KR20080040340A - Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere - Google Patents

Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere Download PDF

Info

Publication number
KR20080040340A
KR20080040340A KR1020060108172A KR20060108172A KR20080040340A KR 20080040340 A KR20080040340 A KR 20080040340A KR 1020060108172 A KR1020060108172 A KR 1020060108172A KR 20060108172 A KR20060108172 A KR 20060108172A KR 20080040340 A KR20080040340 A KR 20080040340A
Authority
KR
South Korea
Prior art keywords
silicon
steel sheet
silica powder
sio2
hydrogen atmosphere
Prior art date
Application number
KR1020060108172A
Other languages
Korean (ko)
Inventor
허남회
김상범
조성수
소준영
오제명
김종영
채경훈
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020060108172A priority Critical patent/KR20080040340A/en
Publication of KR20080040340A publication Critical patent/KR20080040340A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/34Embedding in a powder mixture, i.e. pack cementation
    • C23C10/36Embedding in a powder mixture, i.e. pack cementation only one element being diffused
    • C23C10/44Siliconising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A method for manufacturing a steel sheet with a high silicon content by decomposition and penetration diffusion of silicon dioxide is provided to manufacture a high silicon steel sheet excellent in core loss characteristics ranging from a commercial frequency to a high frequency by applying an ordinary silica powder onto a silicon steel sheet in a slurry form, drying the silica powder, and penetrating and diffusing silicon into the steel sheet in a hydrogen atmosphere of a high temperature. A method for manufacturing a steel sheet with a high silicon content by decomposition and penetration diffusion of silica powder comprises: mixing an ordinary silica powder(SiO2) with water to prepare a slurry type silica powder coating agent; applying the silica powder coating agent onto a surface of a steel sheet, or disposing a silicon steel sheet comprising 0 to 3.5% of silicon between SiO2 tubes or SiO2 plates, or within an other shaped SiO2 structure; and heat-treating the steel sheet coated with the silica powder coating agent or the silicon steel sheet in a hydrogen atmosphere with a high temperature of 1000 to 1400 deg.C for a long time such that decomposed silicon is injected into the steel sheet by penetration diffusion. A grain- or non-oriented steel sheet with a high silicon content is manufactured by the method.

Description

실리카 분말의 분해 및 침투 확산에 의한 고규소 강판 제조방법{Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of SiO2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere}Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of SiO2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere}

도 1은 두께 0.1 mm의 전해철 강판에서 실리카 분말 도포제의 침투 확산법에 의해 주입되는 규소의 양과 고온(1200℃)의 수소(2 liter/min)분위기에서 열처리하는 시간과의 관계를 나타낸 그래프이다. 대략 10시간당 1 wt%가 주입됨을 알 수 있다.1 is a graph showing the relationship between the amount of silicon injected by the penetration diffusion method of the silica powder coating agent in a 0.1 mm thick electrolytic iron sheet and the time of heat treatment in a hydrogen (2 liter / min) atmosphere at a high temperature (1200 ° C.). It can be seen that approximately 1 wt% is injected per 10 hours.

도 2는 두께 0.1 mm의 규소강판(규소함량 3%)에서 실리카 분말 도포제의 침투 확산법에 의해 주입되는 규소의 양과 고온(1200℃)의 수소(2 liter/min)분위기에서 열처리하는 시간과의 관계를 나타낸 그래프이다. 전해철의 경우와 유사하게 대략 10시간당 1 wt%가 주입됨을 알 수 있다.2 is a relation between the amount of silicon injected by the penetration diffusion method of the silica powder coating agent on a 0.1 mm thick silicon steel sheet (silicon content 3%) and the time of heat treatment in a hydrogen (2 liter / min) atmosphere at a high temperature (1200 ° C.). Is a graph. Similar to the case of the electrolytic iron it can be seen that approximately 1 wt% is injected per 10 hours.

본 발명은 각종 전기기계의 철심재료로 사용되는 전기강판의 규소함량을 높여 철손을 획기적으로 줄일 수 있는 고규소 강판 제조방법에 관한 것으로서, 통상 의 실리카 분말을 전해철 또는 규소를 일정량 함유하고 있는 규소강판에 슬러리 형태로 도포한 후 건조하여 고온의 수소분위기에서 규소를 침투 확산시킴으로써 상용주파수에서 고주파영역에 이르기까지 철손특성이 우수한 이산화규소의 분해 및 침투 확산에 의한 고규소 강판 제조방법에 관한 것이다.The present invention relates to a method for producing a high silicon steel sheet that can significantly reduce iron loss by increasing the silicon content of the electrical steel sheet used as iron core materials of various electric machines, and a silicon steel sheet containing a predetermined amount of electrolytic iron or silicon in a conventional silica powder The present invention relates to a method for manufacturing a high silicon steel sheet by dissolving and infiltrating diffusion of silicon dioxide having excellent iron loss characteristics from a commercial frequency to a high frequency region by applying silicon in a slurry form and drying to penetrate and diffuse silicon in a high temperature hydrogen atmosphere.

규소강판에서 규소함량이 증가할수록 와전류 손실이 감소하여 철손특성이 개선되며, 규소함량 6.5%에서 소음과 관계된 자왜의 감소 및 최대 투자율의 증가가 최고치를 나타냄으로써 6.5% 규소강판이 우수한 자기적 특성을 갖는 것은 이미 널리 알려진 사실이다. 이러한 사실에도 불구하고 극히 제한적으로 고규소 전기강판이 사용되는 이유는 규소함량이 3%를 넘게 되면 취성이 증가하여 냉간압연이 곤란하므로 통상적인 냉간압연법에 의한 고규소 전기강판 제조는 현실적으로 불가능한 상황이기 때문이다.As silicon content increases in silicon steel, eddy current loss decreases to improve iron loss characteristics.In 6.5% silicon content, 6.5% silicon steel exhibits excellent magnetic properties as the maximum magnetic permeability decrease and noise increase Having is a well known fact. In spite of this fact, the reason why extremely high quality silicon steel sheet is used is that when the silicon content exceeds 3%, the brittleness increases and cold rolling is difficult. Therefore, the production of high silicon electrical steel sheet by ordinary cold rolling method is practically impossible. Because it is.

현재 고규소 전기강판으로 사용되는 것은 SiCl4 가스를 이용한 화학증착법을 적용시킨 무방향성 6.5% 규소강판이 있다. 그러나 이 기술은 상업화 적용에 어려움이 많아 최종 제품의 가격이 매우 고가여서 3% 규소강판에 비해 거의 사용되지 않고 있다. 그 외에도 여러 가지 규소주입에 관한 기술이 특허로 소개되었으나 아직 실용화제품에 적용되는 기술은 없는 실정이다.Currently, high silicon electrical steel sheet is a non-oriented 6.5% silicon steel sheet using a chemical vapor deposition method using SiCl 4 gas. However, this technology is difficult to apply to commercialization, and the final product is very expensive, so it is rarely used compared to 3% silicon steel sheet. In addition, various silicon injection technologies have been introduced as patents, but there is no technology applied to commercialized products.

따라서 본 발명은 종래기술의 한계를 극복하기 위해 창안된 것으로서, 모 재료의 결정학적 방향성과 규소함유량에 관계없이 통상의 실리카 분말을 물과 조합 하여 슬러리 형태로 모 재료인 강판표면에 도포한 후, 고온의 수소분위기에서 분해된 규소를 침투 확산시킴으로써 용이하게 철손특성이 우수한 고규소 강판을 제조할 수 있는 방법을 제공하는데 그 목적이 있는 것이다.Therefore, the present invention was devised to overcome the limitations of the prior art, and after applying ordinary silica powder in combination with water to the surface of the steel sheet as the mother material, regardless of the crystallographic orientation and silicon content of the parent material, It is an object of the present invention to provide a method for easily producing a high silicon steel sheet having excellent iron loss characteristics by penetrating and diffusing silicon decomposed in a high temperature hydrogen atmosphere.

상기의 목적을 달성하기 위해 본 발명은 먼저 통상의 실리카 분말을 물과 조합하여 슬러리 형태의 실리카 분말도포제를 조제하는 바, 사용되는 실리카 분말의 순도와 입도는 모 재료와의 반응성에 따라 다양하게 준비될 수 있으며 일반적으로 순도에 따라 규소 주입효율이 달라지는데 입도가 작을수록 규소 주입 후 강판 표면의 평탄도가 좋다.In order to achieve the above object, the present invention first prepares a silica powder coating agent in the form of a slurry by combining ordinary silica powder with water, and the purity and particle size of the silica powder to be used vary depending on the reactivity with the parent material. In general, the silicon injection efficiency depends on the purity, the smaller the particle size, the better the flatness of the surface of the steel sheet after silicon injection.

상기의 실리카 분말도포제를 최종 목표로 하는 두께의 전해철 또는 규소를 일정량 함유하고 있는 규소강판 표면에 도포한 후 건조하여 권취한다. 코일형태로 권취한 강판을 수소분위기의 고온에서 장시간 열처리하게 되면 실리카 분말도포제는 수소와 반응하여 가스상태의 규소로 분해되고 결국 강판표면에 침투하여 내부로 확산하게 된다. 주입되는 규소의 양은 열처리 시 공급되는 수소의 양, 열처리 온도, 열처리 시간에 의해서 결정되므로 본 발명은 규소를 함유하지 않은 전해철 강판, 방향성 규소강판, 무방향성 규소강판 등에 모두 적용할 수 있는 장점을 가지고 있다.The silica powder coating agent is applied to the surface of a silicon steel sheet containing a predetermined amount of electrolytic iron or silicon having a thickness as a final target, and then dried and wound up. When the steel sheet wound in a coil form is heat-treated at a high temperature in a hydrogen atmosphere for a long time, the silica powder coating agent reacts with hydrogen to decompose into gaseous silicon, and eventually penetrates the surface of the steel sheet and diffuses therein. Since the amount of silicon to be injected is determined by the amount of hydrogen supplied during the heat treatment, the heat treatment temperature, and the heat treatment time, the present invention has the advantage that it can be applied to all of the silicon-free electrolytic iron sheet, the oriented silicon steel sheet, and the non-oriented silicon steel sheet. have.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

전기강판 제조공정은 최종 제품두께로 냉간압연을 실시한 후 적절한 마무리 소둔공정을 통해 전기강판의 자기적 특성을 확보한다. 이때 전기강판의 규소함유량 은 3.5%정도를 유지하게 되는데 이것은 규소의 함유량이 3.5%를 초과하게 되면 냉간압연이 곤란하기 때문이다.The electrical steel sheet manufacturing process is cold rolled to the final product thickness, and then secures the magnetic properties of the electrical steel sheet through an appropriate finishing annealing process. At this time, the silicon content of the electrical steel sheet is maintained at about 3.5% because the cold rolling is difficult when the silicon content exceeds 3.5%.

이에 본 발명자는 제품의 두께를 줄여 와전류손실을 줄이려는 연구를 진행하던 중, 주성분이 SiO2인 고순도 석영 튜브 내에서 규소강판을 고온의 건수소분위기에서 장시간 열처리 하면 규소강판 내의 규소함유량이 증가한다는 사실을 접하게 되었으며, 그 결과로 실리카 분말을 물과 조합한 슬러리 형태의 실리카 분말도포제를 규소강판 표면에 도포한 후 고온의 수소분위기, 예를 들면 1000 ~ 1400℃에서 장시간 열처리하여 규소함유량을 높일 수 있음을 실험적으로 확인하고 본 발명을 제안하게 되었다.Therefore, the present inventors have been researching to reduce the eddy current loss by reducing the thickness of the product, and the silicon content in the silicon steel sheet increases when the silicon steel sheet is heat-treated in a high temperature dry hydrogen atmosphere for a long time in a high purity quartz tube whose main component is SiO 2 . As a result, the silica powder coating agent in the form of slurry in which silica powder was combined with water was applied to the surface of the silicon steel sheet, and then heat-treated in a high temperature hydrogen atmosphere, for example, 1000 to 1400 ° C., to increase the silicon content. Experimentally confirmed that the present invention was proposed.

본 발명의 장점은 모 재료의 자기적 특성, 두께, 규소 함유량에 구애받지 않고 적용할 수 있다는 것이다. 특히 현재 상용화되고 있는 전기강판의 두께가 0.23 mm로 제한되고 있는 상황에서 0.1 mm 이하의 두께를 갖는 강판에도 본 발명에서 제안된 기술을 적용할 수 있으므로 고규소 특성으로 인한 철손개선효과 이외에도 두께감소에 의한 철손개선효과를 추가적으로 실현할 수 있는 장점이 있는 것이다.An advantage of the present invention is that it can be applied regardless of the magnetic properties, thickness and silicon content of the parent material. In particular, the present invention can be applied to the steel sheet having a thickness of 0.1 mm or less in the situation that the current commercial steel sheet thickness is limited to 0.23 mm, in addition to the iron loss improvement effect due to high silicon characteristics, There is an advantage that can additionally realize the iron loss improvement effect.

이하, 실시 예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예 1)(Example 1)

두께 2.5 mm의 전해철 열연강판을 산세과정을 거쳐 중간소둔을 포함한 3회의 냉간압연을 통해 최종 두께 0.1 mm의 전해철 냉연강판을 만들었다. 이 냉연강판 표면에 순도 99.9%, 평균입도 20㎛의 실리카 분말을 물과 1:8(실리카 중량과 물의 중 량비)의 비율로 혼합하여 슬러리 형태의 실리카 분말도포제를 도포한 후 건조하였다.The hot rolled electrolytic iron sheet having a thickness of 2.5 mm was pickled and subjected to three cold rolling including intermediate annealing to produce an electrolytic iron cold rolled steel having a final thickness of 0.1 mm. Silica powder having a purity of 99.9% and an average particle size of 20 µm was mixed on the surface of the cold rolled steel sheet in a ratio of 1: 8 (weight ratio of silica weight and water) to apply a slurry-type silica powder coating agent and dried.

이어, 상기의 실리카 분말도포제가 도포된 전해철 냉연강판을 99.9999%의 고순도 건수소를 분당 2 liter를 흘리는 분위기에서 1200℃까지 승온하고 1200℃를 유지한 상태에서 도 1에 나타낸 바와 같이 열처리 시간을 달리하여 시편에 주입된 규소의 양을 중량%로 분석하였다.Subsequently, the electrolytic iron cold rolled steel sheet coated with the silica powder coating agent was heated to 1200 ° C in an atmosphere of flowing 99.9999% of high purity dry hydrogen at 2 liters per minute and maintained at 1200 ° C. The amount of silicon injected into the specimen was analyzed by weight percent.

첨부 도면 중 도 1은 두께 0.1 mm의 전해철 강판에서 실리카 분말 도포제의 침투 확산법에 의해 주입되는 규소의 양과 고온(1200℃)의 수소(2 liter/min)분위기에서 열처리하는 시간과의 관계를 나타낸 그래프이다. In the accompanying drawings, FIG. 1 is a graph showing the relationship between the amount of silicon injected by the penetration diffusion method of a silica powder coating agent in a 0.1 mm thick electrolytic iron sheet and the time of heat treatment in a hydrogen (2 liter / min) atmosphere at a high temperature (1200 ° C.). to be.

이상의 결과로부터 열처리 시간이 길어질수록 시간당 규소주입량이 다소 증가하긴 했으나 대략적으로 10시간당 1 중량% 정도의 규소가 주입됨을 확인하였다.From the above results, although the amount of silicon injection per hour increased slightly as the heat treatment time increased, it was confirmed that about 1 wt% of silicon was injected per 10 hours.

(실시예 2)(Example 2)

진공 유도용해로를 이용하여 3%의 규소가 함유된 잉곳을 제조한 후, 열간압연을 실시하여 두께 2.5 mm의 3% 규소 열연강판을 제조하였다. 두께 2.5 mm의 3% 규소 열연강판을 산세과정을 거쳐 중간소둔을 포함한 3회의 냉간압연을 통해 최종 두께 0.1 mm의 3% 규소 냉연강판을 만들었다. 이 냉연강판 표면에 순도 99.9%, 평균입도 20㎛의 실리카 분말을 물과 1:8(실리카 중량과 물의 중량비)의 비율로 혼합하여 슬러리 형태의 실리카 분말도포제를 도포한 후 건조하였다.After the ingot containing 3% silicon was manufactured using a vacuum induction furnace, hot rolling was performed to prepare a 3% silicon hot rolled steel sheet having a thickness of 2.5 mm. A 3% silicon hot rolled steel sheet with a thickness of 2.5 mm was pickled and subjected to cold rolling three times including intermediate annealing to make a 3% silicon cold rolled steel sheet with a final thickness of 0.1 mm. Silica powder having a purity of 99.9% and an average particle size of 20 µm was mixed on the surface of the cold rolled steel sheet in a ratio of 1: 8 (weight ratio of silica weight and water) to water to apply a slurry silica powder coating agent and then dried.

이어, 상기의 실리카 분말도포제가 도포된 3% 규소 냉연강판을 99.9999% 이상의 고순도 건수소를 분당 2 liter를 흘리는 분위기에서 1200℃까지 승온하고 1200℃를 유지한 상태에서 도 2에 나타낸 바와 같이 열처리 시간을 달리하여 시편에 주입된 규소의 양을 중량%로 분석하였다.Then, the 3% silicon cold rolled steel sheet coated with the silica powder coating agent was heated to 1200 ° C in an atmosphere of flowing 2 liters per minute of high purity dry hydrogen of 99.9999% or more, and the heat treatment time as shown in FIG. 2 while maintaining 1200 ° C. By varying the amount of silicon injected into the specimen was analyzed by weight%.

도 2는 두께 0.1 mm의 규소강판(규소함량 3%)에서 실리카 분말 도포제의 침투 확산법에 의해 주입되는 규소의 양과 고온(1200℃)의 수소(2 liter/min)분위기에서 열처리하는 시간과의 관계를 나타낸 그래프이다. 2 is a relation between the amount of silicon injected by the penetration diffusion method of the silica powder coating agent on a 0.1 mm thick silicon steel sheet (silicon content 3%) and the time of heat treatment in a hydrogen (2 liter / min) atmosphere at a high temperature (1200 ° C.). Is a graph.

이상의 결과로부터 실시예 1과 유사한 규소주입 효과를 얻을 수 있었으며 규소주입량도 대략적으로 10시간당 1 중량% 정도로 실시예 1과 유사하였다.The silicon injection effect similar to Example 1 was obtained from the above result, and the silicon injection amount was similar to Example 1 as about 1 weight% per 10 hours.

상술한 바와 같이, 본 발명은 통상의 실리카 분말을 이용해 규소를 전혀 함유하지 않은 전해철 또는 3.5% 정도까지 규소를 함유하고 있는 규소강판에 용이하게 규소를 주입할 수 있는 방법을 제공함으로써 자기적 특성이 우수한 것으로 알려진 고규소 강판을 제조할 수 있는 효과가 있다.As described above, the present invention provides a method of easily injecting silicon into an electrolytic iron containing no silicon or a silicon steel sheet containing up to about 3.5% silicon using a conventional silica powder, thereby improving magnetic properties. There is an effect that can produce a high silicon steel sheet known to be excellent.

Claims (2)

통상의 실리카 분말(SiO2)을 물과 조합하여 슬러리 형태의 실리카 분말도포제를 조제하여 강판 표면에 도포하거나 SiO2 재질의 튜브, 플레이트 혹은 기타 형상의 구조물 속에 규소함량 0~3.5% 규소강판을 두고 1000~1400℃의 고온 수소분위기에서 장시간 열처리함으로써 분해된 규소가 침투 확산에 의해 강판 내부로 주입되게 하는 것을 특징으로 하는 실리카 분말의 분해 및 침투확산에 의한 고규소 강판의 제조방법.A conventional silica powder (SiO 2 ) is combined with water to prepare a silica powder coating agent in the form of a slurry and applied to the surface of a steel sheet, or SiO 2 The silicon-containing 0 ~ 3.5% silicon steel sheet is placed in a tube, plate, or other structure of material, and heat-treated in a high temperature hydrogen atmosphere at 1000-1400 ° C for a long time to inject the decomposed silicon into the steel sheet by penetration diffusion. Method for producing a high silicon steel sheet by decomposition and penetration diffusion of the silica powder. 제 1항의 방법을 이용해 제조되는 것을 특징으로 하는 방향성 및 무방향성 고규소 강판.A grain-oriented and non-oriented high silicon steel sheet produced by using the method of claim 1.
KR1020060108172A 2006-11-03 2006-11-03 Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere KR20080040340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060108172A KR20080040340A (en) 2006-11-03 2006-11-03 Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060108172A KR20080040340A (en) 2006-11-03 2006-11-03 Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere

Publications (1)

Publication Number Publication Date
KR20080040340A true KR20080040340A (en) 2008-05-08

Family

ID=39648030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060108172A KR20080040340A (en) 2006-11-03 2006-11-03 Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere

Country Status (1)

Country Link
KR (1) KR20080040340A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630129A (en) * 2016-07-18 2018-01-26 鞍钢股份有限公司 A kind of manufacture method of high-silicon electrical steel complex plate strip product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630129A (en) * 2016-07-18 2018-01-26 鞍钢股份有限公司 A kind of manufacture method of high-silicon electrical steel complex plate strip product

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
US11168376B2 (en) Annealing separator composition for oriented electrical steel sheet, oriented electrical steel sheet, and method for manufacturing oriented electrical steel sheet
KR100900662B1 (en) Coating composition and, method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property using thereof
JP6275277B2 (en) Coating agent for electrical steel sheet, method for producing the same, and method for coating electrical steel sheet using the same
JP4473489B2 (en) Unidirectional silicon steel sheet and manufacturing method thereof
KR20080040340A (en) Method for manufacturing silicon steel sheets with a high silicon content by the decomposition of sio2 and the subsequent silicon diffusion during an annealing under hydrogen atmosphere
US7282102B2 (en) Method for manufacturing high silicon grain-oriented electrical steel sheet with superior core loss property
CN107858633A (en) A kind of sensing heating nitriding method of orientation silicon steel
KR100600805B1 (en) A method for manufacturing annealing separator of oriented electrical steel sheet
KR102044319B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR20130076643A (en) Oriented electrical steel sheets and method for manufacturing the same
KR102359770B1 (en) Method for manufacturing a grain oriented electrical steel sheet having low core loss
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
KR20090020046A (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
JP7308836B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2023508032A (en) Grain-oriented electrical steel sheet and manufacturing method thereof
KR100711470B1 (en) Method for manufacturing high si grain oriented electrical steel sheet having good core loss property at high frequency
JPH0549744B2 (en)
KR101150336B1 (en) Siliconizing powder of SiO2, Si and MgF2 and method for producing high silicon steel
JPS6326329A (en) Chemical vapor deposition treatment
KR101309724B1 (en) Gran-oriented electrical steel sheet with excellent adhesion property of insulation film and method for manufacturing the same
JPH0578816A (en) Production of high-concentration si-containing electric iron sheet
JP3395647B2 (en) Method for producing silicon steel sheet having Si concentration distribution using siliconizing method
KR100721819B1 (en) Grain-oriented electrical steel sheets manufacturing method with low core loss, high magnetic induction
JPH11293448A (en) Production of silicon steel sheet using siliconizing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080314

Effective date: 20090113