JPH11293089A - Epoxy resin composition and ferroelectrics memory device - Google Patents
Epoxy resin composition and ferroelectrics memory deviceInfo
- Publication number
- JPH11293089A JPH11293089A JP10490798A JP10490798A JPH11293089A JP H11293089 A JPH11293089 A JP H11293089A JP 10490798 A JP10490798 A JP 10490798A JP 10490798 A JP10490798 A JP 10490798A JP H11293089 A JPH11293089 A JP H11293089A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- epoxy resin
- amount
- hydrogen gas
- organic silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素ガス発生量が
極めて少なく、強誘電体メモリーの強誘電性保持性に優
れた半導体封止用エポキシ樹脂組成物及びそれにより封
止した強誘電体メモリー装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epoxy resin composition for encapsulating a semiconductor which has an extremely small amount of hydrogen gas generation and is excellent in the ferroelectric retention of a ferroelectric memory, and a ferroelectric memory encapsulated thereby. It concerns the device.
【0002】[0002]
【従来の技術】近年、プラスチック封止されたメモリー
半導体装置は高集積化が進み、メモリーセル素材に関し
ては強誘電体を用いた構造が効果的であるとされてきて
いる。しかし、従来の半導体封止用エポキシ樹脂組成物
を用いてこれらの強誘電体メモリーを封止した場合、強
誘電特性が保持できないという問題が発生した。従来の
半導体封止材料から加熱時に極く少量の水素ガスが発生
することが判明し、これまで問題視されなかったpp
m,ppb単位の水素ガスでも強誘電体メモリー素子に
おいてはシリコンチップの保護膜を通過したこの極く少
量の水素ガスが、強誘電体素子の強誘電特性を低下させ
てしまうことが判明し、ppm、ppb単位での水素ガ
ス発生量でも新たな問題として注目されてきた。2. Description of the Related Art In recent years, a memory semiconductor device sealed with plastic has been highly integrated, and a structure using a ferroelectric has been considered to be effective as a memory cell material. However, when these ferroelectric memories are sealed using a conventional epoxy resin composition for semiconductor encapsulation, there has been a problem that ferroelectric characteristics cannot be maintained. It has been found that a very small amount of hydrogen gas is generated during heating from a conventional semiconductor encapsulating material.
It has been found that even in hydrogen gas of m or ppb unit, in a ferroelectric memory element, this very small amount of hydrogen gas that has passed through the protective film of the silicon chip deteriorates the ferroelectric characteristics of the ferroelectric element. Attention has also been focused on the amount of hydrogen gas generated in ppm and ppb as a new problem.
【0003】[0003]
【発明が解決しようとする課題】本発明は、強誘電体メ
モリーの強誘電特性保持に優れた半導体封止用エポキシ
樹脂組成物及び強誘電体メモリー装置を提供するもので
ある。SUMMARY OF THE INVENTION An object of the present invention is to provide an epoxy resin composition for semiconductor encapsulation and a ferroelectric memory device which are excellent in maintaining ferroelectric characteristics of a ferroelectric memory.
【0004】[0004]
【課題を解決するための手段】本発明は、これらの問題
点に鑑みなされたものであり、半導体封止用材料の成形
時及び後硬化時に発生する水素ガスを微少量に抑えるこ
とにより強誘電体メモリーの強誘電特性を保持できるこ
とを見出し、特に有機珪素化合物に含まれるSiH基が
水素ガス発生源であることを見出し、本発明を完成する
に至ったものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made in view of the above-mentioned problems. The inventors have found that the ferroelectric properties of the body memory can be maintained, and in particular, have found that the SiH group contained in the organic silicon compound is a hydrogen gas generating source, and have completed the present invention.
【0005】即ち、本発明は、(A)エポキシ樹脂、
(B)フェノール樹脂硬化剤、(C)無機充填材、
(D)硬化促進剤、及び(E)非有機珪素化合物系低応
力剤、有機珪素化合物から選ばれた1種以上を必須成分
とし、175℃、90分加熱時の水素ガス発生量が全樹
脂組成物1.0g当たり20ナノモル以下であることを
特徴とする強誘電体メモリー封止用エポキシ樹脂組成物
であり、好ましくは非有機珪素化合物系低応力剤、又は
有機珪素化合物の175℃、90分加熱時の水素ガス発
生量が1.0g当たり0.5マイクロモル以下であり、
非有機珪素化合物系低応力剤、有機珪素化合物から選ば
れた1種以上のものの配合量が全樹脂組成物中4.0重
量%以下である強誘電体メモリー封止用エポキシ樹脂組
成物である。更には前記記載のエポキシ樹脂組成物を使
用して強誘電体メモリーを封止してなることを特徴とす
る強誘電体メモリー装置である。That is, the present invention provides (A) an epoxy resin,
(B) a phenolic resin curing agent, (C) an inorganic filler,
The resin contains at least one selected from (D) a curing accelerator, (E) a non-organic silicon compound-based low-stress agent, and an organic silicon compound. An epoxy resin composition for encapsulating a ferroelectric memory, wherein the epoxy resin composition is 20 nmol or less per 1.0 g of the composition. The amount of hydrogen gas generated during minute heating is 0.5 micromol or less per 1.0 g,
An epoxy resin composition for encapsulating a ferroelectric memory, wherein a compounding amount of at least one selected from a non-organic silicon compound-based low stress agent and an organic silicon compound is 4.0% by weight or less in the total resin composition. . Further, there is provided a ferroelectric memory device characterized in that a ferroelectric memory is sealed using the epoxy resin composition described above.
【0006】[0006]
【発明の実施の形態】本発明は、エポキシ樹脂組成物を
175℃にて90分加熱した時の総水素ガス発生量が
1.0g当たり20ナノモル以下であり、特に水素ガス
を発生する原因が有機珪素化合物であることを見出した
ものである。有機珪素化合物にはSiH基が含有されて
おり、これが加熱等によって容易に水素ガスを発生させ
る。従って本発明では、非有機珪素化合物系低応力剤、
有機珪素化合物から選ばれた1種以上を必須成分とし、
175℃、90分加熱後の水素ガス発生量が全樹脂組成
物1.0g当たり20ナノモル以下であることを特徴と
する強誘電体メモリー封止用エポキシ樹脂組成物であ
り、好ましくは非有機珪素化合物系低応力剤、又は有機
珪素化合物の175℃、90分加熱した時の水素ガス発
生量が1.0g当たり0.5マイクロモル以下であり、
非有機珪素化合物系低応力剤、有機珪素化合物から選ば
れた1種以上のものの配合量が全樹脂組成物中4.0重
量%以下であることを特徴としており、これを用いて封
止した強誘電体メモリーは強誘電性保持性に優れてい
る。強誘電体メモリーの強誘電性保持性を達成するため
には各原料成分の水素ガス発生量を低く抑えることが肝
要である。特に水素ガスを発生し易い原料成分としては
有機珪素化合物が挙げられる。これらの原料成分はカッ
プリング剤、低応力剤として封止用樹脂組成物に通常含
有されている。これらの化合物にはSiH基が微量含ま
れており、これが加熱されるだけで容易に水素ガスを発
生する要因となる。このSiH基は主にシラン化合物、
シリコーン系化合物の出発原料に不純物として残存して
いる場合が多い。BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, the total amount of hydrogen gas generated when an epoxy resin composition is heated at 175 ° C. for 90 minutes is 20 nmol or less per 1.0 g. It has been found that it is an organic silicon compound. Organic silicon compounds contain SiH groups, which easily generate hydrogen gas by heating or the like. Therefore, in the present invention, a non-organic silicon compound-based low stress agent,
At least one selected from organic silicon compounds as an essential component,
An epoxy resin composition for encapsulating ferroelectric memory, characterized in that the amount of hydrogen gas generated after heating at 175 ° C. for 90 minutes is not more than 20 nmol per 1.0 g of the total resin composition; The compound-based low-stress agent, or the amount of hydrogen gas generated when the organosilicon compound is heated at 175 ° C. for 90 minutes is 0.5 μmol or less per 1.0 g,
It is characterized in that the compounding amount of at least one selected from the group consisting of a non-organic silicon compound-based low stress agent and an organic silicon compound is 4.0% by weight or less based on the whole resin composition. Ferroelectric memories have excellent ferroelectricity retention. In order to achieve the ferroelectricity retention of the ferroelectric memory, it is important to keep the amount of hydrogen gas generated from each raw material component low. In particular, an organic silicon compound is a raw material component that easily generates hydrogen gas. These raw material components are usually contained in the sealing resin composition as a coupling agent and a low stress agent. These compounds contain a small amount of SiH groups, which can easily generate hydrogen gas only by heating. This SiH group is mainly a silane compound,
It often remains as an impurity in the starting material of the silicone compound.
【0007】非有機珪素化合物系低応力剤、有機珪素化
合物から選ばれた1種以上のものの配合量は、全樹脂組
成物中4.0重量%以下が好ましい。4.0重量%を越
えると樹脂組成物からの水素ガス発生量が大きくなって
しまい、好ましくない。[0007] The compounding amount of at least one selected from the group consisting of a non-organic silicon compound-based low stress agent and an organic silicon compound is preferably 4.0% by weight or less in the total resin composition. If it exceeds 4.0% by weight, the amount of hydrogen gas generated from the resin composition increases, which is not preferable.
【0008】本発明に用いる非有機珪素化合物系低応力
剤としては、アクリロニトリル系ゴム、ポリブタジエン
系ゴム、ホリスチレン系ゴム等が挙げられ、175℃、
90分加熱時の水素ガス発生量が1.0g当たり0.5
マイクロモル以下であることが好ましい。0.5マイク
ロモルを越えると水素ガス発生量が大きくなり、封止さ
れた強誘電体メモリーの強誘電性保持性が著しく低下し
てしまう。これら非有機珪素化合物系低応力剤の添加量
としては、全樹脂組成物中に0.2〜4.0重量%が好
ましい。0.2重量%未満だと低応力効果が発揮されな
くなるため好ましくなく、4.0重量%を越えると樹脂
組成物の成形時の溶融粘度が高くなり、ワイヤースウィ
ープやパッドシフトなどの成形不良が発生するため好ま
しくない。The non-organic silicon compound-based low stress agent used in the present invention includes acrylonitrile-based rubber, polybutadiene-based rubber, polystyrene-based rubber and the like.
The amount of hydrogen gas generated during heating for 90 minutes is 0.5
Preferably it is less than micromolar. If it exceeds 0.5 μmol, the amount of hydrogen gas generated becomes large, and the ferroelectric retention of the sealed ferroelectric memory is significantly reduced. The amount of the non-organic silicon compound-based low stress agent is preferably 0.2 to 4.0% by weight in the whole resin composition. If it is less than 0.2% by weight, the low stress effect is not exhibited because it is not preferable. If it exceeds 4.0% by weight, the melt viscosity during molding of the resin composition becomes high, and molding defects such as wire sweep and pad shift are caused. It is not preferable because it occurs.
【0009】本発明に用いる有機珪素化合物とはシラン
カップリング剤、シリコーンオイル、シリコーンゲル、
シリコーンゴムを指し、175℃、90分加熱時の水素
ガス発生量が1.0g当たり0.5マイクロモル以下で
あることが好ましい。0.5マイクロモルを越えると水
素ガス発生量が大きくなり、封止された強誘電体メモリ
ーの強誘電性保持性が著しく低下してしまう。The organic silicon compound used in the present invention includes a silane coupling agent, a silicone oil, a silicone gel,
The term refers to silicone rubber, and the amount of hydrogen gas generated when heated at 175 ° C. for 90 minutes is preferably 0.5 μmol or less per 1.0 g. If it exceeds 0.5 μmol, the amount of hydrogen gas generated becomes large, and the ferroelectric retention of the sealed ferroelectric memory is significantly reduced.
【0010】シランカップリング剤は、Si原子に置換
している官能基としてはメトキシ基、エポキシ基、チオ
ール基、水酸基、アミノ基、ウレイド基等が挙げられ
る。更にシランカップリング剤の他にアルミニウム系、
チタン系カップリング剤などを併用して用いることも可
能である。これらカップリング剤の添加量としては、全
樹脂組成物中に0.2〜2.0重量%が好ましい。0.
2重量%未満だとカップリング効果が少なくなるため好
ましくなく、2.0重量%を越えると成形品にバリ、油
浮きなどの成形不良が発生して好ましくない。In the silane coupling agent, examples of the functional group substituted on the Si atom include a methoxy group, an epoxy group, a thiol group, a hydroxyl group, an amino group, and a ureide group. In addition to the silane coupling agent, aluminum-based,
It is also possible to use a titanium-based coupling agent or the like in combination. The amount of addition of these coupling agents is preferably 0.2 to 2.0% by weight in the whole resin composition. 0.
If the amount is less than 2% by weight, the coupling effect is reduced, which is not preferable. If the amount is more than 2.0% by weight, molding defects such as burrs and floating oil occur in the molded product, which is not preferable.
【0011】シリコーンオイルは、Si原子に置換して
いる官能基としてはメトキシ基、フェニル基、エポキシ
基、チオール基、水酸基、アミノ基、ウレイド基、ポリ
エチレン−プロピレンエーテル基等が挙げられる。シリ
コーンオイルの添加量は、全樹脂組成物中に0.3〜
4.0重量%が好ましい。0.3重量%未満だと低応力
化の効果が少ないため好ましくなく、4.0重量%を越
えると成形品にバリ、油浮きなどの成形不良が発生して
好ましくない。In the silicone oil, examples of the functional group substituted by the Si atom include a methoxy group, a phenyl group, an epoxy group, a thiol group, a hydroxyl group, an amino group, a ureide group, and a polyethylene-propylene ether group. The amount of silicone oil added is 0.3 to 0.3% in the total resin composition.
4.0% by weight is preferred. If the amount is less than 0.3% by weight, the effect of reducing the stress is small, and if it exceeds 4.0% by weight, molding defects such as burrs and oil floating occur in the molded product.
【0012】シリコーンゴム、シリコーンゲルは、Si
原子に置換している官能基としてはメトキシ基、フェニ
ル基、エポキシ基、チオール基、水酸基、アミノ基、ウ
レイド基、ポリエチレン−プロピレンエーテル基等が挙
げられる。シリコーンゴム、シリコーンゲルの添加量と
しては、全樹脂組成物中に0.3〜4.0重量%が好ま
しい。0.3重量%未満だと低応力化の効果が少ないた
め好ましくなく、4.0重量%を越えると樹脂組成物の
成形時の溶融粘度が高くなり、ワイヤースウィープやパ
ッドシフトなどの成形不良が発生するため好ましくな
い。Silicone rubber and silicone gel are Si
Examples of the functional group substituted on the atom include a methoxy group, a phenyl group, an epoxy group, a thiol group, a hydroxyl group, an amino group, an ureido group, a polyethylene-propylene ether group, and the like. The addition amount of the silicone rubber and silicone gel is preferably 0.3 to 4.0% by weight in the whole resin composition. If the amount is less than 0.3% by weight, the effect of lowering the stress is small, so that it is not preferable. If the amount exceeds 4.0% by weight, the melt viscosity at the time of molding the resin composition becomes high, and molding defects such as wire sweep and pad shift are caused. It is not preferable because it occurs.
【0013】本発明に用いるエポキシ樹脂としては、分
子中にエポキシ基を含むモノマー、オリゴマー、ポリマ
ーであり、特に限定しないが、例えばビフェニル型及び
スチルベン型二官能エポキシ樹脂、オルソクレゾールノ
ボラック型エポキシ樹脂、フエノールノボラック型エポ
キシ樹脂、ビスフェノール型エポキシ樹脂、ナフタレン
型エポキシ樹脂、トリフェノールメタン型エポキシ樹
脂、トリアジン核含有エポキシ樹脂、及びこれらの変性
樹脂等が挙げられる。樹脂組成物の耐湿性向上のために
は、塩素イオン、ナトリウムイオン等の不純物イオンが
極力少ないことが、又良好な硬化性を得るためのエポキ
シ当量としては150〜300が好ましい。The epoxy resin used in the present invention is a monomer, oligomer or polymer containing an epoxy group in the molecule, and is not particularly limited. Examples include phenol novolak type epoxy resin, bisphenol type epoxy resin, naphthalene type epoxy resin, triphenolmethane type epoxy resin, triazine nucleus containing epoxy resin, and modified resins thereof. In order to improve the moisture resistance of the resin composition, it is preferable that impurity ions such as chlorine ions and sodium ions are as small as possible, and the epoxy equivalent for obtaining good curability is preferably 150 to 300.
【0014】本発明に用いるフェノール樹脂硬化剤とし
ては、分子中にフェノール性水酸基を含むモノマー、オ
リゴマー、ポリマーであり、特に限定しないが、例えば
フェノールノボラック樹脂、ジシクロペンタジエン変性
フェノール樹脂、パラキシリレン変性フェノール樹脂、
トリフェノールメタン樹脂、及びこれらの変性樹脂が挙
げられる。樹脂組成物の良好な硬化性を得るための水酸
基当量としては80〜250程度が好ましい。The phenolic resin curing agent used in the present invention is a monomer, an oligomer or a polymer containing a phenolic hydroxyl group in the molecule, and is not particularly limited. resin,
Triphenolmethane resins and their modified resins. The hydroxyl equivalent for obtaining good curability of the resin composition is preferably about 80 to 250.
【0015】本発明に用いる無機充填材は、溶融シリカ
粉末、球状シリカ粉末、結晶シリカ粉末、アルミナ等の
中から選ばれる。特に溶融シリカ粉末が望ましい。又配
合量については流動性低下による成形性不良が懸念され
るために要求特性に合わせ適宜選択、調整して用いられ
る。The inorganic filler used in the present invention is selected from fused silica powder, spherical silica powder, crystalline silica powder, alumina and the like. Particularly, a fused silica powder is desirable. Further, the compounding amount is appropriately selected and adjusted according to the required characteristics, since there is a fear that poor moldability due to a decrease in fluidity is used.
【0016】本発明に用いる硬化促進剤は、エポキシ基
とフェノール性水酸基との反応を促進するもので有れば
良く、一般に封止用樹脂組成物に用いられているもので
よい。代表的なものとしては、1,8−ジアザビシクロ
(5,4,0)ウンデセン−7、トリフェニルホスフィ
ン、ベンジルジメチルアミン、2−メチルイミダゾール
等が挙げられ、これらは単独でも併用してもよい。The curing accelerator used in the present invention may be any one which promotes the reaction between the epoxy group and the phenolic hydroxyl group, and may be one generally used in a sealing resin composition. Representative examples include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole, and the like, and these may be used alone or in combination.
【0017】本発明の樹脂組成物は、(A)〜(E)の
他、必要に応じて酸化アンチモン等の難燃剤、カーボン
ブラック等の着色剤、天然ワックス、合成ワックス等の
離型剤等の種々の添加剤を適宜配合しても差し支えな
い。又、本発明の樹脂組成物は、(A)〜(E)成分、
及びその他の添加剤等をスーパーミキサー等の混合機を
用いて充分に均一に混合した後、熱ロール、又はニーダ
ー等の溶融混練機で混練し、冷却後粉砕して得られる。
本発明の樹脂組成物を用いて、強誘電体メモリーを封止
し、強誘電体メモリー装置を製造するには、トランスフ
ァーモールド、コンプレッションモールド、インジェク
ションモールド等の成形方法で硬化成形すればよい。The resin composition of the present invention may further comprise (A) to (E), a flame retardant such as antimony oxide, a coloring agent such as carbon black, and a release agent such as natural wax and synthetic wax, if necessary. May be appropriately compounded. Further, the resin composition of the present invention comprises components (A) to (E),
And other additives and the like are sufficiently and uniformly mixed using a mixer such as a super mixer, and then kneaded with a melt kneader such as a hot roll or a kneader, cooled, and pulverized.
In order to manufacture a ferroelectric memory device by encapsulating a ferroelectric memory using the resin composition of the present invention, it is only necessary to cure and mold by a molding method such as a transfer mold, a compression mold, and an injection mold.
【0018】[0018]
【実施例】以下に本発明の実施例及び比較例を示し、具
体的に説明する。 《実施例1》 下記組成物 ・溶融球状シリカ粉末A (平均粒子径20μm、比表面積2.5m2/g) 76.60重量部 ・o−クレゾールノボラック型エポキシ樹脂 (軟化点62℃、エポキシ当量200g/eq) 14.00重量部 ・フェノールノボラック樹脂 (軟化点87℃、水酸基当量104g/eq) 7.00重量部 ・シランカップリング剤B 0.40重量部 ・シリコーンオイルD 1.00重量部 ・1,8−ジアザビシクロ(5,4,0)ウンデセン−7 (以下、DBUという) 0.20重量部 ・カーボンブラック 0.30重量部 ・カルナバワックス 0.50重量部 を常温でスーパーミキサーを用いて混合し、70〜10
0℃で2軸ロールで混練し、冷却後粉砕して樹脂組成物
を得た。得られた樹脂組成物を以下の方法で評価した。
結果を表1に示す。EXAMPLES Examples and comparative examples of the present invention will be shown below to specifically explain the present invention. << Example 1 >> The following composition: fused spherical silica powder A (average particle size: 20 μm, specific surface area: 2.5 m 2 / g) 76.60 parts by weight o-cresol novolak type epoxy resin (softening point: 62 ° C., epoxy equivalent) 200 g / eq) 14.00 parts by weight Phenol novolak resin (softening point 87 ° C., hydroxyl equivalent 104 g / eq) 7.00 parts by weight Silane coupling agent B 0.40 parts by weight Silicone oil D 1.00 parts by weight・ 0.20 parts by weight of 1,8-diazabicyclo (5,4,0) undecene-7 (hereinafter referred to as DBU) ・ 0.30 parts by weight of carbon black ・ 0.50 parts by weight of carnauba wax at room temperature using a super mixer 70 to 10
The mixture was kneaded with a biaxial roll at 0 ° C., cooled and pulverized to obtain a resin composition. The obtained resin composition was evaluated by the following method.
Table 1 shows the results.
【0019】《実施例2〜5》表1の処方に従って配合
し、実施例1と同様にして樹脂組成物を得、実施例1と
同様にして評価した。結果を表1に示す。《比較例1〜
5》表2の処方に従って配合し、実施例1と同様にして
樹脂組成物を得、実施例1と同様にして評価した。結果
を表2に示す。Examples 2 to 5 A resin composition was prepared according to the formulation shown in Table 1 to obtain a resin composition in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 1 shows the results. << Comparative Examples 1 to
5 >> Compounded according to the formulation in Table 2, a resin composition was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. Table 2 shows the results.
【0020】なお使用したその他のエポキシ樹脂並びに
シランカップリング剤、シリコーンオイル及びシリコー
ンゴム等の構造式及び175℃、90分加熱時の水素ガ
ス発生量は次のとおりである。 ・下記式(1)のエポキシ樹脂:軟化点62℃、エポキ
シ当量257g/eq ・シランカップリング剤B:下記式(2)、水素ガス発
生量;0.45マイクロモル/g ・シランカップリング剤C:下記式(2)、水素ガス発
生量;15.00マイクロモル/g ・シリコーンオイルD:下記式(3)、水素ガス発生
量;0.40マイクロモル/gなお式(3)のl=3
0、m=5、n=20、p=40(いずれも平均値) ・シリコーンオイルE:下記式(3)、水素ガス発生
量;10.00マイクロモル/g ・シリコーンゴム粉末F:水素ガス発生量;0.40マ
イクロモル/g ・シリコーンゴム粉末G:水素ガス発生量;13.00
マイクロモル/g・ アクリロニトリルブタジエンゴム粉末H(アクリロニ
トリル含有量25重量%) 水素ガス発生量;検出されずThe structural formulas of the other epoxy resins, silane coupling agents, silicone oils and silicone rubbers used, and the amounts of hydrogen gas generated when heated at 175 ° C. for 90 minutes are as follows.・ Epoxy resin of the following formula (1): softening point 62 ° C., epoxy equivalent 257 g / eq ・ Silane coupling agent B: the following formula (2), hydrogen gas generation amount: 0.45 μmol / g ・ Silane coupling agent C: the following formula (2), the amount of hydrogen gas generated: 15.00 μmol / g ・ Silicone oil D: the following formula (3), the amount of hydrogen gas generated: 0.40 μmol / g l of the formula (3) = 3
0, m = 5, n = 20, p = 40 (all are average values) Silicone oil E: the following formula (3), hydrogen gas generation amount: 10.00 μmol / g Silicone rubber powder F: hydrogen gas Generation amount: 0.40 micromol / g Silicone rubber powder G: generation amount of hydrogen gas; 13.00
Acrylonitrile butadiene rubber powder H (acrylonitrile content 25% by weight) Hydrogen gas generation amount: not detected
【0021】[0021]
【化1】 Embedded image
【0022】[0022]
【化2】 Embedded image
【0023】[0023]
【化3】 Embedded image
【0024】《評価方法》 ・水素ガス発生量の測定方法:エポキシ樹脂組成物又は
非有機珪素化合物系低応力剤、有機珪素化合物のサンプ
ル約0.70g前後を精秤して密封されたガラス管内に
入れてガラスウールプラグにて窒素ボンベ、測定器に接
続した後に175℃にて90分加熱して窒素気流にて測
定器へと発生ガスを誘導し、水素ガス量を測定した。測
定器にはTRACE ANALYTICAL社製RGA
5 ProcessGas Analyzerを用い、
サンプル1.0g当たりの水素ガス発生モル数を求め
た。 ・スパイラルフロー:EMMI−I−66に準じた試験
用金型を用い、金型温度175℃、注入圧力70kgf
/cm2、硬化時間120秒でスパイラルフローを測定
した。(単位cm) ・SOP型パッケージの作製:強誘電体メモリー素子を
実装し、低圧トランスファー成形機を用いて175℃、
圧力70kgf/cm2 、硬化時間90秒で、ワイヤー
流れ量、耐半田クラック性、及び半田耐湿性の試験用の
16リードSOP型のパッケージ[リードフレームは
銅、寸法は6.0×13.5×厚さ4.0mm(以下、S
OP型16Lパッケージという)]を成形した。<< Evaluation Method >> A method for measuring the amount of hydrogen gas generated: In a sealed glass tube, approximately 0.70 g of a sample of an epoxy resin composition or a non-organic silicon compound-based low-stress agent and an organic silicon compound was precisely weighed. And then connected to a nitrogen cylinder and a measuring instrument with a glass wool plug, heated at 175 ° C. for 90 minutes, guided the generated gas to the measuring instrument with a nitrogen stream, and measured the amount of hydrogen gas. RGA manufactured by TRACE ANALYTICAL
5 Using ProcessGas Analyzer,
The number of moles of hydrogen gas generated per 1.0 g of the sample was determined. -Spiral flow: Using a test mold according to EMMI-I-66, mold temperature 175 ° C, injection pressure 70kgf
Spiral flow was measured at a curing time of 120 seconds / cm 2 . (Unit: cm) ・ Production of SOP type package: A ferroelectric memory element is mounted, and a low-pressure transfer molding machine is used at 175 ° C.
A 16-lead SOP type package for testing wire flow, solder crack resistance, and solder moisture resistance at a pressure of 70 kgf / cm 2 and a curing time of 90 seconds [Lead frame is copper, dimensions are 6.0 × 13.5. × thickness 4.0mm (hereinafter, S
OP type 16L package)].
【0025】・充填性:前記のSOP型16Lパッケー
ジを成形した際、未充填部分の有無を肉眼で観察した。 ・耐半田クラック性:前記のSOP型16Lパッケージ
を175℃、4時間で後硬化した。次に、85℃、相対
湿度60%の恒温恒湿槽中で168時間吸湿処理を行
い、更に240℃のIRリフロー炉で熱処理した。得ら
れたパッケージについて、超音波探傷装置を用いて不良
の有無を観察した。パッケージ内部の界面の剥離、及び
クラックを不良とし、総数24個のパッケージに対する
不良のパッケージの個数を求め、不良数/総数で表し
た。 ・半田耐湿性試験:前記のSOP型16Lパッケージを
175℃、4時間で後硬化した。次に、85℃、相対湿
度60%の恒温恒湿槽中で168時間吸湿処理を行い、
更に240℃のIRリフロー炉で熱処理した。その後、
プレッシャークッカー試験(120℃、相対湿度100
%)を行い、回路のオープン不良を測定した。総数24
個のパッケージに対する不良のパッケージの個数から不
良率を求め、不良率50%となった時間を平均寿命とし
た。(単位は時間) ・強誘電性保持性試験:前記のSOP型16Lパッケー
ジを用いて回路の不良を測定した。総数24個のパッケ
ージに対する不良のパッケージの個数を求め、不良数/
総数で表した。更に175℃、4時間で後硬化したSO
P型16Lパッケージに対しても同様の操作を実施し
た。Fillability: When the SOP type 16L package was molded, the presence or absence of an unfilled portion was visually observed. -Solder crack resistance: The SOP type 16L package was post-cured at 175 ° C for 4 hours. Next, the sample was subjected to a moisture absorption treatment in a constant temperature / humidity bath at 85 ° C. and a relative humidity of 60% for 168 hours, and further heat-treated in an IR reflow furnace at 240 ° C. The obtained package was inspected for defects using an ultrasonic flaw detector. The peeling and cracking of the interface inside the package were regarded as defective, and the number of defective packages with respect to a total of 24 packages was determined and expressed as the number of defectives / total. -Solder moisture resistance test: The SOP type 16L package was post-cured at 175 ° C for 4 hours. Next, a moisture absorption treatment was performed for 168 hours in a thermo-hygrostat at 85 ° C. and a relative humidity of 60%.
Further, heat treatment was performed in an IR reflow furnace at 240 ° C. afterwards,
Pressure cooker test (120 ° C, relative humidity 100
%), And the open failure of the circuit was measured. Total 24
The defect rate was determined from the number of defective packages for each package, and the time when the defect rate became 50% was defined as the average life. (Unit is time) Ferroelectricity retention test: Circuit failure was measured using the SOP type 16L package described above. The number of defective packages for a total of 24 packages is obtained, and the number of defective packages /
Expressed in total. SO 4 post-cured at 175 ° C. for 4 hours
The same operation was performed on the P-type 16L package.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【発明の効果】本発明のエポキシ樹脂組成物は、加熱時
の水素ガスの発生量が全樹脂組成物1.0g当たり20
ナノモル以下であるため、これにより封止された強誘電
体メモリーは強誘電性保持性に優れており、IC、LS
Iの高信頼性要求に対して広範囲に適用できる。According to the epoxy resin composition of the present invention, the amount of hydrogen gas generated when heated is 20 g per 1.0 g of the total resin composition.
Since it is less than nanomolar, the ferroelectric memory encapsulated by this has excellent ferroelectricity retention properties, and IC, LS
Widely applicable to the high reliability requirements of I.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 23/31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 23/31
Claims (4)
樹脂硬化剤、(C)無機充填材、(D)硬化促進剤、及
び(E)非有機珪素化合物系低応力剤、有機珪素化合物
から選ばれた1種以上を必須成分とし、175℃、90
分加熱時の水素ガス発生量が全樹脂組成物1.0g当た
り20ナノモル以下であることを特徴とする強誘電体メ
モリー封止用エポキシ樹脂組成物。1. A method comprising: (A) an epoxy resin, (B) a phenolic resin curing agent, (C) an inorganic filler, (D) a curing accelerator, and (E) a non-organic silicon compound-based low stress agent, and an organic silicon compound. One or more selected components are used as essential components, and 175 ° C, 90
An epoxy resin composition for encapsulating ferroelectric memory, wherein the amount of hydrogen gas generated during minute heating is 20 nmol or less per 1.0 g of the entire resin composition.
珪素化合物の175℃、90分加熱時の水素ガス発生量
が、1.0g当たり0.5マイクロモル以下である請求
項1記載の強誘電体メモリー封止用エポキシ樹脂組成
物。2. The method according to claim 1, wherein the amount of hydrogen gas generated when the non-organic silicon compound-based low stress agent or the organic silicon compound is heated at 175 ° C. for 90 minutes is 0.5 μmol or less per 1.0 g. Epoxy resin composition for ferroelectric memory encapsulation.
化合物から選ばれた1種以上のものの配合量が、全樹脂
組成物中4.0重量%以下である請求項1、又は請求項
2記載の強誘電体メモリー封止用エポキシ樹脂組成物。3. The composition according to claim 1, wherein the compounding amount of at least one selected from the group consisting of a non-organic silicon compound-based low stress agent and an organic silicon compound is 4.0% by weight or less in the total resin composition. 3. The epoxy resin composition for sealing a ferroelectric memory according to 2.
組成物を使用して強誘電体メモリーを封止してなること
を特徴とする強誘電体メモリー装置。4. A ferroelectric memory device wherein a ferroelectric memory is encapsulated using the epoxy resin composition according to claim 1, 2 or 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10490798A JPH11293089A (en) | 1998-04-15 | 1998-04-15 | Epoxy resin composition and ferroelectrics memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10490798A JPH11293089A (en) | 1998-04-15 | 1998-04-15 | Epoxy resin composition and ferroelectrics memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11293089A true JPH11293089A (en) | 1999-10-26 |
Family
ID=14393201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10490798A Pending JPH11293089A (en) | 1998-04-15 | 1998-04-15 | Epoxy resin composition and ferroelectrics memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11293089A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6762446B2 (en) | 2000-07-28 | 2004-07-13 | Saes Getters S.P.A. | Integrated capacitive device with hydrogen degradable dielectric layer protected by getter layer |
US7013998B2 (en) | 2003-11-20 | 2006-03-21 | Halliburton Energy Services, Inc. | Drill bit having an improved seal and lubrication method using same |
JP2009067988A (en) * | 2007-08-21 | 2009-04-02 | Hitachi Chem Co Ltd | Highly heat-resistant resin composition and prepreg using the same |
US7696275B2 (en) | 2003-11-20 | 2010-04-13 | Halliburton Energy Services, Inc. | Downhole seal element formed from a nanocomposite material |
KR101030765B1 (en) | 2007-02-27 | 2011-04-27 | 후지쯔 세미컨덕터 가부시키가이샤 | Semiconductor storage unit, process for manufacturing the same, and method of forming package resin |
-
1998
- 1998-04-15 JP JP10490798A patent/JPH11293089A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6762446B2 (en) | 2000-07-28 | 2004-07-13 | Saes Getters S.P.A. | Integrated capacitive device with hydrogen degradable dielectric layer protected by getter layer |
US7013998B2 (en) | 2003-11-20 | 2006-03-21 | Halliburton Energy Services, Inc. | Drill bit having an improved seal and lubrication method using same |
USRE40197E1 (en) * | 2003-11-20 | 2008-04-01 | Halliburton Energy Services, Inc. | Drill bit having an improved seal and lubrication method using same |
US7696275B2 (en) | 2003-11-20 | 2010-04-13 | Halliburton Energy Services, Inc. | Downhole seal element formed from a nanocomposite material |
US8283402B2 (en) | 2003-11-20 | 2012-10-09 | Halliburton Energy Services, Inc. | Downhole seal element formed from a nanocomposite material |
KR101030765B1 (en) | 2007-02-27 | 2011-04-27 | 후지쯔 세미컨덕터 가부시키가이샤 | Semiconductor storage unit, process for manufacturing the same, and method of forming package resin |
JP2009067988A (en) * | 2007-08-21 | 2009-04-02 | Hitachi Chem Co Ltd | Highly heat-resistant resin composition and prepreg using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4692885B2 (en) | Epoxy resin composition and semiconductor device | |
JP2701695B2 (en) | Epoxy resin composition and semiconductor device | |
JPH0496928A (en) | Epoxy resin composition and semiconductor device | |
JPH11293089A (en) | Epoxy resin composition and ferroelectrics memory device | |
JP4250987B2 (en) | Epoxy resin composition and semiconductor device | |
JPH0597969A (en) | Thermosetting resin composition and semiconductor device | |
JP5153050B2 (en) | Epoxy resin composition and semiconductor device | |
JP2000248153A (en) | Epoxy resin composition and ferroelectric memory device | |
JP2003213084A (en) | Epoxy resin composition and semiconductor device | |
JPH07107091B2 (en) | Epoxy resin composition for semiconductor encapsulation | |
JPH05299537A (en) | Epoxy resin composition | |
JP2006257309A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device | |
JP3261845B2 (en) | Semiconductor device | |
JP2672871B2 (en) | Method for manufacturing resin-encapsulated semiconductor device | |
JPH08337634A (en) | Epoxy resin composition and semiconductor device sealed therewith | |
JP2843247B2 (en) | Epoxy resin composition | |
JP4254265B2 (en) | Epoxy resin composition and semiconductor device | |
JP2005239911A (en) | Epoxy resin composition and semiconductor device | |
JP2000281748A (en) | Epoxy resin composition and semiconductor device | |
JPH11158354A (en) | Resin composition for sealing and resin-sealed semiconductor device | |
JP2003238660A (en) | Epoxy resin composition and semiconductor device | |
JP4660973B2 (en) | Epoxy resin composition and semiconductor device | |
JP2001253999A (en) | Epoxy resin molding material and semiconductor device | |
JPH05105739A (en) | Resin composition for sealing semiconductor | |
JP4639460B2 (en) | Epoxy resin composition and semiconductor device |