JPH11292613A - Production of ceramic sintered product having function for activating water - Google Patents

Production of ceramic sintered product having function for activating water

Info

Publication number
JPH11292613A
JPH11292613A JP10130953A JP13095398A JPH11292613A JP H11292613 A JPH11292613 A JP H11292613A JP 10130953 A JP10130953 A JP 10130953A JP 13095398 A JP13095398 A JP 13095398A JP H11292613 A JPH11292613 A JP H11292613A
Authority
JP
Japan
Prior art keywords
function
ceramic
sintering
producing
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10130953A
Other languages
Japanese (ja)
Inventor
Masao Doyama
昌男 堂山
Yoshihiko Yamada
惠彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chisui Kagaku Kenkyusho Kk
Original Assignee
Chisui Kagaku Kenkyusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisui Kagaku Kenkyusho Kk filed Critical Chisui Kagaku Kenkyusho Kk
Priority to JP10130953A priority Critical patent/JPH11292613A/en
Publication of JPH11292613A publication Critical patent/JPH11292613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a sintered product having a function for activating water by carrying out the sintering treatment of a process for producing the ceramic having the function for activating the water, capable of preventing the fusion of the ceramic molded product and the generation of defective products and clearly improving effects for inhibiting the generation of rust and microorganisms. SOLUTION: This method for producing a ceramic sintered product having a function for activating water comprises crushing natural rocks containing silica, alumina, sodium oxide, potassium oxide, magnesium oxide, calcium oxide and iron oxide as components, filling an alumina vessel, etc., with the obtained spherical crushed products, sintering the filled spherical products under vacuum in a vacuum oven or in a hydrogen atmosphere and subsequently naturally cooling the sintered product. Since the removal of oxygen atoms from the surfaces of the sintered products is thereby accelerated, a treating temperature can be lowered, and the obtained ceramic can be kept away from its melting. Double effects that the effect is increased at the same sintering temperature can be expected, since the local release of oxygen atoms is increased.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水を活性化する機
能をもつセラミックス焼結体の製造方法に関する。
The present invention relates to a method for producing a ceramic sintered body having a function of activating water.

【0002】[0002]

【従来の技術】従来の機能性セラミックスの中、水中の
赤さびや微生物の発生、増殖の抑制などに効果のあるこ
とが知られている、シリカ・アルミナ主成分のセラミッ
クス焼結体の作用機構については明確な知見がなく、単
に高温で焼結することが、その作用効果を大きくすると
いう経験的な事実だけが明らかにされきた。しかし、高
温処理によって、粒状、球状などのセラミックス成形体
の溶融が始まり、表面だけの溶融によっても相互の融着
を起こし、大きい塊となって、製品の態をなさなくなる
傾向が強くなる。しかも、このセラミックスの出発原料
は天然の岩石であり、地域によって化学組成が異なるた
め、溶融温度もかなり異なり、品質管理が容易ではな
く、しばしば発生する融着現象が、製品の得率を著しく
不安定にするため、予め原料ロット毎の煩わしい焼結試
験を必要とした。
2. Description of the Related Art Among the conventional functional ceramics, the action mechanism of a silica-alumina-based ceramic sintered body, which is known to be effective in suppressing the generation and growth of red rust and microorganisms in water, is known. There is no clear knowledge, but only the empirical fact that simply sintering at a high temperature increases its effect has been revealed. However, due to the high-temperature treatment, the melting of the granular or spherical ceramic molded body starts, and even if only the surface is melted, mutual fusion occurs, and the tendency to form a large lump and lose the form of the product becomes stronger. In addition, the starting material for this ceramic is natural rock, and its chemical composition varies from region to region, so its melting temperature also varies considerably, quality control is not easy, and frequent fusing phenomena significantly impair product yield. In order to stabilize, a troublesome sintering test for each raw material lot was required in advance.

【0003】[0003]

【発明が解決しようとする課題】この製品は、広範囲に
無限に近く存在する天然物を活用するということや、ア
グレッシヴな化学薬品を全く使用しないで製造できる、
無公害、省資源という原則が基本となっている上、用途
面でも、専ら上記のような広範で地球にやさしいという
領域にある。折角自然から与えられた潜在能力が発掘さ
れた以上、これを新しい考え方で制御することは、現代
自然科学のもつ一つの重要な使命と考え、これを軸にし
て上記のような従来技術の問題点を解決しようと試み
た。このためには、その効果を基礎づける作用機構を明
らかにすることが先決問題となる。
This product makes use of natural substances that exist in a wide range and almost infinitely, and can be manufactured without using any aggressive chemicals.
In addition to being based on the principle of pollution-free and resource saving, the application is also in such a broad and earth-friendly area as described above. Since the potential given by nature has been discovered, controlling it with a new way of thinking is one of the important missions of modern natural science. Tried to solve the point. To this end, it is a matter of priority to clarify the mechanism of action that underlies the effect.

【0004】本発明は、高温処理による効果の向上が明
らかにされているセラミックス焼結体を焼結させる工程
で、しばしば発生する焼結体同志の融着現象が、その製
造を不安定にし、工場原価の増大を余儀なくさせている
という現状を根本的に改善し、融着発生を絶滅させるこ
とを第1の目的として行われたものである。この目的達
成は、その作用機構が不明確では困難なことであるが、
本発明者らの多年の研究によってこれを明らかにするこ
とができ、これを軸にすることによって、さらに第2の
目的である効果の向上をも実現することも可能となっ
た。
The present invention relates to a process for sintering a ceramic sintered body in which the effect of high-temperature treatment has been found to be improved. The primary purpose of the present invention is to fundamentally improve the current situation in which the cost of factories must be increased and to eliminate the occurrence of fusion. Achieving this goal is difficult because its mechanism of action is unclear.
The inventors of the present invention have been able to clarify this through many years of research, and by using this as the axis, it has become possible to further achieve the second object, that is, improvement of the effect.

【0005】[0005]

【問題を解決するための手段】上記の目的を達成するた
めに、本発明の製造方法として、セラミックス成形体を
焼結させる工程を、従来の常識であった空気中、大気圧
下での焼結ではなく、減圧下、又は水素雰囲気中で実施
するようにした。
Means for Solving the Problems In order to achieve the above object, as a production method of the present invention, a step of sintering a ceramic molded body is performed by a conventional method of sintering in air under atmospheric pressure. Instead, it was performed under reduced pressure or in a hydrogen atmosphere.

【0006】この考えは、従来の知見である高温処理の
効果の機構を、セラミックス焼結体表面からの酸素原子
の局部的な逸出による、表面における「非化学量論組成
構造」の生成――格子欠陥の生成――に由来する、本質
的な「水を活性化する機能の発生源」として認識するこ
とに基づいている。もしこれが正しければ、減圧(大気
中の酸素の除去)、又は水素の存在によって、逸出を促
進することになるので処理温度を低くすることができ、
セラミックスをその溶融の危険から遠ざけることが可能
となるばかりではなく、酸素原子の局部的逸出が増大す
ることで、同じ焼結温度でもその効果が向上するという
二重の効果を期待することができる。赤さび(Fe
)の発生、増加の抑制は、この格子欠陥が、求電子的
――還元的機能として作用し、鉄1原子に対して赤さび
よりも酸素原子の少ない黒さび(Fe)を鉄表面
の不働態として生成させることによるものと推測され
る。又、微生物発生と増殖の抑制は、この還元作用によ
る相対的な酸素欠乏状態が要因であろうと考えられる。
以下にこれらの手法を用いた実施例を挙げてこれを実証
する。
[0006] This idea is based on the mechanism of the effect of the high-temperature treatment, which is a conventional finding, based on the formation of a “non-stoichiometric composition structure” on the surface by local escape of oxygen atoms from the surface of the ceramic sintered body. It is based on the recognition as an essential "source of water activating function" derived from the generation of lattice defects. If this is the case, the process temperature can be lowered, because decompression (removal of oxygen in the atmosphere) or the presence of hydrogen will promote escape,
It is possible not only to keep the ceramics away from the danger of melting, but also to expect the double effect that the effect is improved even at the same sintering temperature by increasing the local escape of oxygen atoms. it can. Red rust (Fe 2 O
3 ) The suppression of generation and increase is due to the fact that this lattice defect acts as an electrophilic-reducing function, and black rust (Fe 3 O 4 ), which has fewer oxygen atoms than red rust, per iron atom, is converted to iron It is presumed to be due to generation as a passivation of the surface. In addition, it is considered that the suppression of the generation and growth of microorganisms may be caused by the relative oxygen deficiency caused by this reducing action.
This will be demonstrated below with reference to examples using these techniques.

【0007】[0007]

【実施例1】シリカ59%、アルミナ28%、酸化ナト
リウム2.5%、酸化カリウム2.6%、酸化マグネシ
ウム2.0%、酸化カルシウム1.8%、酸化鉄3.8
%その他を成分とする天然の岩石を粉砕し、直径3〜4
mmに球状化したものを真空炉中にアルミナ容器を用い
て充填し、平均昇温速度を毎分6〜7℃、減圧度を10
〜30Torrで下記表1に示す各温度まで加熱し、同
温度で2時間保持して焼結を行った後、自然冷却した。
比較のため、減圧とせず、大気圧下に他の条件を上記と
同一にして焼結した。
Example 1 59% silica, 28% alumina, 2.5% sodium oxide, 2.6% potassium oxide, 2.0% magnesium oxide, 1.8% calcium oxide, 3.8% iron oxide
% And other natural ingredients are crushed to a diameter of 3-4.
mm was spheroidized into a vacuum furnace using an alumina container, and the average heating rate was 6 to 7 ° C. per minute and the degree of decompression was 10
After heating to each temperature shown in Table 1 below at 3030 Torr, holding at the same temperature for 2 hours, sintering, and then naturally cooling.
For comparison, sintering was carried out at atmospheric pressure without changing the pressure and under the same conditions as above.

【0008】得られた焼結体を評価するため、500c
c.ビーカーにこれら焼結球体各60gをそれぞれ45
0cc.の水道水と共に入れ、20x20x0.5mm
のサイズの純鉄片(エタノール中に保管)を各球体の上
に置き、水道水だけ(焼結球体なし)の場合と常に並行
に、30±5℃に360時間保持し、24時間毎に鉄片
を取り出し、エタノール中での超音波洗浄を行って、生
成したさびを落とした後、エタノール中でその重量を測
定した。
[0008] In order to evaluate the obtained sintered body, 500c
c. 45 g of each of these sintered spheres was placed in a beaker.
0cc. 20x20x0.5mm with tap water
A piece of pure iron (stored in ethanol) of the following size is placed on each sphere and kept at 30 ± 5 ° C. for 360 hours, always in parallel with tap water only (no sintered spheres), every 24 hours Was removed and subjected to ultrasonic cleaning in ethanol to remove generated rust, and then its weight was measured in ethanol.

【0009】この結果、セラミックス焼結球体が存在し
ない場合に限って、鉄片の両面に赤さびが観察され、容
易にこれが剥離し、焼結球体の効果の少ない場合は、剥
離し難い黒さびと、し易い赤さびとが同時の発生、増加
するので、明確な重量減少率として赤さびの増加状況
(相対的な性能)を定量的に比較することができた。
As a result, red rust is observed on both sides of the iron piece only when the ceramic sintered sphere does not exist. When the effect of the sintered sphere is small, red rust is easily removed. Since red rust which is easy to occur occurs and increases at the same time, the increase in red rust (relative performance) can be quantitatively compared as a clear weight loss rate.

【表1】にその結果を一括する。このTable 1 summarizes the results. this

【表1】中、重量増加は、黒さびの発生と鉄片表面への
固着により、剥離し易い赤さびの発生が微小であったこ
とを意味している。
In Table 1, the increase in weight means that the generation of red rust, which is easily peeled off due to the generation of black rust and the adhesion to the iron piece surface, was very small.

【0010】[0010]

【表1】 [Table 1]

【0011】この結果によって、水素雰囲気中の焼結
が、高温での融着を防ぎ、かつ、赤さび増加防止効果の
著しい向上をもたらしたことが分かる。
From these results, it can be seen that sintering in a hydrogen atmosphere has prevented fusion at a high temperature and significantly improved the effect of preventing red rust from increasing.

【0012】次に上記と同じ焼結球体を用いた、微生物
の増殖防止効果の比較を行った。500cc.ビーカー
に、表1に示したセラミックス焼結球体各30gと水道
水を入れ、全体が500cc.になるようにして、25
±0.5℃に保たれた恒温水槽中に保持し、水道水を補
給しながら50日間続行した。この結果、50日目の藻
の状態を肉眼観察すると、表1に示した実験番号を用い
て藻の多い順に、7(水道水)>5≒6>2≒3>1と
なり、1の場合、この焼結球体を接触させて球体とは共
存させなかったものには、藻は上記1よりも更に少なか
った。
Next, the effect of preventing the growth of microorganisms using the same sintered spheres as above was compared. 500cc. Into a beaker, 30 g of each of the sintered ceramic spheres shown in Table 1 and tap water were put, and the whole was 500 cc. 25
It was kept in a constant temperature water bath maintained at ± 0.5 ° C. and continued for 50 days while supplying tap water. As a result, when the state of the algae on the 50th day was visually observed, 7 (tap water)> 5 ≒ 6> 2 ≒ 3> 1 in the descending order of the algae using the experiment numbers shown in Table 1, and in the case of 1, When the sintered spheres were brought into contact with each other and did not coexist with the spheres, the number of algae was even less than that of the above-mentioned 1.

【0013】[0013]

【実施例2】Embodiment 2

【実施例1】に記載した、焼結前の球状に成形されたセ
ラミックスを、真空炉の代わりに水素雰囲気炉とし、水
素気流中にセラミックス焼結体を保持しながら、他の熱
処理条件を全く同様にして焼結を行った。得られた焼結
体の赤さび増大抑制試験および藻の増殖抑制試験につい
て、
The ceramic formed into a spherical shape before sintering described in Example 1 was replaced with a hydrogen atmosphere furnace instead of a vacuum furnace, and the other heat treatment conditions were completely maintained while holding the ceramic sintered body in a hydrogen stream. Sintering was performed in the same manner. Regarding the red rust increase suppression test and algae growth suppression test of the obtained sintered body,

【実施例1】と同じ方法で実施し、Performed in the same manner as in Example 1,

【表2】のような結果を得た。このTable 2 shows the results. this

【表2】中、実験番号11〜14は、In Table 2, Experiment Nos. 11 to 14

【表1】中の同4〜7と同じ条件での比較実験結果であ
るが、
Table 1 shows the results of a comparative experiment under the same conditions as those in Examples 4 to 7 above.

【表1】と時期を異にして実験したので、再度比較する
ことにしたものである。
Since the experiment was conducted at a different time from Table 1, the comparison was again made.

【0014】[0014]

【表2】 [Table 2]

【0015】この結果をThe result is

【表1】と比較すると、減圧下の焼結は大気中の焼結に
対して明らかに赤さび抑制の効果が大きいことが分か
る。しかし、その効果の大きさは、減圧法(
Compared to Table 1, it can be seen that sintering under reduced pressure clearly has a greater effect of suppressing red rust than sintering in air. However, the magnitude of the effect depends on the decompression method (

【表1】)に比べては劣ることも分かった。実験番号4
〜7と同じく11〜14は、実験時期を異にした同一条
件下のものであるが、この種の長期試験法としては再現
性に富むものと判断される。
It was also found to be inferior to Table 1). Experiment number 4
As in Nos. 7 to 11, 11 to 14 are under the same conditions at different experimental times, but are considered to be highly reproducible as this kind of long-term test method.

【0016】次に、Next,

【実施例1】と全く同様な藻の増殖試験を、この減圧焼
結体について
The same algal growth test as in Example 1 was carried out on this reduced pressure sintered body.

【表1】と異なる時期に、At a different time from Table 1,

【表2】と同様な比較をしつつ実施した。The comparison was carried out in the same manner as in Table 2.

【表1】、[Table 1],

【表2】のような定量が困難な試験方法であり、This is a test method that is difficult to quantify as shown in Table 2.

【実施例1】との厳密な比較は、結果として困難ではあ
ったが、
Although the exact comparison with Example 1 was difficult as a result,

【実施例1】に示したような増殖抑制効果の順序は、次
のように全く同様な定性的結果が得られた。
In the order of the growth inhibitory effect as shown in Example 1, exactly the same qualitative results were obtained as follows.

【0017】すなわち、52日目の藻の状態を肉眼観察
して、藻の多い順に、 水道水>12≒13>9≒10>8 であった。
That is, when the state of the algae on the 52nd day was visually observed, the order of tap water> 12 ≒ 13> 9 ≒ 10> 8 in the descending order of the algae.

【0018】このようにして、焼結を減圧下、又は水素
雰囲気中で実施することによって、セラミックス成形体
の融着――不良製品の発生――を防ぐと同時に、赤さび
や微生物発生、増大の抑制効果が明確に改善されること
が確認された。
By performing the sintering under reduced pressure or in a hydrogen atmosphere in this way, the fusion of the ceramic molded body—the generation of defective products—is prevented, and at the same time, the generation of red rust, the generation of microorganisms, and the increase of the rust are prevented. It was confirmed that the suppression effect was clearly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 「成形、焼成などの工程を経て得られる
非金属材料」(以下、「セラミックス」と略称)を製造
するための焼結工程を、減圧下で行うことによって、水
を活性化する機能をもつセラミックス焼結体を製造する
方法。
1. A method for activating water by performing a sintering step for producing a “non-metallic material obtained through steps such as molding and firing” (hereinafter abbreviated as “ceramics”) under reduced pressure. A method of manufacturing a ceramic sintered body having the function of performing
【請求項2】 セラミックスを製造するための焼結工程
を、水素雰囲気中で行うことによって、水を活性化する
機能をもつセラミックス焼結体を製造する方法。
2. A method for producing a ceramic sintered body having a function of activating water by performing a sintering step for producing ceramics in a hydrogen atmosphere.
JP10130953A 1998-04-06 1998-04-06 Production of ceramic sintered product having function for activating water Pending JPH11292613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10130953A JPH11292613A (en) 1998-04-06 1998-04-06 Production of ceramic sintered product having function for activating water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10130953A JPH11292613A (en) 1998-04-06 1998-04-06 Production of ceramic sintered product having function for activating water

Publications (1)

Publication Number Publication Date
JPH11292613A true JPH11292613A (en) 1999-10-26

Family

ID=15046510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10130953A Pending JPH11292613A (en) 1998-04-06 1998-04-06 Production of ceramic sintered product having function for activating water

Country Status (1)

Country Link
JP (1) JPH11292613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060858A (en) * 1999-12-28 2001-07-07 이양우 Method for manufacturing active oxygen and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010060858A (en) * 1999-12-28 2001-07-07 이양우 Method for manufacturing active oxygen and apparatus thereof

Similar Documents

Publication Publication Date Title
CN112144115B (en) Quartz crucible with long service life and low deformation rate and preparation method thereof
JP5796936B2 (en) Method for producing porous glass
JP4856973B2 (en) Manufacturing method of high purity silicon
TW201111305A (en) Silica container and method for producing same
TW201113229A (en) Silica vessel and process for producing same
JP5930637B2 (en) Silicon nitride powder for mold release agent and method for producing the same
CN113800950B (en) Glass coating for surface of silicon carbide rod and preparation method thereof
JP2009249254A (en) Method for producing lithium tantalate crystal and lithium tantalate crystal
US20110036267A1 (en) Water-reactive al composite material, water-reactive al film, process for the production of the al film , and constituent member for film-forming chamber
US8596216B2 (en) Method for the production of water-reactive Al film and constituent member for film-forming chamber
JPH11292613A (en) Production of ceramic sintered product having function for activating water
FR2563511A1 (en) PROCESS FOR MANUFACTURING POROUS PRODUCTS IN BORON OR BORON COMPOUNDS
JP2007246355A (en) Lead-free sealing glass composition of stainless steel vacuum double container
TW201348157A (en) Silica vessel for drawing up monocrystalline silicon and method for producing same
US20110041763A1 (en) Water-reactive al composite material, water-reactive al film, process for the production of the al film, and constituent member for film-forming chamber
JP4132685B2 (en) Quartz glass and method for producing the same
JPH01312088A (en) Production of electrode for dry etching device and cvd device
JP6057331B2 (en) Ni-base alloy excellent in erosion resistance against hydrogen sulfide and hydrogen selenide, and device component comprising the Ni-base alloy
JPH10182133A (en) Refining of silicon
JP4148643B2 (en) Quartz glass having excellent plasma corrosion resistance, quartz glass jig and manufacturing method thereof
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2012193067A (en) Borosilicate glass, porous glass, and method for producing the same
KR900004489B1 (en) Process for producing aluminium nitride powder
JP2002193634A (en) Quartz glass having excellent resistance to plasma corrosion and quartz glass jig
CN115477544B (en) Corrosion-resistant refractory material and preparation method thereof