concentration distribution is formed.
Then, it cools in the cooling furnace 24, and winds up. The process at this time is performed, for example, according to the temperature pattern shown in FIG.

【0021】以上のように、浸珪処理および拡散処理を
縦型炉で行うことにより、炉内のハースロールの設置数
を水平炉の場合よりも減少させることができ、場合によ
ってはなくすることができるるため、炉内での鋼板表面
への押し疵の発生を抑制することができ、表面性状の良
好な珪素鋼板の製造が可能となる。また、表層Si濃度
が板厚中心部のSi濃度よりも高いSi濃度勾配を形成
するので、加工性が良好で、かつ高周波鉄損および残留
磁束密度の低い珪素鋼板を得ることができる。
As described above, by performing the siliconizing treatment and the diffusion treatment in the vertical furnace, the number of hearth rolls installed in the furnace can be reduced as compared with the case of the horizontal furnace, and may be eliminated in some cases. Therefore, it is possible to suppress the occurrence of press flaws on the steel sheet surface in the furnace, and it is possible to manufacture a silicon steel sheet having good surface properties. Further, since a Si concentration gradient in which the surface Si concentration is higher than the Si concentration at the center of the plate thickness is formed, a silicon steel sheet having good workability, high-frequency iron loss and low residual magnetic flux density can be obtained.

【0022】[0022]

【実施例】以下、本発明の実施例について説明する。 (実施例1)上記図1に示すような装置により、CVD
法を使用した連続浸珪処理プロセスにより、3.0w
t.%Siで板厚0.2mmの鋼板を母材とし、SiC
4を原料ガスに用いて、板厚方向にSi濃度勾配を有
する材料を製造した。製造に際しては、鋼板を連続的に
供給し、加熱−浸珪−拡散−冷却の順で実施した。炉内
温度は図2に示す炉温パターンにて行った。なお、比較
のため、水平炉での連続浸珪設備にて製造した板厚方向
に十分にSiを拡散した材料を準備した。
Embodiments of the present invention will be described below. (Embodiment 1) CVD is carried out by an apparatus as shown in FIG.
3.0 watts by a continuous siliconizing process using the
t. % Si, a steel sheet with a thickness of 0.2 mm
The l 4 using the raw material gas, to produce a material having a Si concentration gradient in the thickness direction. In the production, the steel sheet was continuously supplied, and the heating, the siliconizing, the diffusion and the cooling were performed in this order. The furnace temperature was determined according to the furnace temperature pattern shown in FIG. For comparison, a material prepared by continuous siliconizing equipment in a horizontal furnace and having sufficiently diffused Si in the thickness direction was prepared.

【0023】表1に、これらの製造条件と、電子線プロ
ーブマイクロアナライザー(EPMA)によって鋼板の
板厚方向の珪素濃度分布を分析した結果に基づく表層珪
素濃度および中心珪素濃度の値、磁気特性、加工性、表
面性状を示す。
Table 1 shows these manufacturing conditions, the values of the surface silicon concentration and the central silicon concentration, the magnetic properties, and the values based on the results of analyzing the silicon concentration distribution in the thickness direction of the steel sheet using an electron beam probe microanalyzer (EPMA). Shows workability and surface properties.

【0024】[0024]

【表1】 [Table 1]

【0025】表1に示すように、本発明例である条件
1,2は、縦型炉で処理しているため、Si濃度勾配を
有する珪素鋼板の優れた特性である低鉄損、低残留磁束
密度、および良好な加工性を維持しつつ、良好な表面性
状を得ることができた。
As shown in Table 1, the conditions 1 and 2, which are examples of the present invention, are treated in a vertical furnace, so that the silicon steel sheet having the Si concentration gradient has the excellent characteristics of low iron loss and low residue. Good surface properties could be obtained while maintaining the magnetic flux density and good workability.

【0026】(実施例2)上記図3に示すような装置に
より、CVD法を使用した連続浸珪処理プロセスによ
り、2.5wt.%Si、3.0wt.%Siの2水準
で板厚0.2mmの鋼板を母材とし、SiCl4を原料
ガスに用いて、板厚方向にSi濃度勾配を有する材料を
製造した。
(Example 2) With a device as shown in FIG. 3 described above, 2.5 wt. % Si, 3.0 wt. A material having a Si concentration gradient in the thickness direction was manufactured using a steel sheet having a thickness of 0.2 mm at two levels of% Si as a base material and SiCl 4 as a raw material gas.

【0027】浸珪・拡散処理炉12内を上述したように
5つのゾーンに分け、各ゾーンにそれぞれガス供給ノズ
ルを配した。そして、各ゾーン毎のSiCl4ガス流量
をコントロールすることにより、数回の珪素添加・拡散
を連続的に実施した。炉内温度は図4に示す炉温パター
ンにて行った。なお、比較のため、水平炉での連続浸珪
設備にて製造した材料も準備した。
The inside of the siliconizing / diffusion processing furnace 12 was divided into five zones as described above, and a gas supply nozzle was arranged in each zone. By controlling the flow rate of the SiCl 4 gas in each zone, several times of silicon addition / diffusion were continuously performed. The furnace temperature was determined according to the furnace temperature pattern shown in FIG. For comparison, a material manufactured by continuous siliconizing equipment in a horizontal furnace was also prepared.

【0028】表2に、これらの製造条件と、電子線プロ
ーブマイクロアナライザー(EPMA)によって鋼板の
板厚方向の珪素濃度分布を分析した結果に基づく表層珪
素濃度および中心珪素濃度の値、磁気特性、加工性、表
面性状を示す。
Table 2 shows these production conditions, the values of the surface silicon concentration and the central silicon concentration, the magnetic properties, and the values based on the results of analyzing the silicon concentration distribution in the thickness direction of the steel sheet by using an electron probe microanalyzer (EPMA). Shows workability and surface properties.

【0029】[0029]

【表2】 [Table 2]

【0030】表2に示すように、本発明に従って処理を
行った条件3〜6では、縦型炉で処理しているため、S
i濃度勾配を有する珪素鋼板の優れた特性である低鉄
損、低残留磁束密度、および良好な加工性を維持しつ
つ、良好な表面性状を得ることができた。特に、この実
施例では、Siの濃度勾配を細かく制御することができ
るので、鉄損、残留磁束密度が低く、かつ加工性が極め
て良好な珪素鋼板を得ることができた。
As shown in Table 2, under the conditions 3 to 6 in which the treatment was performed according to the present invention, since the treatment was performed in the vertical furnace,
It was possible to obtain good surface properties while maintaining low iron loss, low residual magnetic flux density, and good workability, which are excellent properties of a silicon steel sheet having an i-concentration gradient. In particular, in this example, since the concentration gradient of Si could be finely controlled, a silicon steel sheet having low iron loss and low residual magnetic flux density and extremely good workability could be obtained.

【0031】(実施例3)上記図5に示すような装置に
より、CVD法を使用した連続浸珪処理プロセスによ
り、3.0wt.%Siで板厚0.2mmの鋼板を母材
とし、SiCl4を原料ガスに用いて、板厚方向にSi
濃度勾配を有する材料を製造した。製造に際しては、鋼
板を連続的に供給し、加熱−浸珪−拡散−冷却の順で実
施した。炉内温度は図6に示す炉温パターンにて行っ
た。なお、比較のため、水平炉での連続浸珪設備にて製
造した板厚方向に十分にSiを拡散した材料を準備し
た。
(Example 3) With a device as shown in FIG. 5 described above, 3.0 wt. % Si, a steel sheet having a thickness of 0.2 mm was used as a base material, and SiCl 4 was used as a raw material gas.
A material with a concentration gradient was produced. In the production, the steel sheet was continuously supplied, and the heating, the siliconizing, the diffusion and the cooling were performed in this order. The furnace temperature was determined according to the furnace temperature pattern shown in FIG. For comparison, a material prepared by continuous siliconizing equipment in a horizontal furnace and having sufficiently diffused Si in the thickness direction was prepared.

【0032】表3に、これらの製造条件と、電子線プロ
ーブマイクロアナライザー(EPMA)によって鋼板の
板厚方向の珪素濃度分布を分析した結果に基づく表層珪
素濃度および中心珪素濃度の値、磁気特性、加工性、表
面性状を示す。
Table 3 shows these manufacturing conditions, the values of the surface silicon concentration and the central silicon concentration, the magnetic characteristics, and the values based on the results of analyzing the silicon concentration distribution in the thickness direction of the steel sheet by using an electron probe microanalyzer (EPMA). Shows workability and surface properties.

【0033】[0033]

【表3】 [Table 3]

【0034】表3に示すように、本発明例である条件
7,8は、縦型炉で処理しているため、Si濃度勾配を
有する珪素鋼板の優れた特性である低鉄損、低残留磁束
密度、および良好な加工性を維持しつつ、良好な表面性
状を得ることができた。
As shown in Table 3, the conditions 7 and 8 of the present invention are treated in a vertical furnace, so that the silicon steel sheet having the Si concentration gradient has the excellent characteristics of low iron loss and low residue. Good surface properties could be obtained while maintaining the magnetic flux density and good workability.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
縦型炉を用いて板厚方向にSi濃度勾配を有する珪素鋼
板を製造するので、炉内での鋼板表面への押し疵の発生
を抑制することができ、表面性状の良好な珪素鋼板の製
造が可能となる。また、表層のSi濃度が板厚中心部の
Si濃度よりも高いうちに拡散処理を打ち切り、所定の
Si濃度分布を形成するので、鋼板の在炉時間を短縮す
ることができ、高温クリープによる変形および炉内破断
の可能性を低下させることができる。さらに、表層Si
濃度が板厚中心部のSi濃度よりも高いSi濃度勾配を
有しているので、加工性が良好で、かつ高周波鉄損およ
び残留磁束密度の低い珪素鋼板を得ることができる。
As described above, according to the present invention,
Since a silicon steel sheet having a Si concentration gradient in the sheet thickness direction is manufactured using a vertical furnace, it is possible to suppress the occurrence of press flaws on the steel sheet surface in the furnace, and to manufacture a silicon steel sheet having good surface properties. Becomes possible. In addition, the diffusion process is terminated while the Si concentration in the surface layer is higher than the Si concentration in the center of the sheet thickness, and a predetermined Si concentration distribution is formed. In addition, the possibility of in-furnace rupture can be reduced. Furthermore, the surface Si
Since the concentration has a Si concentration gradient higher than the Si concentration at the center of the plate thickness, it is possible to obtain a silicon steel sheet having good workability, high-frequency iron loss and low residual magnetic flux density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するための装置の一例を示
す概略構成図。
FIG. 1 is a schematic configuration diagram showing an example of an apparatus for performing a method of the present invention.

【図2】図1の装置における温度分布の例を示す図。FIG. 2 is a diagram showing an example of a temperature distribution in the apparatus of FIG.

【図3】本発明の方法を実施するための装置の他の例を
示す概略構成図。
FIG. 3 is a schematic configuration diagram showing another example of an apparatus for performing the method of the present invention.

【図4】図3の装置における温度分布の例を示す図。FIG. 4 is a diagram showing an example of a temperature distribution in the device of FIG.

【図5】本発明の方法を実施するための装置のさらに他
の例を示す概略構成図。
FIG. 5 is a schematic configuration diagram showing still another example of an apparatus for performing the method of the present invention.

【図6】図5の装置における温度分布の例を示す図。FIG. 6 is a diagram showing an example of a temperature distribution in the device of FIG.

【符号の説明】[Explanation of symbols]

1,11,21; 加熱炉 2,22;浸珪処理炉 3,23;拡散処理炉 4,13,24;冷却炉 12; 浸珪・拡散処理炉 S; 鋼板 1,11,21; Heating furnace 2,22; Silicon treatment furnace 3,23; Diffusion treatment furnace 4,13,24; Cooling furnace 12; Silicon treatment / diffusion treatment furnace S;

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二宮 弘憲 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 平谷 多津彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hironori Ninomiya 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Inside Nihon Kokan Co., Ltd. (72) Inventor Tatsuhiko Hiratani 1-1-2 Marunouchi, Chiyoda-ku, Tokyo No.Nihon Kokan Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 縦型炉を用い、鋼板表面からSiを浸透
させる浸珪処理および浸透させたSiを鋼板内に拡散さ
せる拡散処理を行い、拡散処理を鋼板の厚さ方向にSi
の濃度勾配があるうちに打ち切り、所定のSi濃度分布
を形成することを特徴とする、浸珪法を用いたSi濃度
分布を有する珪素鋼板の製造方法。
1. Using a vertical furnace, a siliconizing treatment for infiltrating Si from the steel sheet surface and a diffusion treatment for diffusing the infiltrated Si into the steel sheet are performed, and the diffusion treatment is performed in the thickness direction of the steel sheet.
A method for producing a silicon steel sheet having a Si concentration distribution using a silicon silicification method, wherein the silicon steel sheet is cut off while a concentration gradient is present to form a predetermined Si concentration distribution.
【請求項2】 鋼板をSi系化合物を含む無酸化性ガス
雰囲気で浸珪処理し、次いで、Si系化合物を含まない
無酸化性ガス雰囲気でSiの拡散処理を行ってSiの拡
散速度を制御することを特徴とする、請求項1に記載の
浸珪法を用いたSi濃度分布を有する珪素鋼板の製造方
法。
2. A steel sheet is subjected to a siliconizing treatment in a non-oxidizing gas atmosphere containing a Si-based compound, and then a Si diffusion treatment is carried out in a non-oxidizing gas atmosphere containing no Si-based compound to control the diffusion rate of Si. The method for producing a silicon steel sheet having a Si concentration distribution using the siliconizing method according to claim 1, wherein the method comprises:
【請求項3】 鋼板表面からSiを浸透させる浸珪処理
および浸透させたSiを鋼板内に拡散させる拡散処理を
Si化合物を含む無酸化性雰囲気で同時的に行って浸珪
および拡散速度を制御することを特徴とする、請求項1
に記載の浸珪法を用いたSi濃度分布を有する珪素鋼板
の製造方法。
3. A siliconizing treatment for infiltrating Si from the surface of the steel sheet and a diffusion treatment for diffusing the infiltrated Si into the steel sheet are simultaneously performed in a non-oxidizing atmosphere containing a Si compound to control the siliconizing and diffusion rate. 2. The method according to claim 1, wherein
A method for producing a silicon steel sheet having a Si concentration distribution using the siliconizing method described in 1 above.
JP11435898A 1998-04-10 1998-04-10 Production of silicon steel sheet having silicon concentration distribution using siliconizing method Pending JPH11293450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11435898A JPH11293450A (en) 1998-04-10 1998-04-10 Production of silicon steel sheet having silicon concentration distribution using siliconizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11435898A JPH11293450A (en) 1998-04-10 1998-04-10 Production of silicon steel sheet having silicon concentration distribution using siliconizing method

Publications (1)

Publication Number Publication Date
JPH11293450A true JPH11293450A (en) 1999-10-26

Family

ID=14635736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11435898A Pending JPH11293450A (en) 1998-04-10 1998-04-10 Production of silicon steel sheet having silicon concentration distribution using siliconizing method

Country Status (1)

Country Link
JP (1) JPH11293450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120474A (en) * 2003-09-29 2005-05-12 Howmet Research Corp Method of forming aluminide diffusion coating
CN114231835A (en) * 2021-11-09 2022-03-25 马鞍山钢铁股份有限公司 Wide-frequency low-iron-loss non-oriented electrical steel and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120474A (en) * 2003-09-29 2005-05-12 Howmet Research Corp Method of forming aluminide diffusion coating
CN114231835A (en) * 2021-11-09 2022-03-25 马鞍山钢铁股份有限公司 Wide-frequency low-iron-loss non-oriented electrical steel and preparation method thereof
CN114231835B (en) * 2021-11-09 2023-03-03 马鞍山钢铁股份有限公司 Wide-frequency low-iron-loss non-oriented electrical steel and preparation method thereof

Similar Documents

Publication Publication Date Title
US5089061A (en) Method for producing high silicon steel strip in a continuously treating line
JP2011520765A (en) Porous ceramic plate having asymmetric pore structure and manufacturing method thereof
JPH11293450A (en) Production of silicon steel sheet having silicon concentration distribution using siliconizing method
JP3395647B2 (en) Method for producing silicon steel sheet having Si concentration distribution using siliconizing method
JPH11293448A (en) Production of silicon steel sheet using siliconizing method
JP3446051B2 (en) Method for producing high silicon steel sheet with excellent surface properties
JPH11286753A (en) Silicon steel sheet stable and low in residual magnetic flux density
JP2528748B2 (en) Method of manufacturing silicon steel sheet by continuous line
JP4269350B2 (en) Method for producing high silicon steel sheet
JPS6372832A (en) Production of oil tempered wire having oxide film of good formability
JPH0643608B2 (en) Method for producing high silicon steel strip in continuous line
JPH08176793A (en) Production of high silicon steel strip by siliconizing treatment method
JPH0549744B2 (en)
JPH06336616A (en) Production of grain-oriented silicon steel sheet
KR101908805B1 (en) Manufacturing method of oriented electrical steel sheet
JP3289632B2 (en) Manufacturing method and equipment for high silicon steel strip with excellent flatness
JP4081837B2 (en) Manufacturing method of conveyance roll for continuous silicidation processing line
JPH11293447A (en) Production of silicon steel sheet low in residual magnetic flux density
KR20080040340A (en) Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere
JP2005281843A (en) Method for producing high silicon steel sheet by continuous line
JP3183129B2 (en) Method for producing high silicon steel sheet with excellent surface properties
JPS6326312A (en) Apparatus for producing steel sheet
JPH05247623A (en) Manufacture of high silicon steel strip in continuous line
JPH11293414A (en) High silicon steel plate excellent in high frequency magnetic property and its production
JPS62227075A (en) Manufacture of high silicon steel material