JP4473489B2 - Unidirectional silicon steel sheet and manufacturing method thereof - Google Patents

Unidirectional silicon steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4473489B2
JP4473489B2 JP2002123929A JP2002123929A JP4473489B2 JP 4473489 B2 JP4473489 B2 JP 4473489B2 JP 2002123929 A JP2002123929 A JP 2002123929A JP 2002123929 A JP2002123929 A JP 2002123929A JP 4473489 B2 JP4473489 B2 JP 4473489B2
Authority
JP
Japan
Prior art keywords
film
steel sheet
silicon steel
tension
unidirectional silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002123929A
Other languages
Japanese (ja)
Other versions
JP2003313644A (en
Inventor
元一 重里
浩康 藤井
健一 村上
義行 牛神
修一 中村
昌章 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002123929A priority Critical patent/JP4473489B2/en
Publication of JP2003313644A publication Critical patent/JP2003313644A/en
Application granted granted Critical
Publication of JP4473489B2 publication Critical patent/JP4473489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォルステライト(Mg2SiO4)等で構成される無機鉱物質皮膜の生成を阻害する条件で製造するか、あるいは、研削や酸洗等の手段によって無機鉱物質皮膜を除去するか、もしくは、鏡面光沢を呈するまで表面を平坦化させて調製を行った仕上げ焼鈍済み一方向性珪素鋼板の表面に、張力付与性絶縁皮膜を形成させた一方向性珪素鋼板と、その製造方法に関するものである。
【0002】
【従来の技術】
一方向性珪素鋼板は磁気鉄芯材料として多用されているが、近年、特に、エネルギ−ロスを少なくするため、鉄損の少ない材料が求められている。鉄損の低減には鋼板に張力を付与することが有効であることから、鋼板に比べ熱膨張係数の小さい材質からなる皮膜を高温で形成することによって鋼板に張力を付与し、鉄損低減が図られてきた。仕上げ焼鈍工程で鋼板表面の酸化物と焼鈍分離剤とが反応して生成するフォルステライト系皮膜は、鋼板に張力を与えることができ、皮膜密着性も優れている。
【0003】
一方、特開昭48−39338号公報で開示されたコロイド状シリカとリン酸塩を主体とするコーティング液を鋼板表面に塗布し、焼き付けることによって絶縁皮膜を形成する方法は、鋼板に対する張力付与の効果が大きく、鉄損低減に有効である。
【0004】
そこで、仕上げ焼鈍工程で生じたフォルステライト系皮膜を残した上で、リン酸塩を主体とする絶縁皮膜を形成することが、一般的な一方向性珪素鋼板の製造方法となっている。
【0005】
近年、フォルステライト系皮膜と地鉄の乱れた界面構造が、皮膜張力による鉄損改善効果をある程度減少させていることが明らかになってきた。そこで、例えば、特開昭49−96920号公報に開示されている如く、仕上げ焼鈍工程で生ずるフォルステライト系皮膜を除去したり、更に鏡面化仕上げを行った後、改めて張力皮膜を形成させることにより、更なる鉄損低減を試みる技術が開発された。
【0006】
しかしながら、上記絶縁皮膜は、フォルステライトを主体とする皮膜の上に形成した場合はかなりの密着性を呈するものの、フォルステライト系皮膜を除去したり、あるいは、仕上げ焼鈍工程で意図的にフォルステライト形成を行わなかったものに対しては、皮膜密着性が十分ではない。
【0007】
フォルステライト系皮膜の除去を行った場合は、コーティング液を塗布して形成させる張力付与型絶縁皮膜のみで所要の皮膜張力を確保する必要があり、必然的に厚膜化しなければならず、より一層の密着性が必要である。
【0008】
したがって、従来の皮膜形成法では、鏡面化の効果を十分に引き出すほどの皮膜張力を達成し、かつ、皮膜密着性をも確保することは困難であり、十分な鉄損低減が図られていなかった。
【0009】
そこで、張力付与性絶縁皮膜の密着性を確保するための技術として、張力付与性絶縁皮膜の形成に先立ち、仕上げ焼鈍済みの一方向性珪素鋼板の表面に酸化膜を形成させる方法が、例えば、特開昭60−131976号公報、特開平6−184762号公報、特開平7−278833号公報、特開平8−191010号公報、特開平9−078252号公報において開示された。
【0010】
特開昭60−131976号公報開示のものは、鏡面化した仕上げ焼鈍済みの一方向性珪素鋼板を鏡面化した後、鋼板表面付近を内部酸化させる方法で、この内部酸化層によって張力皮膜の密着性を向上させ、内部酸化、即ち、鏡面度減退で生じる鉄損劣化を、皮膜密着性向上によってもたらされる付与張力の増大で補おうとする方法である。
【0011】
特開平6−184762号公報開示のものは、鏡面化ないしはそれに近い状態に調製した仕上げ焼鈍済みの一方向性珪素鋼板に対し、温度ごとに特定の雰囲気で焼鈍を施すことにより、鋼板表面に外部酸化型の酸化膜を形成し、この酸化膜でもって、張力付与性絶縁皮膜の皮膜と鋼板との皮膜密着性を確保する方法である。
【0012】
特開平7−278833号公報開示のものは、張力付与性の絶縁皮膜が結晶質である場合において、無機鉱物質皮膜のない仕上げ焼鈍済みの一方向性珪素鋼板の表面に、非晶質の酸化物の下地皮膜を形成させることで、結晶質の張力付与性絶縁皮膜が形成される際に起こる鋼板酸化、即ち、鏡面度減退を防止する技術である。
【0013】
特開平8−191010号公報開示のものは、非金属物質を除去した仕上げ焼鈍済みの一方向性珪素鋼板の表面に結晶性のファイヤライトを形成させることで、ファイヤライト結晶による張力付与効果と張力付与性の絶縁皮膜との密着性向上効果により鉄損低減を図る方法である。
【0014】
特開平9−078252号公報開示のものは、無機鉱物質皮膜のない仕上げ焼鈍済みの一方向性珪素鋼板の表面に形成させる下地シリカ層の量を100mg/m以下にすることで張力皮膜の密着性確保だけでなく、良好な鉄損値をも実現しようとする方法である。
【0015】
【発明が解決しようとする課題】
上述の技術を適用し、無機鉱物質のない一方向性珪素鋼板の表面に酸化膜を形成させることで、皮膜密着性改善や鉄損値低減の効果はそれなり認められる。しかしながら、張力付与性絶縁皮膜の皮膜密着性が必ずしも完全ではなかった。
【0016】
【課題を解決するための手段】
本発明は上述の問題点を解決し、無機鉱物質皮膜のない仕上げ焼鈍済みの一方向性珪素鋼板に対し、十分な皮膜密着性を得ることができるよう張力付与型の絶縁性皮膜を形成させる方法である。
【0017】
本発明の要旨は、次のとおりである。
【0018】
(1)フォルステライト皮膜を酸洗により除去するか、又は、該フォルステライト皮膜の生成を阻害する条件で製造してなる仕上げ焼鈍済み一方向性珪素鋼板の表面に、張力付与性絶縁皮膜を形成してなる一方向性珪素鋼板であって、該張力付与性絶縁皮膜と一方向性珪素鋼板との界面に、膜厚が2nm以上500nm以下のシリカからなる外部酸化型酸化膜を有し、かつ、該外部酸化型酸化膜中に、断面面積率で5%以上30%以下の金属鉄を含有してなることを特徴とする一方向性珪素鋼板。
【0019】
(2)前記張力付与性絶縁皮膜が、リン酸塩とコロイド状シリカからなる溶液を鋼板表面に塗布・焼き付けてなる皮膜であることを特徴とする(1)記載の一方向性珪素鋼板。
【0020】
(3)フォルステライト皮膜を酸洗により除去するか、又は、該フォルステライト皮膜の生成を阻害する条件で製造してなる仕上げ焼鈍済み一方向性珪素鋼板を、1150℃以下600℃以上の温度範囲で、雰囲気露点を−20℃以上0℃以下とする条件、及び、冷却雰囲気露点を5℃以上60℃以下とする条件で焼鈍して、該鋼板の表面に、断面面積率で5%以上30%以下の金属鉄を含有してなるシリカからなる外部酸化型酸化膜を、膜厚2nm以上500nm以下に形成し、次いで、該外部酸化型酸化膜を付与した一方向性珪素鋼板の表面に、リン酸塩とコロイド状シリカからなる溶液を塗布・焼き付けて張力付与性絶縁被膜を形成することを特徴とする一方向性珪素鋼板の製造方法。
【0021】
【発明の実施の形態】
以下、発明の詳細について説明する。
【0022】
発明者らは、皮膜密着性が必ずしも完全ではない原因として、外部酸化型酸化膜を形成させる条件、特に、冷却雰囲気に問題があり、冷却雰囲気によって外部酸化型酸化膜の構造に差異が生じ、そのため、張力付与性の絶縁皮膜の密着性が変動するのではないかと推測した。
【0023】
そこで、次に述べるような実験を行ない、皮膜密着性に対する冷却雰囲気と外部酸化型酸化膜構造との関係を調べた。
【0024】
実験用素材として、板厚0.225mmの脱炭焼鈍板に対し、アルミナを主体とする焼鈍分離剤を塗布して仕上げ焼鈍を行ない、二次再結晶化させ、鏡面光沢を有する一方向性珪素鋼板を準備した。
【0025】
この鋼板に対し、窒素25%、水素75%、露点0℃の雰囲気において、均熱時間10秒で、かつ、種々の温度と冷却雰囲気の条件で熱処理を施し、シリカを主体とする外部酸化型酸化膜を形成させた。
【0026】
冷却雰囲気は、窒素100%で露点を変えて行なった。次いで、張力付与性の絶縁皮膜を形成するため、リン酸塩、クロム酸、コロイダルシリカを主体とする塗布液を塗布し、窒素雰囲気中で、835℃で30秒間焼き付けた。このようにして作製した鋼板の皮膜密着性を調べた。
【0027】
皮膜密着性は、直径20mmの円筒に試料を巻き付けた時、鋼板から剥離せず、鋼板と皮膜が密着したままであった部分の面積率(以後、皮膜残存面積率と称する)で評価した。
【0028】
密着性が不良で皮膜が完全に剥離した場合は0%、皮膜密着性が良好で皮膜が全く剥離しなかった場合を100%と判定した。評価は、皮膜残存面積率が90%以下の場合を×、90%超95%以下の場合を○、95%超100%以下の場合を◎とした。
【0029】
また、外部酸化型酸化膜を含む張力付与性絶縁皮膜と鋼板との界面構造を調べるため、集束イオンビ−ム法(以下、FIB法と称する)によって試料を作製し、透過型電子顕微鏡(以下、TEMと称する)で断面構造を観察した。
【0030】
断面観察の結果、シリカ主体の外部酸化型酸化膜の中に金属状態にある鉄が部分的に観察された。この金属状鉄がシリカ主体の外部酸化型酸化膜に占める断面面積率を、TEM写真から算出した。
【0031】
このようにして調べた結果(熱処理条件と皮膜密着性の関係)を表1と表2(表1の続き)に示す。
【0032】
【表1】

Figure 0004473489
【0033】
【表2】
Figure 0004473489
【0034】
表1と表2(表1の続き)から、張力付与性絶縁皮膜の密着性を確保できる条件を求めると、次のようになる。
【0035】
まず、金属鉄の断面面積率に関わらず、外部酸化型酸化膜の膜厚が2nm未満の試料番号1から試料番号5の熱処理温度500℃の条件では、皮膜密着性が確保できない。
【0036】
一方、外部酸化型酸化膜の膜厚が2nm以上の試料番号6から試料番号40の、熱処理温度が600℃から1150℃の条件においては、概ね、皮膜密着性が確保できるようになる。特に、試料番号26から試料番号40の、外部酸化型酸化膜の膜厚が40nm以上となる熱処理温度が1000℃以上の条件では、皮膜密着性が格段に良好である。
【0037】
但し、上記条件において、冷却雰囲気の露点が60℃以下で、かつ、外部酸化型酸化膜中の金属鉄の断面面積率が30%以下の条件では、皮膜密着性が良好であるが、冷却雰囲気露点が65℃以上で、かつ、金属鉄の断面面積率が30%よりも大きい条件では、外部酸化型酸化膜の膜厚が厚くとも、皮膜密着性が必ずしも完全とは言えず、皮膜残存面積率で90%となった。
【0038】
表1と表2から、張力付与性絶縁皮膜の皮膜密着性確保するためには、外部酸化型酸化膜の膜厚が2nm以上で、かつ、外部酸化型酸化膜に占める金属状の鉄が断面面積率にして30%以下であることが必須であり、こうした外部酸化型酸化膜を形成させるためには、外部酸化型酸化膜を形成するための熱処理工程のうち、熱処理温度を600℃以上、特に好ましくは、1000℃以上で行ない、かつ、その時の冷却雰囲気の雰囲気露点を、60℃以下にする必要があることがわかる。
【0039】
このように、皮膜密着性について、外部酸化型酸化膜の膜厚と金属鉄が占める断面面積率が大きく影響していることについて、発明者らはその機構を次のように考えている。
【0040】
まず、外部酸化型酸化膜の膜厚依存性について述べる。
【0041】
鋼板と張力付与性絶縁皮膜との密着性は、両者の界面に形成させた外部酸化型酸化膜によって決まる。
【0042】
一般に、外部酸化型酸化膜は、金属原子が鋼中から表面に拡散し、表面で酸化性ガスと反応することで成長すると言われている。そのため、酸化膜の成長速度は金属原子の拡散速度によって決まる。そして、原子の拡散は熱エネルギ−によって高められる。したがって、温度が高いほど原子の拡散が促進され、外部酸化型酸化膜はより成長する。
【0043】
こうした機構のため、熱処理温度が500℃と低い条件では、外部酸化型の酸化膜の成長が十分ではなく、そのため、皮膜密着性が十分ではなく、一方、熱処理温度が600℃以上では、十分に外部酸化型酸化膜が成長するので皮膜密着性は良好で、さらに、1000℃以上では、さらに酸化膜が成長し易くなるので、皮膜密着性が極めて良好となるものと考えられる。
【0044】
こうした推測が妥当であることが、透過型電子顕微鏡を使った外部酸化型酸化膜の膜厚測定の結果からわかる。即ち、膜厚が1nmで、外部酸化型酸化膜の成長が十分でない熱処理温度500℃の条件では、張力付与型絶縁皮膜の密着性が不良であるのに対し、膜厚2nm以上で、外部酸化型酸化膜が成長した熱処理温度600℃以上の条件では、皮膜密着性は良好である。
【0045】
次に、張力付与性絶縁皮膜の密着性と外部酸化型酸化膜に存在する金属状鉄の関係について述べる。
【0046】
外部酸化型酸化膜中に金属鉄が形成される機構についての詳細は、未だ不明であるが、発明者らは、一旦シリカ主体の外部酸化型酸化膜が形成された後、冷却雰囲気の酸化性が高い、即ち、露点が高い条件において何らかの反応が起き、外部酸化膜中に金属鉄が生成し、一方、冷却雰囲気の酸化性が低い、即ち、雰囲気露点が低い場合、外部酸化型酸化膜中への金属鉄取り込み反応は起きないのではないかと推測している。
【0047】
次に、張力付与性絶縁皮膜の鋼板密着性とシリカを主体とする外部酸化型酸化膜の構造との関係について述べる。
【0048】
張力付与性絶縁皮膜による鋼板への張力付与は、張力付与性絶縁皮膜と鋼板との熱膨張係数の差によってもたらされる。この時、張力付与性絶縁皮膜と鋼板との界面には多大な応力が発生する。この応力に耐え、鋼板と張力付与性絶縁皮膜の密着性を確保するのが、外部酸化型酸化膜である。
【0049】
発明者らは、こうした応力耐性に関し、一種の欠陥部分である金属状の外部酸化型酸化膜中比率が影響しているのではないかと推測している。つまり、金属鉄が少なく、断面面積率にして30%以下の場合、応力に耐え得るが、金属鉄が多く、断面面積率にして30%よりも多い場合、外部酸化型酸化膜が、張力付与性絶縁皮膜によって押しかかる応力に耐えることができず、外部酸化型酸化膜が破壊されてしまうのではないかと考えている。
【0050】
記外部酸化型酸化膜中の金属鉄の含有率の下限値は、後述する実施例4の結果(表6、参照)に基づいて、5%とする。即ち、金属鉄の断面面積率5%以上30%以下であれば、応力に耐えうる。
【0051】
冷却雰囲気については酸化性を低くするという観点から水素導入を行ってもよい。
【0052】
【実施例】
(実施例1)
板厚0.23mm、Si濃度3.30%の一方向性珪素鋼板製造用の冷延板に脱炭焼鈍を施し、表面にマグネシアを主体とする焼鈍分離剤の水スラリ−を塗布し、乾燥した後、乾燥水素雰囲気中、1200℃、20時間の仕上げ焼鈍を行なった。こうして調製した二次再結晶の完了した一方向性珪素鋼板の表面には、フォルステライトを主体とする皮膜が生成している。
【0053】
次いで、ふっ化アンモニムと硫酸の混合溶液中で酸洗し、表面皮膜を溶解除去した後、ふっ酸と過酸化水素水の混合溶液中で化学研磨し、鋼板表面に無機鉱物質がなく、かつ、鏡面光沢をもつ鋼板を得た。この鋼板に対し、窒素25%、水素75%、露点0℃の雰囲気中、温度1050℃で熱処理を行なうことで、外部酸化型酸化膜を形成させた。この時、冷却雰囲気を、窒素100%、露点15℃(実施例1)と65℃(比較例1)の2条件で形成した。
【0054】
こうして調製した鋼板に対し、10%濃度のコロイダルアルミナ水分散液100ml、不定形アルミナ粉末10g、ホウ酸5g、水200mlからなる混合液を塗布し、900℃で30秒間焼き付け、張力付与性の絶縁皮膜を形成させた。
【0055】
こうして調製した絶縁皮膜付き一方向性珪素鋼板について、直径20mmの円筒に試料を巻き付けた時の皮膜残存面積率で皮膜密着性を評価した。結果を表3に示す。
【0056】
【表3】
Figure 0004473489
【0057】
表3から、冷却雰囲気露点65℃、金属鉄断面面積率40%で、皮膜残存面積率90%である比較例1に比べ、冷却雰囲気露点15℃、金属鉄断面面積率20%で、皮膜残存面積率100%である実施例1の方が、皮膜密着性が良好で優れていることがわかる。
【0058】
(実施例2)
板厚0.225mm、Si濃度3.25%の一方向性珪素鋼板製造用の冷延板に脱炭焼鈍を施し、表面にアルミナを主体とする焼鈍分離剤の水スラリ−を塗布し、乾燥した。次いで、乾燥水素雰囲気中、1200℃、20時間の仕上げ焼鈍を行ない、表面に無機鉱物質がほとんどなく、鏡面光沢を有する二次再結晶の完了した一方向性珪素鋼板を得た。
【0059】
この鋼板に対し、窒素25%、水素75%、露点−10℃の雰囲気中、温度800℃で熱処理を行なうことで、外部酸化型酸化膜を形成させた。この時、冷却雰囲気を、窒素90%、水素10%で、露点35℃(実施例2)と70℃(比較例2)の2条件で形成した。
【0060】
こうして調製した鋼板に対し、濃度50%のリン酸アルミニウム水溶液50ml、濃度20%のコロイダルシリカ水分散液100ml、無水クロム酸5gからなる混合液を塗布し、850℃で30秒間焼き付け、張力付与性の絶縁皮膜を形成させた。
【0061】
こうして調製した絶縁皮膜付き一方向性珪素鋼板について、直径20mmの円筒に試料を巻き付けた時の皮膜残存面積率で皮膜密着性を評価した。結果を表4に示す。
【0062】
【表4】
Figure 0004473489
【0063】
表4から、冷却雰囲気露点70℃、金属鉄の断面面積率35%で、皮膜残存面積率90%である比較例2に比べ、冷却雰囲気露点35℃、金属鉄の断面面積率15%で皮膜残存面積率100%である実施例2の方が、皮膜密着性が良好で優れていることがわかる。
【0064】
(実施例3)
板厚0.225mm、Si濃度3.30%の一方向性珪素鋼板製造用の冷延板に脱炭焼鈍を施した後、表面酸化層を弗化アンモニムと硫酸の混合溶液中で酸洗し溶解除去した。次いで、アルミナ粉末を静電塗布法で塗布し、乾燥水素雰囲気中、1200℃、20時間の仕上げ焼鈍を行なった。
【0065】
こうして調製した二次再結晶の完了した一方向性珪素鋼板の表面には無機鉱物質がなく、かつ、鏡面光沢を有する。
【0066】
この鋼板に対し、窒素25%、水素75%、露点−15℃の雰囲気中、温度900℃で熱処理を行なうことで、外部酸化型酸化膜を形成させた。この時、冷却雰囲気を、窒素50%、水素50%で、露点50℃(実施例3)と65℃(比較例3)の2条件で形成した。
【0067】
こうして調製した鋼板に対し、濃度50%のリン酸マグネシム/アルミニウム水溶液50ml、濃度30%のコロイダルシリカ水分散液66ml、無水クロム酸5gからなる混合液を塗布し、850℃で30秒間焼き付け、張力付与性の絶縁皮膜を形成させた。
【0068】
こうして調製した絶縁皮膜付き一方向性珪素鋼板について、直径20mmの円筒に試料を巻き付けた時の皮膜残存面積率で皮膜密着性を評価した。結果を表5に示す。
【0069】
【表5】
Figure 0004473489
【0070】
表5から、冷却雰囲気露点65℃、金属鉄の断面面積率35%で皮膜残存面積率90%である比較例3に比べ、冷却雰囲気露点50℃、金属鉄の断面面積率25%で皮膜残存面積率100%である実施例3の方が、皮膜密着性が良好で優れていることがわかる。
【0071】
(実施例4)
板厚0.225mm、Si濃度3.35%の一方向性珪素鋼板製造用の冷延板に脱炭焼鈍を施し、表面にマグネシアと塩化ビスマスを主体とする焼鈍分離剤の水スラリ−を塗布し、乾燥した。次いで、乾燥水素雰囲気中、1200℃、20時間の仕上げ焼鈍を行ない、表面に無機鉱物質のほとんどない二次再結晶の完了した一方向性珪素鋼板を得た。
【0072】
この鋼板に対し、窒素25%、水素75%、露点−20℃の雰囲気中、温度1150℃で熱処理を行なうことで、シリカを主体とする外部酸化型酸化膜を形成させた。この時、冷却雰囲気を、窒素100%で、露点5℃(実施例4)と65℃(比較例4)の2条件で形成した。
【0073】
こうして調製した鋼板に対し、濃度50%のリン酸マグネシム水溶液50ml、濃度20%のコロイダルシリカ水分散液100ml、無水クロム酸5gからなる混合液を塗布し、850℃で30秒間焼き付け、張力付与性の絶縁皮膜を形成させた。
【0074】
こうして調製した絶縁皮膜付き一方向性珪素鋼板について、直径20mmの円筒に試料を巻き付けた時の皮膜残存面積率で絶縁皮膜の密着性を評価した。結果を表6に示す。
【0075】
【表6】
Figure 0004473489
【0076】
表6から、冷却雰囲気露点65℃、金属鉄の断面面積率45%で皮膜残存面積率90%である比較例4に比べ、冷却雰囲気露点5℃、金属鉄の断面面積率5%で皮膜残存面積率100%である実施例4の方が、皮膜密着性が良好で優れていることがわかる。
【0077】
【発明の効果】
本発明により皮膜密着性の良好な一方向性珪素鋼板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
Whether the present invention is manufactured under conditions that inhibit the formation of an inorganic mineral film composed of forsterite (Mg 2 SiO 4 ) or the like, or is the inorganic mineral film removed by means such as grinding or pickling? Alternatively, the present invention relates to a unidirectional silicon steel sheet in which a tension-imparting insulating film is formed on the surface of a finish-annealed unidirectional silicon steel sheet prepared by flattening the surface until exhibiting a specular gloss, and a method for producing the same. Is.
[0002]
[Prior art]
Unidirectional silicon steel sheets are widely used as magnetic iron core materials, but in recent years, materials with low iron loss have been demanded particularly in order to reduce energy loss. Since it is effective to apply tension to the steel sheet to reduce iron loss, it is possible to reduce the iron loss by applying tension to the steel sheet by forming a coating made of a material having a smaller thermal expansion coefficient than that of the steel sheet at a high temperature. It has been planned. The forsterite-based film produced by the reaction of the oxide on the surface of the steel sheet and the annealing separator in the final annealing step can give tension to the steel sheet and has excellent film adhesion.
[0003]
On the other hand, the method of forming an insulating film by applying a coating liquid mainly composed of colloidal silica and phosphate disclosed in JP-A-48-39338 on the surface of a steel sheet and baking the coating liquid, Great effect, effective in reducing iron loss.
[0004]
Therefore, it is a general method for producing a unidirectional silicon steel sheet to leave the forsterite-based film generated in the finish annealing step and form an insulating film mainly composed of phosphate.
[0005]
In recent years, it has become clear that the disordered interface structure between the forsterite film and the ground iron reduces the iron loss improvement effect due to the film tension to some extent. Therefore, for example, as disclosed in Japanese Patent Laid-Open No. 49-96920, by removing the forsterite-based film generated in the finish annealing process or performing a mirror finish, a tension film is formed again. A technology to further reduce iron loss has been developed.
[0006]
However, the above insulating film exhibits considerable adhesion when formed on a film mainly composed of forsterite. However, the forsterite film is removed or the forsterite is intentionally formed in the final annealing process. The film adhesion is not sufficient for those not subjected to the above.
[0007]
When the forsterite film is removed, it is necessary to secure the required film tension only with the tension-imparting type insulating film formed by applying the coating liquid. Further adhesion is required.
[0008]
Therefore, in the conventional film formation method, it is difficult to achieve a film tension enough to bring out the effect of mirroring and to ensure film adhesion, and sufficient iron loss reduction has not been achieved. It was.
[0009]
Therefore, as a technique for ensuring the adhesion of the tension-imparting insulating film, prior to the formation of the tension-imparting insulating film, a method of forming an oxide film on the surface of the finished unidirectional silicon steel sheet, for example, These are disclosed in JP-A-60-131976, JP-A-6-184762, JP-A-7-278833, JP-A-8-191010, and JP-A-9-077825.
[0010]
The one disclosed in JP-A-60-131976 is a method in which a mirror-finished annealed unidirectional silicon steel plate is mirror-finished and then the surface of the steel plate is internally oxidized. This is a method for improving the property and compensating for the internal loss, that is, the iron loss deterioration caused by the decrease in specularity by increasing the applied tension caused by the improvement of the film adhesion.
[0011]
JP-A-6-184762 discloses that a unidirectional silicon steel plate that has been mirror-finished or close-finished and annealed in a specific atmosphere at each temperature is subjected to external annealing on the surface of the steel plate. In this method, an oxide type oxide film is formed, and with this oxide film, film adhesion between the tension-providing insulating film and the steel sheet is ensured.
[0012]
Japanese Patent Application Laid-Open No. 7-278833 discloses an amorphous oxide film on the surface of a unidirectional silicon steel plate that has been annealed without an inorganic mineral film when the tension-providing insulating film is crystalline. This is a technique for preventing steel plate oxidation, that is, reduction in specularity, which occurs when a crystalline tension-imparting insulating film is formed by forming a base film of a product.
[0013]
JP-A-8-191010 discloses a technique in which crystalline firelite is formed on the surface of a finish annealed unidirectional silicon steel plate from which nonmetallic substances have been removed, thereby providing a tension imparting effect and tension by the firelite crystal. This is a method for reducing iron loss by the effect of improving adhesion with an imparting insulating film.
[0014]
Japanese Patent Laid-Open No. 9-078252 discloses that the amount of the base silica layer formed on the surface of the finished annealed unidirectional silicon steel sheet without the inorganic mineral film is 100 mg / m 2 or less, thereby reducing the tension film. This is a method of not only ensuring adhesion but also achieving a good iron loss value.
[0015]
[Problems to be solved by the invention]
By applying the above-described technique and forming an oxide film on the surface of a unidirectional silicon steel sheet having no inorganic mineral material, the effects of improving the film adhesion and reducing the iron loss value are recognized as such. However, the film adhesion of the tension-imparting insulating film is not always perfect.
[0016]
[Means for Solving the Problems]
The present invention solves the above-described problems, and forms a tension-imparting type insulating film so that sufficient film adhesion can be obtained with respect to a finish annealed unidirectional silicon steel sheet without an inorganic mineral film. Is the method.
[0017]
The gist of the present invention is as follows.
[0018]
(1) False Terai preparative transdermal membranes or more removed pickling, or, on the surface of the finish annealing has been oriented silicon steel sheet formed by manufactured under the condition that inhibits the production of the forsterite film, tensioning insulating A unidirectional silicon steel sheet formed with a film, and having an external oxide oxide film made of silica having a film thickness of 2 nm or more and 500 nm or less at an interface between the tension-imparting insulating film and the unidirectional silicon steel sheet. and, and, in the external oxide type oxide film, single-oriented silicon steel sheet characterized by containing 5% to 30% or less of the metal iron sectional area ratio.
[0019]
(2) the tensioning insulating coating, characterized in that it is a film of a solution comprising a phosphate and colloidal silica formed by baking coating, the surface of the steel sheet (1) Single-oriented silicon steel sheet according.
[0020]
(3) A finish annealed unidirectional silicon steel sheet produced by removing the forsterite film by pickling or under conditions that inhibit the formation of the forsterite film is a temperature range of 1150 ° C. or lower and 600 ° C. or higher. Then, annealing is performed under the condition that the atmospheric dew point is −20 ° C. or higher and 0 ° C. or lower and the cooling atmosphere dew point is 5 ° C. or higher and 60 ° C. or lower. % Of the outer oxide type oxide film made of silica containing metallic iron in a thickness of 2 nm or more and 500 nm or less, and then on the surface of the unidirectional silicon steel sheet provided with the outer oxide type oxide film, A method for producing a unidirectional silicon steel sheet, comprising applying and baking a solution comprising phosphate and colloidal silica to form a tension-imparting insulating coating.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, details of the invention will be described.
[0022]
The inventors have a problem with the conditions for forming the external oxide oxide film, particularly the cooling atmosphere, as a cause that the film adhesion is not necessarily perfect, and the structure of the external oxide oxide film varies depending on the cooling atmosphere, Therefore, it was speculated that the adhesion of the tension-imparting insulating film might fluctuate.
[0023]
Therefore, the following experiment was conducted to investigate the relationship between the cooling atmosphere and the external oxide type oxide film structure with respect to film adhesion.
[0024]
As an experimental material, a 0.225 mm thick decarburized and annealed plate is coated with an annealing separator mainly composed of alumina and subjected to finish annealing, secondary recrystallization, and unidirectional silicon having a specular gloss. A steel plate was prepared.
[0025]
This steel sheet was heat treated in an atmosphere of 25% nitrogen, 75% hydrogen, and 0 ° C. dew point at a soaking time of 10 seconds and under various temperature and cooling conditions, and was an external oxidation type mainly composed of silica. An oxide film was formed.
[0026]
The cooling atmosphere was performed by changing the dew point with 100% nitrogen. Next, in order to form a tension-providing insulating film, a coating solution mainly composed of phosphate, chromic acid, and colloidal silica was applied, and baked at 835 ° C. for 30 seconds in a nitrogen atmosphere. The film adhesion of the steel sheet thus prepared was examined.
[0027]
The film adhesion was evaluated by the area ratio (hereinafter referred to as the film remaining area ratio) of the portion where the steel sheet and the film remained in close contact with each other when the sample was wound around a cylinder having a diameter of 20 mm.
[0028]
When the adhesion was poor and the film was completely peeled off, it was judged as 0%, and when the film adhesion was good and the film was not peeled off at all, it was judged as 100%. In the evaluation, the case where the film remaining area ratio was 90% or less was evaluated as “x”, the case where it was more than 90% and 95% or less, and the case where it was more than 95% and 100% or less were evaluated as ◎.
[0029]
In addition, in order to investigate the interface structure between a tension-imparting insulating film including an external oxide type oxide film and a steel sheet, a sample was prepared by a focused ion beam method (hereinafter referred to as FIB method), and a transmission electron microscope (hereinafter referred to as “FIELD”). The cross-sectional structure was observed by TEM).
[0030]
As a result of cross-sectional observation, iron in a metallic state was partially observed in the external oxide oxide film mainly composed of silica. The cross-sectional area ratio occupied by the metallic iron in the external oxide oxide film mainly composed of silica was calculated from a TEM photograph.
[0031]
Table 1 and Table 2 (continuation of Table 1) show the results (relationship between heat treatment conditions and film adhesion) thus examined.
[0032]
[Table 1]
Figure 0004473489
[0033]
[Table 2]
Figure 0004473489
[0034]
From Table 1 and Table 2 (continuation of Table 1), the conditions for ensuring the adhesion of the tension-imparting insulating film are as follows.
[0035]
First, regardless of the cross-sectional area ratio of metallic iron, film adhesion cannot be secured under the conditions of the heat treatment temperature of 500 ° C. for Sample No. 1 to Sample No. 5 where the thickness of the external oxide oxide film is less than 2 nm.
[0036]
On the other hand, in the conditions of sample number 6 to sample number 40 in which the thickness of the external oxide oxide film is 2 nm or more and the heat treatment temperature is 600 ° C. to 1150 ° C., the film adhesion can be generally secured. In particular, the film adhesion is remarkably good under the conditions of Sample No. 26 to Sample No. 40 where the heat treatment temperature at which the thickness of the external oxide film is 40 nm or more is 1000 ° C. or more.
[0037]
However, under the above conditions, the film adhesion is good when the dew point of the cooling atmosphere is 60 ° C. or less and the cross-sectional area ratio of metallic iron in the external oxide film is 30% or less. Under conditions where the dew point is 65 ° C. or higher and the cross-sectional area ratio of metallic iron is larger than 30%, even if the thickness of the external oxide type oxide film is thick, the film adhesion is not necessarily complete, and the remaining film area The rate was 90%.
[0038]
From Table 1 and Table 2, in order to ensure the film adhesion of the tension-imparting insulating film, the thickness of the external oxide type oxide film is 2 nm or more and the metallic iron occupying the external oxide type oxide film has a cross section. It is essential that the area ratio is 30% or less. In order to form such an external oxide film, a heat treatment temperature of 600 ° C. or higher is included in the heat treatment process for forming the external oxide film. Particularly preferably, it is carried out at 1000 ° C. or higher, and the atmospheric dew point of the cooling atmosphere at that time needs to be 60 ° C. or lower.
[0039]
As described above, the inventors consider the mechanism of the film adhesion as follows, because the film thickness of the external oxide oxide film and the cross-sectional area ratio occupied by the metallic iron are greatly affected.
[0040]
First, the film thickness dependence of the external oxide type oxide film will be described.
[0041]
Adhesion between the steel sheet and the tension-imparting insulating film is determined by an external oxidation type oxide film formed at the interface between the two.
[0042]
In general, it is said that an external oxide type oxide film grows when metal atoms diffuse from the steel to the surface and react with an oxidizing gas on the surface. Therefore, the growth rate of the oxide film is determined by the diffusion rate of metal atoms. Atomic diffusion is enhanced by thermal energy. Therefore, the higher the temperature, the more the atom diffusion is promoted and the outer oxide oxide film grows more.
[0043]
Due to such a mechanism, the growth of the external oxidation type oxide film is not sufficient under the condition where the heat treatment temperature is as low as 500 ° C., and therefore the film adhesion is not sufficient, while the heat treatment temperature is sufficiently high at 600 ° C. or more. Since the external oxide type oxide film grows, the film adhesion is good. Further, at 1000 ° C. or higher, the oxide film is more likely to grow, and it is considered that the film adhesion is extremely good.
[0044]
It can be seen from the results of the measurement of the thickness of the external oxide film using a transmission electron microscope that this assumption is valid. That is, when the film thickness is 1 nm and the heat treatment temperature is 500 ° C. where the growth of the external oxide film is not sufficient, the adhesion of the tension-imparting insulating film is poor, whereas the film thickness is 2 nm or more. The film adhesion is good under the condition of a heat treatment temperature of 600 ° C. or higher where the mold oxide film is grown.
[0045]
Next, the relationship between the adhesion of the tension-imparting insulating film and the metallic iron present in the external oxide type oxide film will be described.
[0046]
The details of the mechanism of the formation of metallic iron in the external oxide film are still unclear, but the inventors once formed the silica-based external oxide film and then oxidized the cooling atmosphere. Is high, that is, some reaction occurs under conditions where the dew point is high, and metallic iron is generated in the external oxide film. On the other hand, if the oxidization of the cooling atmosphere is low, that is, the atmosphere dew point is low, It is speculated that the metal iron uptake reaction may not occur.
[0047]
Next, the relationship between the steel sheet adhesion of the tension-imparting insulating film and the structure of the external oxide oxide film mainly composed of silica will be described.
[0048]
The application of tension to the steel sheet by the tension-imparting insulating film is caused by the difference in thermal expansion coefficient between the tension-imparting insulating film and the steel sheet. At this time, a great amount of stress is generated at the interface between the tension-imparting insulating film and the steel plate. It is the external oxide type oxide film that can withstand this stress and ensure the adhesion between the steel sheet and the tension-imparting insulating film.
[0049]
The inventors speculate that the ratio in the metal-like external oxide oxide film, which is a kind of defect portion, has an influence on such stress resistance. In other words, when the amount of metallic iron is small and the cross-sectional area ratio is 30% or less, it can withstand stress, but when the amount of metallic iron is large and the cross-sectional area ratio is more than 30%, the external oxide oxide film imparts tension. It is considered that the stress applied by the conductive insulating film cannot be withstood and the external oxide oxide film is destroyed.
[0050]
The lower limit of the content of the metallic iron before Kigaibu oxidized oxide film, based on the results of Example 4 to be described later (Table 6, see), and 5%. That is, if the cross-sectional area ratio of metallic iron is 5% or more and 30% or less, it can withstand stress.
[0051]
About cooling atmosphere, you may introduce hydrogen from a viewpoint of making oxidation nature low.
[0052]
【Example】
Example 1
Decarburized and annealed cold-rolled sheet for unidirectional silicon steel sheet production with a thickness of 0.23mm and Si concentration of 3.30%, coated with a water slurry of an annealing separator mainly composed of magnesia on the surface, and dried Then, finish annealing was performed in a dry hydrogen atmosphere at 1200 ° C. for 20 hours. A film mainly composed of forsterite is formed on the surface of the unidirectional silicon steel sheet that has been subjected to secondary recrystallization thus prepared.
[0053]
Next, after pickling in a mixed solution of ammonium fluoride and sulfuric acid and dissolving and removing the surface film, it is chemically polished in a mixed solution of hydrofluoric acid and hydrogen peroxide, and there is no inorganic mineral on the steel sheet surface. A steel sheet having a specular gloss was obtained. This steel plate was heat-treated at a temperature of 1050 ° C. in an atmosphere of 25% nitrogen, 75% hydrogen, and 0 ° C. dew point to form an external oxide type oxide film. At this time, a cooling atmosphere was formed under two conditions of 100% nitrogen, dew point of 15 ° C. (Example 1) and 65 ° C. (Comparative Example 1).
[0054]
To the steel plate thus prepared, a mixed liquid consisting of 100 ml of a 10% colloidal alumina aqueous dispersion, 10 g of amorphous alumina powder, 5 g of boric acid and 200 ml of water was applied and baked at 900 ° C. for 30 seconds to provide tension-providing insulation. A film was formed.
[0055]
About the unidirectional silicon steel plate with an insulating film prepared in this way, the film adhesion was evaluated by the film remaining area ratio when the sample was wound around a cylinder with a diameter of 20 mm. The results are shown in Table 3.
[0056]
[Table 3]
Figure 0004473489
[0057]
From Table 3, compared with Comparative Example 1 having a cooling atmosphere dew point of 65 ° C. and a metal iron cross-sectional area ratio of 40% and a film remaining area ratio of 90%, the film remaining at a cooling atmosphere dew point of 15 ° C. and metal iron cross-sectional area ratio of 20% It can be seen that Example 1 having an area ratio of 100% has better film adhesion and is superior.
[0058]
(Example 2)
A cold rolled sheet for producing a unidirectional silicon steel sheet with a sheet thickness of 0.225 mm and a Si concentration of 3.25% is decarburized and annealed, and a water slurry of an annealing separator mainly composed of alumina is applied to the surface and dried. did. Subsequently, finish annealing was performed at 1200 ° C. for 20 hours in a dry hydrogen atmosphere, and a unidirectional silicon steel sheet having almost no inorganic mineral substance on the surface and having finished secondary recrystallization having a specular gloss was obtained.
[0059]
The steel plate was heat-treated at a temperature of 800 ° C. in an atmosphere of 25% nitrogen, 75% hydrogen, and a dew point of −10 ° C. to form an external oxide oxide film. At this time, a cooling atmosphere was formed with 90% nitrogen and 10% hydrogen under two conditions of a dew point of 35 ° C. (Example 2) and 70 ° C. (Comparative Example 2).
[0060]
The steel plate thus prepared was coated with a mixed solution consisting of 50 ml of a 50% aqueous aluminum phosphate solution, 100 ml of a 20% colloidal silica aqueous dispersion, and 5 g of chromic anhydride, and baked at 850 ° C. for 30 seconds to impart tension. An insulating film was formed.
[0061]
About the unidirectional silicon steel plate with an insulating film prepared in this way, the film adhesion was evaluated by the film remaining area ratio when the sample was wound around a cylinder with a diameter of 20 mm. The results are shown in Table 4.
[0062]
[Table 4]
Figure 0004473489
[0063]
From Table 4, compared with Comparative Example 2 in which the dew point in the cooling atmosphere is 70 ° C. and the cross-sectional area ratio of metal iron is 35% and the remaining area ratio of the film is 90%, the film has a defrost point of 35 ° C. It can be seen that Example 2 having a residual area ratio of 100% has better film adhesion and is superior.
[0064]
(Example 3)
After decarburization annealing was performed on a cold-rolled sheet for producing a unidirectional silicon steel sheet having a thickness of 0.225 mm and a Si concentration of 3.30%, the surface oxide layer was pickled in a mixed solution of ammonium fluoride and sulfuric acid. Dissolved and removed. Subsequently, the alumina powder was applied by an electrostatic coating method, and finish annealing was performed at 1200 ° C. for 20 hours in a dry hydrogen atmosphere.
[0065]
The surface of the unidirectional silicon steel sheet that has been subjected to secondary recrystallization thus prepared is free of inorganic minerals and has a specular gloss.
[0066]
This steel plate was heat-treated at a temperature of 900 ° C. in an atmosphere of 25% nitrogen, 75% hydrogen, and dew point of −15 ° C. to form an external oxide oxide film. At this time, a cooling atmosphere was formed with two conditions of 50% nitrogen and 50% hydrogen and a dew point of 50 ° C. (Example 3) and 65 ° C. (Comparative Example 3).
[0067]
The steel plate thus prepared was coated with a mixed solution of 50 ml magnesium phosphate / aluminum aqueous solution of 50% concentration, 66 ml of 30% colloidal silica aqueous dispersion and 5 g of anhydrous chromic acid, and baked at 850 ° C. for 30 seconds. An imparting insulating film was formed.
[0068]
About the unidirectional silicon steel plate with an insulating film prepared in this way, the film adhesion was evaluated by the film remaining area ratio when the sample was wound around a cylinder with a diameter of 20 mm. The results are shown in Table 5.
[0069]
[Table 5]
Figure 0004473489
[0070]
From Table 5, compared to Comparative Example 3 in which the dew point of the cooling atmosphere is 65 ° C., the cross-sectional area ratio of metal iron is 35%, and the remaining area ratio of the film is 90%, the remaining film remains at a cooling atmosphere dew point of 50 ° C. and the cross-sectional area ratio of metal iron is 25%. It can be seen that Example 3 having an area ratio of 100% has better film adhesion and is superior.
[0071]
Example 4
Decarburized and annealed cold-rolled sheet for unidirectional silicon steel sheet with 0.225mm thickness and Si concentration of 3.35%, and water slurry of annealing separator mainly composed of magnesia and bismuth chloride is applied on the surface. And dried. Then, finish annealing was performed at 1200 ° C. for 20 hours in a dry hydrogen atmosphere to obtain a unidirectional silicon steel sheet on which the secondary recrystallization with almost no inorganic mineral material on the surface was completed.
[0072]
The steel plate was heat-treated at a temperature of 1150 ° C. in an atmosphere of 25% nitrogen, 75% hydrogen, and a dew point of −20 ° C. to form an external oxide oxide film mainly composed of silica. At this time, a cooling atmosphere was formed with two conditions of 100% nitrogen and a dew point of 5 ° C. (Example 4) and 65 ° C. (Comparative Example 4).
[0073]
A steel plate prepared in this manner was coated with a mixed solution consisting of 50 ml of a 50% magnesium phosphate aqueous solution, 100 ml of a 20% colloidal silica aqueous dispersion and 5 g of anhydrous chromic acid, and baked at 850 ° C. for 30 seconds to impart tension. An insulating film was formed.
[0074]
About the unidirectional silicon steel plate with an insulating film prepared in this way, the adhesiveness of the insulating film was evaluated by the film remaining area ratio when the sample was wound around a cylinder having a diameter of 20 mm. The results are shown in Table 6.
[0075]
[Table 6]
Figure 0004473489
[0076]
From Table 6, compared with Comparative Example 4 in which the dew point of the cooling atmosphere is 65 ° C., the cross-sectional area ratio of the metallic iron is 45%, and the remaining area ratio of the film is 90%, the remaining film is 5 ° C. It can be seen that Example 4 having an area ratio of 100% has better film adhesion and is superior.
[0077]
【The invention's effect】
According to the present invention, a unidirectional silicon steel sheet having good film adhesion can be obtained.

Claims (3)

フォルステライト皮膜を酸洗により除去するか、又は、該フォルステライト皮膜の生成を阻害する条件で製造してなる仕上げ焼鈍済み一方向性珪素鋼板の表面に、張力付与性絶縁皮膜を形成してなる一方向性珪素鋼板であって、該張力付与性絶縁皮膜と一方向性珪素鋼板との界面に、膜厚が2nm以上500nm以下のシリカからなる外部酸化型酸化膜を有し、かつ、該外部酸化型酸化膜中に、断面面積率で5%以上30%以下の金属鉄を含有してなることを特徴とする一方向性珪素鋼板。  The forsterite film is removed by pickling, or a tension-imparting insulating film is formed on the surface of a finish annealed unidirectional silicon steel sheet manufactured under conditions that inhibit the formation of the forsterite film A unidirectional silicon steel sheet having an external oxide type oxide film made of silica having a film thickness of 2 nm to 500 nm at the interface between the tension-imparting insulating film and the unidirectional silicon steel sheet; A unidirectional silicon steel sheet, wherein the oxide type oxide film contains metallic iron having a cross-sectional area ratio of 5% to 30%. 前記張力付与性絶縁皮膜が、リン酸塩とコロイド状シリカからなる溶液を鋼板表面に塗布・焼き付けてなる皮膜であることを特徴とする請求項1記載の一方向性珪素鋼板。  2. The unidirectional silicon steel sheet according to claim 1, wherein the tension-imparting insulating film is a film formed by applying and baking a solution comprising phosphate and colloidal silica on the surface of the steel sheet. フォルステライト皮膜を酸洗により除去するか、又は、該フォルステライト皮膜の生成を阻害する条件で製造してなる仕上げ焼鈍済み一方向性珪素鋼板を、1150℃以下600℃以上の温度範囲で、雰囲気露点を−20℃以上0℃以下とする条件、及び、冷却雰囲気露点を5℃以上60℃以下とする条件で焼鈍して、該鋼板の表面に、断面面積率で5%以上30%以下の金属鉄を含有してなるシリカからなる外部酸化型酸化膜を、膜厚2nm以上500nm以下に形成し、次いで、該外部酸化型酸化膜を付与した一方向性珪素鋼板の表面に、リン酸塩とコロイド状シリカからなる溶液を塗布・焼き付けて張力付与性絶縁被膜を形成することを特徴とする一方向性珪素鋼板の製造方法。Forsterite film or be removed by pickling or the finish annealing has been oriented silicon steel sheet formed by manufactured under the condition that inhibits the production of the forsterite coating in a temperature range of 1150 ° C. or less 600 ° C. or higher, the atmosphere Annealing is performed under the condition that the dew point is −20 ° C. or more and 0 ° C. or less, and the cooling atmosphere dew point is 5 ° C. or more and 60 ° C. or less, and the cross-sectional area ratio is 5% or more and 30% or less on the surface of the steel sheet. An external oxide type oxide film made of silica containing metallic iron is formed to a thickness of 2 nm to 500 nm, and then a phosphate is formed on the surface of the unidirectional silicon steel sheet provided with the external oxide type oxide film. A method for producing a unidirectional silicon steel sheet, comprising: applying and baking a solution comprising colloidal silica to form a tension-imparting insulating coating.
JP2002123929A 2002-04-25 2002-04-25 Unidirectional silicon steel sheet and manufacturing method thereof Expired - Fee Related JP4473489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123929A JP4473489B2 (en) 2002-04-25 2002-04-25 Unidirectional silicon steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123929A JP4473489B2 (en) 2002-04-25 2002-04-25 Unidirectional silicon steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003313644A JP2003313644A (en) 2003-11-06
JP4473489B2 true JP4473489B2 (en) 2010-06-02

Family

ID=29539078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123929A Expired - Fee Related JP4473489B2 (en) 2002-04-25 2002-04-25 Unidirectional silicon steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4473489B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149328A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel plate and method for producing same
US12065712B2 (en) 2019-01-16 2024-08-20 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2730823C1 (en) 2017-07-13 2020-08-26 Ниппон Стил Корпорейшн Electrotechnical steel sheet with oriented grain structure
US20200123632A1 (en) 2017-07-13 2020-04-23 Nippon Steel Corporation Grain-oriented electrical steel sheet
CN110832117B (en) 2017-07-13 2022-01-07 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US11225706B2 (en) 2017-07-13 2022-01-18 Nippon Steel Corporation Grain-oriented electrical steel sheet
EP3653753B8 (en) 2017-07-13 2024-09-25 Nippon Steel Corporation Grain-oriented electrical steel sheet
CN110832112B (en) 2017-07-13 2021-12-21 日本制铁株式会社 Grain-oriented electromagnetic steel sheet
CN110869531B (en) 2017-07-13 2022-06-03 日本制铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
EP3653758B1 (en) 2017-07-13 2022-04-27 Nippon Steel Corporation Grain-oriented electrical steel sheet
EP3770290B1 (en) 2018-03-22 2024-04-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP7188104B2 (en) * 2019-01-16 2022-12-13 日本製鉄株式会社 Oriented electrical steel sheet
BR112021013581B1 (en) 2019-01-16 2024-04-30 Nippon Steel Corporation GRAIN ORIENTED ELECTRIC STEEL SHEET WITHOUT A FORSTERITE FILM, AND, FORMING METHODS FOR AN INSULATION COATING AND PRODUCTION FOR A GRAIN ORIENTED ELECTRIC STEEL SHEET WITHOUT A FORSTERITE FILM
KR102582981B1 (en) 2019-01-16 2023-09-26 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet
EP3913083A4 (en) * 2019-01-16 2022-10-05 Nippon Steel Corporation Grain-oriented electrical steel sheet, intermediate steel sheet for grain-oriented electrical steel sheet, and manufacturing method thereof
JP7265122B2 (en) * 2019-01-16 2023-04-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP7200687B2 (en) * 2019-01-16 2023-01-10 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
KR102561510B1 (en) 2019-02-08 2023-08-02 닛폰세이테츠 가부시키가이샤 Grain-oriented electrical steel sheet, method of forming an insulating film on grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet
JP7196939B2 (en) 2019-02-08 2022-12-27 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulating coating on grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698003B2 (en) * 1992-08-25 1998-01-19 新日本製鐵株式会社 Method for forming insulating film on unidirectional silicon steel sheet
JP2664337B2 (en) * 1994-04-15 1997-10-15 新日本製鐵株式会社 Method for forming insulating film on unidirectional silicon steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149328A1 (en) 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel plate and method for producing same
KR20210110682A (en) 2019-01-16 2021-09-08 닛폰세이테츠 가부시키가이샤 A unidirectional electrical steel sheet and its manufacturing method
US12065712B2 (en) 2019-01-16 2024-08-20 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP2003313644A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP4473489B2 (en) Unidirectional silicon steel sheet and manufacturing method thereof
JP4288022B2 (en) Unidirectional silicon steel sheet and manufacturing method thereof
JP4044739B2 (en) Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same
US5961744A (en) Grain oriented silicon steel sheet having low core loss and method of manufacturing same
JP2664337B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3930696B2 (en) Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same
US6713187B2 (en) Grain-oriented silicon steel sheet excellent in adhesiveness to tension-creating insulating coating films and method for producing the same
CN110634592A (en) Insulating film composition for oriented electrical steel sheet, method for forming insulating film on oriented electrical steel sheet, and oriented electrical steel sheet
JP7133708B2 (en) Annealing separation agent composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for producing grain-oriented electrical steel sheet
KR20180072487A (en) Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
JPH05311453A (en) Production of ultralow iron loss grain-oriented electrical steel sheet
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JP4044781B2 (en) Unidirectional silicon steel sheet with excellent tension-providing insulating film adhesion and method for producing the same
JP2004342679A (en) Grain-oriented flat rolled magnetic steel sheets having excellent adhesive property to insulating coating film and extremely low iron loss and its manufacturing method
KR102483579B1 (en) Grain-oriented electrical steel sheet, grain-oriented silicon steel sheet used as a material for grain-oriented electrical steel sheet, method for producing grain-oriented electrical steel sheet, and grain-oriented electrical steel sheet manufacturing method
JP2698501B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP2003171773A (en) Grain oriented silicon steel sheet having tensile film
JPH0347975A (en) Low-iron loss grain-oriented silicon steel sheet
JP3921199B2 (en) Method for producing unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film
JP3272210B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP2002309380A (en) Method of forming insulating coating film on electromagnetic steel sheet
JP3280844B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP4025514B2 (en) Insulating film forming method for unidirectional silicon steel sheet with excellent magnetic properties and film adhesion
JP4300604B2 (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4473489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees