JP4132685B2 - Quartz glass and method for producing the same - Google Patents

Quartz glass and method for producing the same Download PDF

Info

Publication number
JP4132685B2
JP4132685B2 JP2001008083A JP2001008083A JP4132685B2 JP 4132685 B2 JP4132685 B2 JP 4132685B2 JP 2001008083 A JP2001008083 A JP 2001008083A JP 2001008083 A JP2001008083 A JP 2001008083A JP 4132685 B2 JP4132685 B2 JP 4132685B2
Authority
JP
Japan
Prior art keywords
quartz glass
metal element
powder
mixed
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001008083A
Other languages
Japanese (ja)
Other versions
JP2002220251A5 (en
JP2002220251A (en
Inventor
龍弘 佐藤
宜正 吉田
朗 藤ノ木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2001008083A priority Critical patent/JP4132685B2/en
Priority to TW90125703A priority patent/TW534896B/en
Priority to KR10-2001-0071762A priority patent/KR100458414B1/en
Publication of JP2002220251A publication Critical patent/JP2002220251A/en
Publication of JP2002220251A5 publication Critical patent/JP2002220251A5/ja
Application granted granted Critical
Publication of JP4132685B2 publication Critical patent/JP4132685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/80Glass compositions containing bubbles or microbubbles, e.g. opaque quartz glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造に用いられかつプラズマ耐食性に優れた石英ガラス及びその製造方法に関する。
【0002】
【関連技術】
半導体の製造、例えば半導体ウェーハの製造においては、近年における大口径化の増大とともにエッチング工程などにおいてプラズマ反応装置を用いることによって処理効率を向上させることが行われている。例えば、半導体ウェーハのエッチング工程においては、プラズマガス、例えばフッ素(F)系プラズマガスを用いたエッチング処理が行われる。
【0003】
しかし、従来の石英ガラスを、例えばF系プラズマガス雰囲気中に置くと、石英ガラス表面でSiO2とF系プラズマガスが反応して、SiF4が生成し、これは、沸点が−86℃である為容易に昇華し、石英ガラスは多量に腐食して、減肉したり面荒れが進行し、F系プラズマガス雰囲気では、治具としての使用に適さなかった。
【0004】
このように、従来の石英ガラスは、半導体製造におけるプラズマ反応、特にF系プラズマガスを用いるエッチング処理に対しては耐食性、即ちプラズマ耐食性に大きな問題が生じていた。そこで、アルミニウムやアルミニウム化合物を石英ガラス部材表面に被覆してプラズマ耐食性を向上させる提案(特開平9−95771号、特開平9−95772号、特開平10−139480号)や、石英ガラスに対してアルミニウムを含有せしめることによってプラズマ耐食性を向上させたプラズマ耐食性ガラスについての提案がなされている(特開平11−228172号公報)。
【0005】
【発明が解決しようとする課題】
本発明者は、石英ガラスのプラズマ耐食性をさらに向上させるべく種々研究を進めているが、その一環として、石英ガラス粉にアルミナ粉を5wt%混合したものを、真空下で加熱溶融して石英ガラスを作成し、プラズマ耐食性を調査した。すると、全くドープしていない石英ガラス部材に比べてエッチング速度が40%〜50%低下した。
【0006】
しかし、ガラス体内部および表面部に微小泡が確認され、また特に、表面部分において、腐食部分と非腐食部分の差違が大きくなり面荒れが増大するほか、微小結晶部分が発生して、時間とともにその部分から剥がれが多発し、微小窪みの形成とともに、パーティクルの発生が増大して、ウェーハ面上に付着して、ウェーハ不良が増大するなどの問題が生じた。また、これらの泡や窪みは、エッチングを促進させる為、ドープ金属の濃度が増大しても、比較的エッチング耐食性が向上しなかった。
【0007】
というのも、F系プラズマガスと反応して生成するAlF3の沸点は1290℃で、SiF4よりもはるかに高温である為、SiF4部分が多量に腐食する一方で、AlF3部分は表面における昇華が少なく、エッチング量の差違が拡大した為と推定される。また、ドープアルミニウムが局所集中していると、隣接するSiO2部分と明らかにエネルギー状態が異なる為、均衡が崩れて、そこの部分よりSiO2は、低エネルギーである結晶状態へ変態し易くなる。
【0008】
この結晶部分は、目視では微小な白い異物として確認される。形成された結晶部分は、熱膨張度が石英ガラスと異なる為、温度変化によって剥離しやすい。また、局所的に集中した金属元素は、単体では、沸点がSiO2より低いので、SiO2の溶融加熱時には気体となって泡を形成する。表面近傍の泡部分は、温度変化によって破裂し易い。以上述べたこれらは全て、パーティクルの発生原因となる。また、泡や凹部分は、プラズマガスの集中を受けエッチング速度が増大しやすいので、ガラス全体のエッチング量も増大し、使用可能時間が減少してしまう。
【0009】
本発明は、上記した知見に基づいてなされたもので、半導体製造に用いられるプラズマ反応用治具材料として、プラズマ耐食性、特にF系プラズマガスに対する耐食性に優れた石英ガラス及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の石英ガラスの第1の態様は、石英ガラス粉と、所定の金属元素を溶解した溶液を混合してスラリーを作成し、乾燥後焼結させて製造され、前記石英ガラス粉の粒度分布が0.01〜1000μmの範囲内で、5μm以下の粒子群の質量比が1wt%〜100wt%であり、金属元素を含有しプラズマ耐食性を増大した石英ガラスであって、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであり、内部に粒状構造が確認されず、該金属元素の濃度が0.1〜20wt%、該石英ガラス体中の泡と異物の含有量が、350mmφ×20mm(厚さ)の円盤とした場合、100cm当たりの投影面積で100mm未満、可視光線の内部透過率が50%/cm以上、前記金属元素が、Al、AlとY、AlとNd、AlとSm、AlとEu、AlとYb、AlとPm、AlとPr、AlとCe、AlとTb、AlとGd、AlとTm、AlとDy、AlとHo、又はAlとErであり、前記石英ガラス体のOH濃度が100ppm以下であることを特徴とする。本発明の石英ガラスの第2の態様は、石英ガラス粉と、所定の金属元素を含む金属化合物粉を混合し、この混合粉を加熱溶融落下させて、ベルヌイ法で製造され、前記金属化合物が酸化物で、該金属酸化物の粒度分布が、0.01〜50μmの範囲内で、かつ、石英ガラス粉の粒度が0.01〜500μmの範囲内であり、金属元素を含有しプラズマ耐食性を増大した石英ガラス体であって、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであり、内部に粒状構造が確認されず、該金属元素の濃度が0.1〜20wt%、該石英ガラス体中の泡と異物の含有量が、350mmφ×20mm(厚さ)の円盤とした場合、100cm当たりの投影面積で100mm未満、可視光線の内部透過率が50%/cm以上、前記金属元素が、Al、AlとY、AlとNd、AlとSm、AlとEu、AlとYb、AlとPm、AlとPr、AlとCe、AlとTb、AlとGd、AlとTm、AlとDy、AlとHo、又はAlとErであり、前記石英ガラス体のOH濃度が100ppm以下であることを特徴とする。
上記石英ガラス体のOH濃度は100ppm以下が好ましい。
【0011】
上記金属元素としては、Sm、Eu、Yb、Pm、Pr、Nd、Ce、Tb、Gd、Ba、Mg、Y、Tm、Dy、Ho、Er、Cd、Co、Cr、Cs、Zr、Al、In、Cu、Fe、Bi、Ga及びTiからなる群から選択された1種又は2種以上を用いることができ
【0012】
これらの金属元素は、Siに比べて、弗化物となったときの沸点が高く、エッチングが進まない。上記金属元素は、沸点或いは昇華温度の高い順に記載してあり、例えばSmFの沸点は、2427℃でありTiFの昇華温度は、284℃である。
【0013】
これら以外の金属元素の弗化物の沸点または昇華温度は低すぎて、エッチングが進んでしまう。上記金属元素の含有濃度は0.1〜20wt%の範囲が好ましい。0.1wt%未満では、エッチング耐性の向上がなく、20wt%を超えると、いかなる条件においても、泡と異物が多発し、治具として使用に耐えるものではない。
【0014】
本発明の石英ガラスの製造方法の第1の態様は、上記した本発明の第1の態様の石英ガラスを製造する方法であり、石英ガラス粉と、所定の金属元素を溶解した溶液を混合してスラリーを作成し、乾燥後焼結させて、透明石英ガラス体を製造する方法において、石英ガラス粉の粒度分布が0.01〜1000μmの範囲内であり、5μm以下の粒子群の質量比が1wt%〜100wt%であり、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであることを特徴とする。
【0015】
本発明の石英ガラスの製造方法の第2の態様は、上記した本発明の第2の態様の石英ガラスを製造する方法であり、石英ガラス粉と、所定の金属元素を含む金属化合物粉を混合し、この混合粉を加熱溶融落下させて、ベルヌイ法で透明石英ガラス体を作成する製造方法において、該金属化合物が酸化物であり、該金属酸化物の粒度分布が、0.01〜50μmの範囲内であり、かつ、石英ガラス粉の粒度が0.01〜500μmの範囲内であり、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであることを特徴とする。
【0016】
上記ベルヌイ法における加熱法は電気溶融法が好適であり、電気溶融法としてはアーク火炎法等が知られている。上記石英ガラス粉としては、合成石英ガラス粉又は非晶質石英ガラス粉を用いることができる。
【0017】
これらの金属元素のドープ方法の一つとして、所定の金属元素を含む金属化合物と石英ガラス粉を純水に溶いてスラリーを作成し、乾燥させた後、その後加熱溶融する方法が知られている。この方法によって作成された透明石英ガラス体の内部には、強い粒状構造が観察される。この粒状構造は、含有された金属元素の濃度ばらつきを原因とする。含有された金属元素は、石英ガラス粉の周囲に存在し、溶融後固定される。
【0018】
この為、固定された金属元素の分布は、石英ガラス粉の粒径に影響され、粒径が大きいと、大きな分布ばらつきを生じ、屈折率のばらつきとなり粒状構造として観測される。粒状構造即ち金属濃度のばらつき部分は、石英ガラス体がプラズマエッチングガスに接触しエッチングされると、均一にエッチングされないので面荒れが大きくなり、パーティクル発生原因となる。この為、石英粉の粒度は細かいほうが好ましく、5μm以下の粒径の石英ガラス粉の重量比率は1wt%〜100wt%であり、多い程よいが、1wt%未満では、全く効果が無い。
【0019】
ベルヌイ法を採用し、金属化合物として酸化物を使用する場合、酸化物の粒径は0.01〜50μmであるとよく分散し、石英ガラス粉の粒度も0.01〜500μmの範囲であると、金属元素の濃度ばらつきが小さくなる。さらに好ましくは、金属酸化物粒径は0.01〜5μm、石英粉粒径は、0.01〜200μmが効果的である。
【0020】
石英ガラス体中のOH濃度も粒状構造を増大させる原因であるが、ベルヌイ法の場合、加熱法として電気溶融法を用いることにより、OH濃度を低下させることができる。OH濃度が100ppm以下であると、粒状構造の低減効果が著しい。
【0021】
本発明方法によって作成される石英ガラス体中の泡と異物の含有量は、100cm3当たりの投影面積で100mm2未満で、可視光線の内部透過率が50%/cm以上となる。
【0022】
また、本発明に用いられる石英ガラス粉としては、合成石英ガラス粉或いは、非晶質石英ガラス粉が好適に使用される。これらの石英ガラス粉は軟化点が低いので溶融時の流動性が増して、金属元素を均一に分散させ易いので好ましい。
【0023】
加熱溶融後、得られた透明石英ガラス体は、表面粗さが0.01〜10μmの範囲になるように、研削、ファイアポリッシュ、或いは、フロスト溶液に漬けるなどの処理を施される。これらの加工方法によると、加工後の表面の微小クラックなどが除かれる為、プラズマエッチングプロセスでの初期パーティクル発生を抑制することができる。
【0024】
また、上記手法で1000℃以上の高温をかけて製造された石英ガラス体は、吸蔵ガスが予め放出されていて、1000℃以下では、2mol/m3以下のガスしか放出されなくなる。エッチングプロセスは、数100℃の温度域での工程であるので、実際のガス放出量はこれより少なく、放出ガスがウェーハに触れたりプラズマガス状態に影響を及ぼす現象を抑制される。
【0025】
【実施例】
以下に本発明の実施例をあげて説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
【0026】
(実施例1)
粒径が100〜500μmの石英粒子6750gと、粒径が0.01〜4μmの熱分解シリカ粒子1800gと硝酸アルミニウム6300gと純水13500gを混合し、スラリーを作成する。このスラリーを40℃の大気中で8日間乾燥させ、さらに500℃で保持し、固体とした後、真空雰囲気において、1800℃、1HRの加熱処理を行い、380mmφ×25mmの透明石英ガラス体を得た。
【0027】
得られた石英ガラス体から350mmφ×20mm(厚さ)の円盤を切り出し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、300ppmであった。光学顕微鏡で観察したところ、円盤内に粒状構造は全く観察されなかった。この石英ガラス体の泡と異物の含有量が100cm3当たりの投影面積で20mm2で、可視光線の内部透過率が80%/cmであった。
【0028】
また、同じ石英ガラス成形体から切り出したサンプルで室温から1000℃までの温度領域で放出ガスの定性と定量をしたところ、CO、H2O、O2、H2のガスが総量で、0.4mol/m3発生した。同じ石英ガラス体から同様に切り出したサンプルのAl濃度を蛍光X線分析で測定すると3.0wt%であった。
【0029】
同様に、同じ石英ガラス体から30mmφ×3mmを切り出し、表面粗さをRa3.0μmに研削したサンプルで、50sccm、CF4+O2(20%)のプラズマガス中で、30mtorr、1kW、10HRのエッチング試験を行った。試験前後の質量変化からエッチング速度を算出し、30nm/minの結果を得た。
【0030】
パーティクルの発生量については、エッチング後、サンプルのプラズマ照射面に同面積のSiウェーハを載せ、ウェーハの接触面の凹凸をレーザー散乱で検出し、パーティクルカウンターにて0.3μm以上のパーティクル個数を計測した。パーティクル個数は、10個であった。
【0031】
(実施例2)
粒径0.1〜100μmの石英粒子28500gと粒径0.01〜1μmのAl粉1500gを混合し、この混合粉を加熱溶融落下させて石英インゴットを作成する際、該石英インゴットを電気溶融法によるアーク火炎中に50g/minの速度で、1rpmで回転するターゲットインゴット上に溶融落下させ、200mmφ×400mmの石英インゴットを作成した。
【0032】
作成されたインゴットを加熱処理炉中にセットして、N2雰囲気中にて1kgの圧力下で、1800℃に1HR保持して、400mmφ×100mmに形成した。得られた石英ガラス成形体から350mmφ×20mm(厚さ)の円盤に加工し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、30ppmであった。光学顕微鏡で観察したところ、円盤内に粒状構造は観察されなかった。その他の評価結果は実施例1と同じであった。
【0033】
(比較例1)
粒子が100〜500μmの石英粒子6000gと、粒径が0.01〜4μmの熱分解シリカ粒子40gと硝酸アルミニウム4200gと純水4500gを混合し、スラリーを作成した。このスラリーを40℃の大気中で8日間乾燥させ、さらに500℃で保持し、固体とした後、真空雰囲気において、1800℃、1HRの加熱処理を行い、380mmφ×25mmの透明ガラス体を得た。
【0034】
得られたガラス体から350mmφ×20mm(厚さ)の円盤を切り出し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、300ppmであった。光学顕微鏡で観察したところ、円盤内に粒状構造が強く観察された。
【0035】
Al濃度を蛍光X線分析で測定すると、3.0wt%であった。エッチング試験前後の質量変化からエッチング速度を算出し、80nm/minの結果を得た。また、パーティクルの個数は、300個であった。その他の評価結果は、実施例1と同じであった。
【0036】
(比較例2)
粒径600〜1000μmの石英粒子28500gと粒径60〜100μmのAl23粉1500gを混合し、酸水素火炎中に50g/minの速度で、1rpmで回転するターゲットインゴット上に溶融落下させ、200mmφ×400mmの石英インゴットを作成した。
【0037】
使用するガス条件は、H2が300リットル/min、O2が100リットル/minとした。作成されたインゴットを加熱処理炉中にセットして、N2雰囲気中にて1kgの圧力下で、1800℃に1HR保持して、400mmφ×100mmに成形した。
【0038】
得られたガラス成形体から350mmφ×20mm(厚さ)の円盤状に加工し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、300ppmであった。光学顕微鏡で観察したところ、円盤内に粒状構造が強く観察された。
【0039】
エッチング試験前後の質量変化からエッチング速度を算出し、80nm/minの結果を得た。また、パーティクルの個数は、300個であった。その他の評価結果は実施例1と同じであった。
【0040】
上記した各実施例、比較例において、パーティクル発生量は、50個以下の場合、Siウェーハの使用可能部分は、90%以上であり、200個を超えると、50%以下となり収率が低下した。またエッチング速度が、100nm/min以上のときは、100HR程度の使用時間で、0.6mmのエッチング深さまで達し、部材として使用できないが、50nm/min以下になると、使用時間が2倍となり効果が確認され、特に20nm/min以下となれば、非常に経済効果が大きくなった。
【0041】
【発明の効果】
上述したごとく、本発明の石英ガラスは、半導体製造に用いられるプラズマ反応用治具材料として、プラズマ耐食性、特にF系プラズマガスに対する耐食性に優れているという効果を有している。また、本発明方法は、プラズマ耐食性に優れた石英ガラスを効率よく製造できるという利点を有している。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to quartz glass that is used in semiconductor manufacturing and has excellent plasma corrosion resistance, and a method for manufacturing the same.
[0002]
[Related technologies]
In the manufacture of semiconductors, for example, the manufacture of semiconductor wafers, the processing efficiency is improved by using a plasma reactor in an etching process or the like as the diameter increases in recent years. For example, in a semiconductor wafer etching process, an etching process using a plasma gas, for example, a fluorine (F) plasma gas is performed.
[0003]
However, when conventional quartz glass is placed in, for example, an F-based plasma gas atmosphere, SiO 2 and F-based plasma gas react on the quartz glass surface to produce SiF 4 , which has a boiling point of −86 ° C. Therefore, it sublimated easily, and quartz glass was corroded in large quantities, resulting in thinning and surface roughness, and was not suitable for use as a jig in an F-based plasma gas atmosphere.
[0004]
As described above, the conventional quartz glass has a large problem in the corrosion resistance, that is, the plasma corrosion resistance, with respect to the plasma reaction in the semiconductor manufacturing, particularly the etching process using the F-based plasma gas. Therefore, a proposal for improving the plasma corrosion resistance by coating the surface of a quartz glass member with aluminum or an aluminum compound (JP-A-9-95777, JP-A-9-95777, JP-A-10-139480) or quartz glass There has been proposed a plasma corrosion-resistant glass whose plasma corrosion resistance is improved by incorporating aluminum (Japanese Patent Laid-Open No. 11-228172).
[0005]
[Problems to be solved by the invention]
The present inventor has been carrying out various studies to further improve the plasma corrosion resistance of quartz glass. As part of this, quartz glass powder in which 5 wt% of alumina powder is mixed with quartz glass is heated and melted under vacuum to produce quartz glass. The plasma corrosion resistance was investigated. Then, the etching rate was reduced by 40% to 50% as compared with the quartz glass member which was not doped at all.
[0006]
However, microbubbles are confirmed inside and on the surface of the glass body, and in particular, the difference between the corroded part and the non-corroded part is increased in the surface part, and the surface roughness increases. Peeling frequently occurred from the portion, and the generation of fine particles and the generation of particles increased and adhered to the wafer surface, resulting in increased wafer defects. In addition, since these bubbles and dents promote etching, even when the concentration of the doped metal is increased, the etching corrosion resistance is not relatively improved.
[0007]
Because in F-based boiling point 1290 ° C. of AlF 3 that reacts with the plasma gas, since it is much hotter than the SiF 4, while the SiF 4 portion is a large amount of corrosion, AlF 3 portion surface This is presumed to be due to the fact that the difference in etching amount has increased due to less sublimation. In addition, when the doped aluminum is locally concentrated, the energy state is clearly different from the adjacent SiO 2 part, so the balance is lost and the SiO 2 is more easily transformed into a low energy crystalline state than there. .
[0008]
This crystal portion is visually confirmed as a fine white foreign substance. Since the formed crystal part has a thermal expansion degree different from that of quartz glass, it easily peels off due to a temperature change. Furthermore, locally concentrated metal element, in itself, since the boiling point is lower than SiO 2, at the time of melting heat of the SiO 2 to form the foam is a gas. The bubble portion in the vicinity of the surface is easily ruptured by temperature change. All of the above-mentioned causes of particle generation. Further, since the bubbles and the concave portions are likely to increase the etching rate due to the concentration of the plasma gas, the etching amount of the entire glass also increases, and the usable time decreases.
[0009]
The present invention has been made on the basis of the above knowledge, and provides a quartz glass excellent in plasma corrosion resistance, particularly corrosion resistance against F-based plasma gas, and a method for producing the same as a jig material for plasma reaction used in semiconductor manufacturing. For the purpose.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the first aspect of the quartz glass of the present invention is produced by mixing a silica glass powder and a solution in which a predetermined metal element is dissolved to prepare a slurry, and drying and then sintering. The quartz glass powder has a particle size distribution of 0.01 to 1000 μm, a mass ratio of particles of 5 μm or less is 1 wt% to 100 wt%, contains a metal element, and has increased plasma corrosion resistance. The metal element has a higher boiling point when it becomes a fluoride than Si, no granular structure is confirmed inside, the concentration of the metal element is 0.1 to 20 wt%, and the quartz glass body When the content of bubbles and foreign matters in the disk is 350 mmφ × 20 mm (thickness) , the metal element has a projected area per 100 cm 3 of less than 100 mm 2 and an internal transmittance of visible light of 50% / cm or more . But Al Al and Y, Al and Nd, Al and Sm, Al and Eu, Al and Yb, Al and Pm, Al and Pr, Al and Ce, Al and Tb, Al and Gd, Al and Tm, Al and Dy, Al and It is Ho or Al and Er, and the quartz glass body has an OH concentration of 100 ppm or less . According to a second aspect of the quartz glass of the present invention, quartz glass powder and a metal compound powder containing a predetermined metal element are mixed, the mixed powder is heated, melted and dropped, and manufactured by the Bernoulli method. It is an oxide, the particle size distribution of the metal oxide is in the range of 0.01 to 50 μm, and the particle size of the quartz glass powder is in the range of 0.01 to 500 μm. An increased quartz glass body, which has a higher boiling point when the metal element becomes a fluoride than Si, a granular structure is not confirmed inside, and the concentration of the metal element is 0.1 to When the disk and the content of bubbles and foreign matter in the quartz glass body are 350 mmφ × 20 mm (thickness), the projected area per 100 cm 3 is less than 100 mm 2 and the internal transmittance of visible light is 50%. / cm or more, the gold Elements are Al, Al and Y, Al and Nd, Al and Sm, Al and Eu, Al and Yb, Al and Pm, Al and Pr, Al and Ce, Al and Tb, Al and Gd, Al and Tm, Al And Dy, Al and Ho, or Al and Er, and the OH concentration of the quartz glass body is 100 ppm or less .
The quartz glass body preferably has an OH concentration of 100 ppm or less.
[0011]
Examples of the metal element include Sm, Eu, Yb, Pm, Pr, Nd, Ce, Tb, Gd, Ba, Mg, Y, Tm, Dy, Ho, Er, Cd, Co, Cr, Cs, Zr, Al, In, Cu, Fe, Bi, Ru can be used alone or in combination selected from the group consisting of Ga and Ti.
[0012]
These metal elements have a higher boiling point when they are fluoride than Si, and etching does not proceed. The metal elements are described in the order of the boiling point or the sublimation temperature. For example, the boiling point of SmF is 2427 ° C., and the sublimation temperature of TiF is 284 ° C.
[0013]
Etching proceeds because the boiling point or sublimation temperature of fluorides of metal elements other than these is too low. The content concentration of the metal element is preferably in the range of 0.1 to 20 wt%. If it is less than 0.1 wt%, there is no improvement in etching resistance, and if it exceeds 20 wt%, bubbles and foreign matters frequently occur under any conditions, and it cannot be used as a jig.
[0014]
A first aspect of the method for producing quartz glass according to the present invention is a method for producing the quartz glass according to the first aspect of the present invention described above, in which quartz glass powder and a solution in which a predetermined metal element is dissolved are mixed. In the method for producing a transparent quartz glass body by making a slurry, drying and sintering, the particle size distribution of the quartz glass powder is in the range of 0.01 to 1000 μm, and the mass ratio of the particle group of 5 μm or less is a 1 wt% 100 wt%, the metal element is characterized in der Rukoto having a high boiling point when it becomes fluoride in comparison with Si.
[0015]
A second aspect of the method for producing quartz glass according to the present invention is a method for producing the quartz glass according to the second aspect of the present invention described above, in which quartz glass powder and a metal compound powder containing a predetermined metal element are mixed. In the manufacturing method in which the mixed powder is heated and melted and dropped to prepare a transparent quartz glass body by the Bernoulli method, the metal compound is an oxide, and the particle size distribution of the metal oxide is 0.01 to 50 μm. in the range, and in the range granularity of silica glass powder is 0.01~500Myuemu, and characterized der Rukoto having a high boiling point when the metal element becomes fluoride as compared with Si To do.
[0016]
The heating method in the Bernoulli method is preferably an electric melting method, and an arc flame method or the like is known as the electric melting method. As the quartz glass powder, synthetic quartz glass powder or amorphous quartz glass powder can be used.
[0017]
As one of these metal element doping methods, a method is known in which a metal compound containing a predetermined metal element and quartz glass powder are dissolved in pure water to prepare a slurry, dried, and then heated and melted. . A strong granular structure is observed inside the transparent quartz glass body produced by this method. This granular structure is caused by the concentration variation of the contained metal element. The contained metal element exists around the quartz glass powder and is fixed after melting.
[0018]
For this reason, the distribution of the fixed metal element is affected by the particle size of the quartz glass powder. When the particle size is large, a large distribution variation occurs, and the refractive index varies, and is observed as a granular structure. When the quartz glass body comes into contact with the plasma etching gas and is etched, the grain structure, that is, the variation portion of the metal concentration, is not uniformly etched, resulting in increased surface roughness and causing generation of particles. For this reason, it is preferable that the particle size of the quartz powder is finer, and the weight ratio of the quartz glass powder having a particle size of 5 μm or less is 1 wt% to 100 wt%, and the higher the better, but if it is less than 1 wt%, there is no effect.
[0019]
When the Bernoulli method is employed and an oxide is used as the metal compound, the particle size of the oxide is well dispersed when it is 0.01 to 50 μm, and the particle size of the quartz glass powder is also within the range of 0.01 to 500 μm. The concentration variation of the metal element is reduced. More preferably, the metal oxide particle diameter is 0.01 to 5 μm, and the quartz powder particle diameter is 0.01 to 200 μm.
[0020]
The OH concentration in the quartz glass body is also a cause of increasing the granular structure, but in the case of the Bernoulli method, the OH concentration can be lowered by using an electric melting method as a heating method. When the OH concentration is 100 ppm or less, the effect of reducing the granular structure is remarkable.
[0021]
The content of bubbles and foreign substances in the quartz glass body produced by the method of the present invention is less than 100 mm 2 in a projected area per 100 cm 3 and the internal transmittance of visible light is 50% / cm or more.
[0022]
Moreover, as the quartz glass powder used in the present invention, synthetic quartz glass powder or amorphous quartz glass powder is preferably used. These quartz glass powders are preferred because they have a low softening point and thus increase the fluidity during melting and facilitate the uniform dispersion of metal elements.
[0023]
After heating and melting, the obtained transparent quartz glass body is subjected to processing such as grinding, fire polishing, or dipping in a frost solution so that the surface roughness is in the range of 0.01 to 10 μm. According to these processing methods, since micro cracks and the like on the surface after processing are removed, the generation of initial particles in the plasma etching process can be suppressed.
[0024]
Further, the quartz glass body produced by applying the high temperature of 1000 ° C. or higher by the above method has previously released the occluded gas, and at 1000 ° C. or lower, only 2 mol / m 3 or lower gas is released. Since the etching process is a process in the temperature range of several hundred degrees Celsius, the actual gas release amount is smaller than this, and the phenomenon that the released gas touches the wafer or affects the plasma gas state is suppressed.
[0025]
【Example】
Examples of the present invention will be described below, but it is needless to say that these examples are illustrative and should not be construed in a limited manner.
[0026]
(Example 1)
A slurry is prepared by mixing 6750 g of quartz particles having a particle diameter of 100 to 500 μm, 1800 g of pyrolytic silica particles having a particle diameter of 0.01 to 4 μm, 6300 g of aluminum nitrate, and 13500 g of pure water. The slurry was dried in an atmosphere of 40 ° C. for 8 days, further held at 500 ° C. to obtain a solid, and then subjected to heat treatment at 1800 ° C. and 1 HR in a vacuum atmosphere to obtain a transparent quartz glass body of 380 mmφ × 25 mm. It was.
[0027]
A disc of 350 mmφ × 20 mm (thickness) was cut out from the obtained quartz glass body, and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. When observed with an optical microscope, no granular structure was observed in the disk. The quartz glass body had a foam and foreign matter content of 20 mm 2 in a projected area per 100 cm 3 and an internal transmittance of visible light of 80% / cm.
[0028]
Further, when the qualitative and quantitative determination of the released gas was performed in the temperature range from room temperature to 1000 ° C. with a sample cut out from the same quartz glass molded body, the total amount of CO, H 2 O, O 2 , and H 2 gases was 0. 4 mol / m 3 was generated. When the Al concentration of a sample cut out from the same quartz glass body was measured by fluorescent X-ray analysis, it was 3.0 wt%.
[0029]
Similarly, a sample obtained by cutting 30 mmφ × 3 mm from the same quartz glass body and grinding the surface roughness to Ra 3.0 μm in a plasma gas of 50 sccm, CF 4 + O 2 (20%), 30 mtorr, 1 kW, 10 HR. An etching test was performed. The etching rate was calculated from the mass change before and after the test, and a result of 30 nm / min was obtained.
[0030]
Regarding the amount of generated particles, after etching, a Si wafer of the same area is placed on the plasma irradiation surface of the sample, the unevenness of the contact surface of the wafer is detected by laser scattering, and the number of particles of 0.3 μm or more is measured with a particle counter. did. The number of particles was 10.
[0031]
(Example 2)
When a quartz ingot is prepared by mixing 28500 g of quartz particles having a particle size of 0.1 to 100 μm and 1500 g of Al 2 O 3 powder having a particle size of 0.01 to 1 μm, and heating and dropping the mixed powder, A 200 mmφ × 400 mm quartz ingot was prepared by melting and dropping onto a target ingot rotating at 1 rpm in an arc flame by an electric melting method at a speed of 50 g / min.
[0032]
The prepared ingot was set in a heat treatment furnace, held at 1800 ° C. for 1 HR under a pressure of 1 kg in an N 2 atmosphere, and formed into 400 mmφ × 100 mm. The obtained quartz glass molded body was processed into a 350 mmφ × 20 mm (thickness) disk, and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 30 ppm. When observed with an optical microscope, no granular structure was observed in the disk. The other evaluation results were the same as in Example 1.
[0033]
(Comparative Example 1)
A slurry was prepared by mixing 6000 g of quartz particles having a particle size of 100 to 500 μm, 40 g of pyrolyzed silica particles having a particle size of 0.01 to 4 μm, 4200 g of aluminum nitrate, and 4500 g of pure water. This slurry was dried in the atmosphere of 40 ° C. for 8 days, and further kept at 500 ° C. to obtain a solid, followed by heat treatment at 1800 ° C. and 1 HR in a vacuum atmosphere to obtain a transparent glass body of 380 mmφ × 25 mm. .
[0034]
A disc of 350 mmφ × 20 mm (thickness) was cut out from the obtained glass body, and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. When observed with an optical microscope, a granular structure was strongly observed in the disk.
[0035]
When the Al concentration was measured by fluorescent X-ray analysis, it was 3.0 wt%. The etching rate was calculated from the mass change before and after the etching test, and a result of 80 nm / min was obtained. The number of particles was 300. The other evaluation results were the same as in Example 1.
[0036]
(Comparative Example 2)
28500 g of quartz particles having a particle size of 600 to 1000 μm and 1500 g of Al 2 O 3 powder having a particle size of 60 to 100 μm are mixed, melted and dropped onto a target ingot rotating at 1 rpm at a speed of 50 g / min in an oxyhydrogen flame, A 200 mmφ × 400 mm quartz ingot was prepared.
[0037]
The gas conditions used were H 2 of 300 liters / min and O 2 of 100 liters / min. The prepared ingot was set in a heat treatment furnace, held at 1800 ° C. for 1 HR under a pressure of 1 kg in an N 2 atmosphere, and molded into 400 mmφ × 100 mm.
[0038]
The obtained glass molded body was processed into a disk shape of 350 mmφ × 20 mm (thickness), and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. When observed with an optical microscope, a granular structure was strongly observed in the disk.
[0039]
The etching rate was calculated from the mass change before and after the etching test, and a result of 80 nm / min was obtained. The number of particles was 300. The other evaluation results were the same as in Example 1.
[0040]
In each of the above Examples and Comparative Examples, when the amount of generated particles is 50 or less, the usable portion of the Si wafer is 90% or more, and when it exceeds 200, the yield is reduced to 50% or less. . When the etching rate is 100 nm / min or more, the etching depth reaches 0.6 mm in about 100 HR usage time and cannot be used as a member. However, when the etching rate is 50 nm / min or less, the usage time is doubled and the effect is increased. It was confirmed that the economic effect became very large especially at 20 nm / min or less.
[0041]
【The invention's effect】
As described above, the quartz glass of the present invention has an effect of being excellent in plasma corrosion resistance, particularly corrosion resistance against F-based plasma gas, as a plasma reaction jig material used in semiconductor manufacturing. Further, the method of the present invention has an advantage that quartz glass excellent in plasma corrosion resistance can be efficiently produced.

Claims (6)

石英ガラス粉と、所定の金属元素を溶解した溶液を混合してスラリーを作成し、乾燥後焼結させて製造され、前記石英ガラス粉の粒度分布が0.01〜1000μmの範囲内で、5μm以下の粒子群の質量比が1wt%〜100wt%であり、金属元素を含有しプラズマ耐食性を増大した石英ガラスであって、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであり、内部に粒状構造が確認されず、該金属元素の濃度が0.1〜20wt%、該石英ガラス体中の泡と異物の含有量が、350mmφ×20mm(厚さ)の円盤とした場合、100cm当たりの投影面積で100mm未満、可視光線の内部透過率が50%/cm以上、前記金属元素が、Al、AlとY、AlとNd、AlとSm、AlとEu、AlとYb、AlとPm、AlとPr、AlとCe、AlとTb、AlとGd、AlとTm、AlとDy、AlとHo、又はAlとErであり、前記石英ガラス体のOH濃度が100ppm以下であることを特徴とする石英ガラス。A silica glass powder and a solution in which a predetermined metal element is dissolved are mixed to prepare a slurry, dried and then sintered, and the particle size distribution of the quartz glass powder is within a range of 0.01 to 1000 μm, and 5 μm. The mass ratio of the following particle group is 1 wt% to 100 wt%, and is a quartz glass containing a metal element and having increased plasma corrosion resistance, and has a higher boiling point when the metal element becomes a fluoride than Si. In the disk , the granular structure is not confirmed inside, the concentration of the metal element is 0.1 to 20 wt%, and the content of bubbles and foreign matters in the quartz glass body is 350 mmφ × 20 mm (thickness). When the projected area per 100 cm 3 is less than 100 mm 2 and the internal transmittance of visible light is 50% / cm or more , the metal elements are Al, Al and Y, Al and Nd, Al and Sm, Al and Eu, Al and Yb, l and Pm, is Al and Pr, Al and Ce, Al and Tb, Al and Gd, Al and Tm, Al and Dy, Al and Ho, or Al and Er, the following OH concentration of the quartz glass body is 100ppm Quartz glass characterized in that there is. 石英ガラス粉と、所定の金属元素を含む金属化合物粉を混合し、この混合粉を加熱溶融落下させて、ベルヌイ法で製造され、前記金属化合物が酸化物で、該金属酸化物の粒度分布が、0.01〜50μmの範囲内で、かつ、石英ガラス粉の粒度が0.01〜500μmの範囲内であり、金属元素を含有しプラズマ耐食性を増大した石英ガラス体であって、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであり、内部に粒状構造が確認されず、該金属元素の濃度が0.1〜20wt%、該石英ガラス体中の泡と異物の含有量が、350mmφ×20mm(厚さ)の円盤とした場合、100cm当たりの投影面積で100mm未満、可視光線の内部透過率が50%/cm以上、前記金属元素が、Al、AlとY、AlとNd、AlとSm、AlとEu、AlとYb、AlとPm、AlとPr、AlとCe、AlとTb、AlとGd、AlとTm、AlとDy、AlとHo、又はAlとErであり、前記石英ガラス体のOH濃度が100ppm以下であることを特徴とする石英ガラス。A quartz glass powder and a metal compound powder containing a predetermined metal element are mixed, and the mixed powder is heated, melted and dropped, and manufactured by the Bernoulli method. The metal compound is an oxide, and the particle size distribution of the metal oxide is A quartz glass body having a plasma corrosion resistance within a range of 0.01 to 50 μm and a particle size of the quartz glass powder within a range of 0.01 to 500 μm and containing a metal element, wherein the metal element Has a higher boiling point when it becomes a fluoride than Si, a granular structure is not confirmed inside, the concentration of the metal element is 0.1 to 20 wt%, bubbles and foreign matter in the quartz glass body When the disk has a 350 mmφ × 20 mm (thickness) disk, the projected area per 100 cm 3 is less than 100 mm 2 , the visible light internal transmittance is 50% / cm or more , and the metal elements are Al, Al And Y, Al and N Al and Sm, Al and Eu, Al and Yb, Al and Pm, Al and Pr, Al and Ce, Al and Tb, Al and Gd, Al and Tm, Al and Dy, Al and Ho, or Al and Er A quartz glass, wherein the quartz glass body has an OH concentration of 100 ppm or less . 請求項1記載の石英ガラスを製造する方法であり、石英ガラス粉と、所定の金属元素を溶解した溶液を混合してスラリーを作成し、乾燥後焼結させて、透明石英ガラス体を製造する方法において、石英ガラス粉の粒度分布が0.01〜1000μmの範囲内であり、5μm以下の粒子群の質量比が1wt%〜100wt%であり、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであることを特徴とする石英ガラスの製造方法。  A method for producing a quartz glass according to claim 1, wherein a quartz glass powder and a solution in which a predetermined metal element is dissolved are mixed to form a slurry, dried and then sintered to produce a transparent quartz glass body. In the method, the particle size distribution of the quartz glass powder is in the range of 0.01 to 1000 μm, the mass ratio of the particle group of 5 μm or less is 1 wt% to 100 wt%, and the metal element is fluoride compared to Si. A method for producing quartz glass, which has a high boiling point. 請求項2記載の石英ガラスを製造する方法であり、石英ガラス粉と、所定の金属元素を含む金属化合物粉を混合し、この混合粉を加熱溶融落下させて、ベルヌイ法で透明石英ガラス体を作成する製造方法において、該金属化合物が酸化物であり、該金属酸化物の粒度分布が、0.01〜50μmの範囲内であり、かつ、石英ガラス粉の粒度が0.01〜500μmの範囲内であり、前記金属元素がSiに比べて弗化物となったときの沸点が高いものであることを特徴とする石英ガラスの製造方法。  A method for producing quartz glass according to claim 2, wherein the quartz glass powder and a metal compound powder containing a predetermined metal element are mixed, the mixed powder is heated, melted and dropped, and a transparent quartz glass body is formed by Bernoulli method. In the production method to be created, the metal compound is an oxide, the particle size distribution of the metal oxide is in the range of 0.01 to 50 μm, and the particle size of the quartz glass powder is in the range of 0.01 to 500 μm. A method for producing quartz glass, characterized in that the metal element has a higher boiling point when it becomes a fluoride than Si. 前記ベルヌイ法において前記石英ガラス粉と前記金属元素を含む金属化合物を混合し、この混合粉を加熱溶融落下させて石英インゴットを作成する際、該石英インゴットを電気溶融法によるアーク火炎を使用して加熱溶融することを特徴とする請求項記載の石英ガラスの製造方法。In the Bernoulli method, the quartz glass powder and the metal compound containing the metal element are mixed, and when the mixed powder is heated and melted and dropped to form a quartz ingot, the quartz ingot is subjected to an arc flame by an electric melting method. The method for producing quartz glass according to claim 4, wherein the method is melted by heating. 前記石英ガラス粉が合成石英ガラス粉であるか、又は非晶質石英ガラス粉であることを特徴とする請求項3〜5のいずれか1項記載の石英ガラスの製造方法。The method for producing quartz glass according to any one of claims 3 to 5 , wherein the quartz glass powder is a synthetic quartz glass powder or an amorphous quartz glass powder.
JP2001008083A 2000-12-22 2001-01-16 Quartz glass and method for producing the same Expired - Lifetime JP4132685B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001008083A JP4132685B2 (en) 2001-01-16 2001-01-16 Quartz glass and method for producing the same
TW90125703A TW534896B (en) 2000-12-22 2001-10-17 Quartz glass, quartz glass jig and method for production thereof
KR10-2001-0071762A KR100458414B1 (en) 2000-12-22 2001-11-19 Quartz glass and quartz glass jig, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008083A JP4132685B2 (en) 2001-01-16 2001-01-16 Quartz glass and method for producing the same

Publications (3)

Publication Number Publication Date
JP2002220251A JP2002220251A (en) 2002-08-09
JP2002220251A5 JP2002220251A5 (en) 2005-06-30
JP4132685B2 true JP4132685B2 (en) 2008-08-13

Family

ID=18875736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008083A Expired - Lifetime JP4132685B2 (en) 2000-12-22 2001-01-16 Quartz glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP4132685B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356345A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass
JPWO2004092082A1 (en) * 2003-04-11 2006-07-06 株式会社ニコン Method for producing SiO2-TiO2 glass, SiO2-TiO2 glass and exposure apparatus
JP4732712B2 (en) * 2004-05-27 2011-07-27 東ソー株式会社 Corrosion-resistant glass member, method for producing the same, and apparatus using the same
US7365037B2 (en) * 2004-09-30 2008-04-29 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
JP5001524B2 (en) * 2005-04-28 2012-08-15 信越石英株式会社 Recycling method of quartz glass jig
JP5992842B2 (en) * 2013-01-24 2016-09-14 信越石英株式会社 Method for producing silica titania glass and method for selecting silica titania glass

Also Published As

Publication number Publication date
JP2002220251A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
USRE41249E1 (en) Quartz glass body having improved resistance against plasma corrosion, and method for production thereof
JP4391529B2 (en) Quartz glass with excellent plasma corrosion resistance and method for producing the same
EP1310466A2 (en) Quartz glass parts, ceramic parts and process of producing those
TW200821275A (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
TW200831421A (en) Fused silica and process for producing same
JP4132685B2 (en) Quartz glass and method for producing the same
CN104725077A (en) Coated reactor tube
JP5128570B2 (en) Composite crucible and manufacturing method thereof
JP2023508677A (en) Plasma resistant glass and manufacturing method thereof
JP4148650B2 (en) Method for producing quartz glass
JP2002193634A (en) Quartz glass having excellent resistance to plasma corrosion and quartz glass jig
JP3656956B2 (en) Quartz glass, quartz glass jig and manufacturing method thereof
JP2009038220A (en) Dummy wafer
JP2008056533A (en) Quartz glass and method of manufacturing the same
KR100458414B1 (en) Quartz glass and quartz glass jig, and method for producing the same
JP4148643B2 (en) Quartz glass having excellent plasma corrosion resistance, quartz glass jig and manufacturing method thereof
US7015163B2 (en) Glass member resistant to plasma corrosion
JP2002220252A (en) Quartz glass and method of manufacturing it
JP2003292337A (en) Plasma corrosion resisting silica glass, manufacturing method therefor and apparatus using the same
TW202244286A (en) Film-forming material, film-forming slurry, spray coated film, and spray coated member
TWI414503B (en) Quartz glass member for plasma etching
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2007045699A (en) Quartz glass member
JP4732712B2 (en) Corrosion-resistant glass member, method for producing the same, and apparatus using the same
JP2002137927A5 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4132685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term