JP3656956B2 - Quartz glass, quartz glass jig and manufacturing method thereof - Google Patents

Quartz glass, quartz glass jig and manufacturing method thereof Download PDF

Info

Publication number
JP3656956B2
JP3656956B2 JP2001008081A JP2001008081A JP3656956B2 JP 3656956 B2 JP3656956 B2 JP 3656956B2 JP 2001008081 A JP2001008081 A JP 2001008081A JP 2001008081 A JP2001008081 A JP 2001008081A JP 3656956 B2 JP3656956 B2 JP 3656956B2
Authority
JP
Japan
Prior art keywords
quartz glass
metal element
metal
solution
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001008081A
Other languages
Japanese (ja)
Other versions
JP2002220257A (en
Inventor
龍弘 佐藤
宜正 吉田
朗 藤ノ木
哲司 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2001008081A priority Critical patent/JP3656956B2/en
Priority to TW90125703A priority patent/TW534896B/en
Priority to KR10-2001-0071762A priority patent/KR100458414B1/en
Publication of JP2002220257A publication Critical patent/JP2002220257A/en
Application granted granted Critical
Publication of JP3656956B2 publication Critical patent/JP3656956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3411Yttrium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/36Doped silica-based glasses containing metals containing rare earth metals containing rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造に用いられかつプラズマ耐食性に優れた石英ガラス及び石英ガラス治具並びにそれらの製造方法に関する。
【0002】
【関連技術】
半導体の製造、例えば半導体ウェーハの製造においては、近年における大口径化の増大とともにエッチング工程などにおいてプラズマ反応装置を用いることによって処理効率を向上させることが行われている。例えば、半導体ウェーハのエッチング工程においては、プラズマガス、例えばフッ素(F)系プラズマガスを用いたエッチング処理が行われる。
【0003】
しかし、従来の石英ガラスを、例えばF系プラズマガス雰囲気中に置くと、石英ガラス表面でSiO2とF系プラズマガスが反応して、SiF4が生成し、これは、沸点が−86℃である為容易に昇華し、石英ガラスは多量に腐食して、減肉したり面荒れが進行し、F系プラズマガス雰囲気では、治具としての使用に適さなかった。
【0004】
このように、従来の石英ガラスは、半導体製造におけるプラズマ反応、特にF系プラズマガスを用いるエッチング処理に対しては耐食性、即ちプラズマ耐食性に大きな問題が生じていた。そこで、アルミニウムやアルミニウム化合物を石英ガラス部材表面に被覆してプラズマ耐食性を向上させる提案(特開平9−95771号、特開平9−95772号、特開平10−139480号)や、石英ガラスに対してアルミニウムを含有せしめることによってプラズマ耐食性を向上させたプラズマ耐食性ガラスについての提案がなされている(特開平11−228172号公報)。
【0005】
【発明が解決しようとする課題】
本発明者は、石英ガラスのプラズマ耐食性をさらに向上させるべく種々研究を進めているが、その一環として、石英ガラス粉にアルミナ粉を5wt%混合したものを、真空下で加熱溶融して石英ガラスを作成し、プラズマ耐食性を調査した。すると、全くドープしていない石英ガラス部材に比べてエッチング速度が40%〜50%低下した。
【0006】
しかし、石英ガラス体内部および表面部に微小泡が確認され、また特に、表面部分において、腐食部分と非腐食部分の差違が大きくなり面荒れが増大するほか、微小結晶部分が発生して、時間とともにその部分から剥がれが多発し、微小窪みの形成とともに、パーティクルの発生が増大して、ウェーハ面上に付着して、ウェーハ不良が増大するなどの問題が生じた。また、これらの泡や窪みは、エッチングを促進させる為、ドープ金属の濃度が増大しても、比較的エッチング耐食性が向上しなかった。
【0007】
というのも、F系プラズマガスと反応して生成するAlF3の沸点は1290℃で、SiF4よりもはるかに高温である為、SiF4部分が多量に腐食する一方で、AlF3部分は表面における昇華が少なく、エッチング量の差違が拡大した為と推定される。また、ドープアルミニウムが局所集中していると、隣接するSiO2部分と明らかにエネルギー状態が異なる為、均衡が崩れて、そこの部分よりSiO2は、低エネルギーである結晶状態へ変態し易くなる。
【0008】
この結晶部分は、目視では微小な白い異物として確認される。形成された結晶部分は、熱膨張度が石英ガラスと異なる為、温度変化によって剥離しやすい。また、局所的に集中した金属元素は、単体では、沸点がSiO2より低いので、SiO2の溶融加熱時には気体となって泡を形成する。表面近傍の泡部分は、温度変化によって破裂し易い。以上述べたこれらは全て、パーティクルの発生原因となる。また、泡や凹部分は、プラズマガスの集中を受けエッチング速度が増大しやすいので、石英ガラス全体のエッチング量も増大し、使用可能時間が減少してしまう。
【0009】
本発明は、上記した知見に基づいてなされたもので、半導体製造に用いられるプラズマ反応用治具材料として、プラズマ耐食性、特にF系プラズマガスに対する耐食性に優れた石英ガラス及び石英ガラス治具並びにそれらの製造方法を提供することを目的とする。
【0010】
上記課題を解決するために、本発明の石英ガラスは、周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなる2種類以上の金属元素を併わせて0.1〜20wt%含有しかつベルヌイ法を用い前記2種類以上の金属元素粉或いはそれらの化合物粉を石英粉に混合し、加熱溶融落下させ石英ガラスインゴットを作成する際、該石英ガラスインゴット表面温度を、1800℃以上に加熱することによって作成されたことを特徴とする。
【0011】
本発明の石英ガラスが含有する第1及び第2の金属元素は、Siに比べて、弗化物となったときの沸点が高く、エッチングされない。例えばSmFの沸点は2427℃である。
【0012】
但し、これらの金属元素が単独で含有されると、石英ガラス体は、白濁したり、透明化しても内部に泡や異物を多量に発生する。白濁は、各金属元素が石英ガラス体中で、SiO2とは屈折率の異なる酸化物の固まりとして存在し、SiO2との界面で光を散乱させることが原因であり、泡や異物も、酸化物が大きな固まりとなって偏在することが原因である。
【0013】
これらの金属元素の中でも特に、第2の金属元素であるZr、Y、ランタノイド、アクチノイドなどは、石英ガラス体中で、正電荷を保持して酸化物となり易く、光の散乱も強い。
【0014】
そこで、単独ではなく、第1の金属元素であるAlとともに第2の金属元素を一緒に含有すると、Alは石英ネットワークに組み込まれて負電荷を生じさせて、正電荷を保持した第2の金属元素と引き合って、互いの電荷を緩和し、金属元素が酸化物となって固まることが抑制される。Alと同様に負電荷を持ち易い第1の金属元素として、周期率表3B族の金属元素が選択できるが、Alは、半導体製造工程において特に問題のない元素なので第1の金属元素として最も好ましい。また、第2の金属元素としてはNd又はSmが好適である。
【0015】
上記金属元素の含有濃度の総和は、0.1〜20wt%であるが、0.1wt%以下では、エッチング耐性の向上が無く、20wt%以上では、泡の発生などが多く、ガラス体として使用できない。
【0016】
上記第1の金属元素(M1)と、第2の金属元素の1種類又は2種類以上の総和(M2)の配合比は、重量比率で(M1)/(M2)=0.1〜10とするのが好ましい。この配合比が0.1未満では、上記した緩和の効果が無く白濁し、10を超えると、透明ガラス体中に泡、異物が多発する。上記第2の金属元素としてはNd又はSmが好適である。
【0017】
本発明の石英ガラスにおいては、泡と異物の含有量が100cm3当りの投影面積で100mm2未満で、可視光線の内部透過率が50%/cm以上であるのが好ましい。
【0018】
本発明の石英ガラスの製造方法の第1の態様は、ベルヌイ法で石英粉からプラズマ耐食性に優れた石英ガラスインゴットを作成するにあたり、2種類以上の金属元素粉或いはそれらの化合物粉を、石英粉に混合し、加熱溶融落下させ石英ガラスインゴットを作成する際、該石英ガラスインゴット表面温度を、1800℃以上に加熱する石英ガラスの製造方法であって、該石英ガラスインゴットが前記2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とする。
【0019】
本発明の石英ガラスの製造方法の第2の態様は、ベルヌイ法で石英粉からプラズマ耐食性に優れた石英ガラスインゴットを作成するにあたり、石英粉を加熱溶融落下させ石英ガラスインゴットを作成すると同時に、2種類以上の金属元素或いはそれらの化合物を純水、酸性溶液、塩基性溶液または有機溶媒に溶解させ作成した溶液を、該石英ガラスインゴットの成長表面に連続的に滴下する石英ガラスの製造方法であって、該石英ガラスインゴットが、前記2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とする。
【0020】
本発明の石英ガラスの製造方法の第3の態様は、全体の粒径分布が、0.01〜1000μmの範囲にあり、且つ、そのうち0.01〜5μmの範囲の粒子群の重量比が1〜50wt%である石英ガラス粉体と、純水、酸性溶液、塩基性溶液または有機溶媒に溶解可能な少なくとも2種類の金属元素或いはそれらの化合物を、純水、酸性溶液、塩基性溶液または有機溶媒中で混合溶解してスラリーを作成し、該スラリーを乾燥個化させた後に、真空下で加熱溶融することによって石英ガラスインゴットを作成する石英ガラスの製造方法であって、該石英ガラスインゴットが、2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とする。この方法における金属化合物としては、硝酸化合物、溶媒としては純粋が好適である。この方法は一般にスリップキャスト法といわれる。
【0021】
従来の石英ガラスの製法としては、石英粉と金属化合物を混合して真空雰囲気で加熱溶融する方法が一般的であるが、このような方法では、成形体外周部と内部で圧力分布が異なる為、品質的なばらつきや、内部には、泡、異物、粒状構造が生じ易かった。
【0022】
粒子個々に均一な熱エネルギーを与えながら溶融堆積させるベルヌイ法や、溶液混合によって予め均一分散を可能とするスリップキャスト法では、上記問題が生じない。これらについては後記する実施例で詳述する。
【0023】
本発明の石英ガラス治具は、本発明の石英ガラスにより作成され、表面から所定の深さまでの厚さを有するとともに前記金属元素を0.1〜20wt%含有する金属元素含有層を形成したことを特徴とする。この金属元素含有層の厚さは少なくとも5mmであるのが好適である。
【0024】
本発明の石英ガラス治具の製造方法は、純水、酸性溶液、塩基性溶液または有機溶媒に溶解可能な少なくとも2種類の金属元素或いはそれらの化合物を純水、酸性溶液、塩基性溶液または有機溶媒中で混合溶解して作成された溶液を、予め用意された石英ガラス治具表面に塗布し、その後、その表面を加熱溶融する石英ガラス治具の製造方法であって、該石英ガラス治具の材料である石英ガラスインゴットが2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とする。
【0025】
この方法において、金属元素を含む溶液としては、少なくとも2種類の金属元素を含む有機金属化合物液或いはそれを有機溶媒に溶解して作成した溶液が用いられる。
【0026】
本発明の石英ガラス治具及びその製造方法では、前記した金属元素の含有に起因する石英ガラス体の白濁化及び泡や異物の発生という問題を、外部から金属溶液として塗布することにより表面に均一に金属元素を付着させ、さらに表面を加熱溶融することで、表面から所定深さ、好ましくは5mm程度まで均一拡散させて、均一に含有させることで解決した。エッチングプロセスで石英部材がエッチングされる深さは、1〜2mmであるので、少なくとも約5mmの深さまで耐プラズマ性が向上すると十分な効果が得られる。
【0027】
本発明における金属元素の含有の態様としては、石英ガラス又は石英ガラス治具中にドープされていてもよいし、及び/又は表面に塗布後、加熱拡散させてもよく、所定濃度の金属元素を含有する限りその態様を問わないことは勿論である

【0028】
【実施例】
以下に本発明の実施例をあげて説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
【0029】
(実施例1)
石英粒子27500gとAl23粉1500gとSm23粉1000gを混合し、酸水素火炎中に50g/minの速度で、1rpmで回転するターゲットインゴット上に溶融落下させ、200mmφ×400mmの石英インゴットを作成した。使用するガス条件は、H2が300l/min、O2が100l/minとした。作成されたインゴットを加熱処理炉中にセットして、N2雰囲気中にて1kg/cm2の圧力下で、1800℃に1HR保持して、400mmφ×100mmに成形した。
【0030】
得られたガラス成形体から350mmφ×20mm(厚さ)の円盤状板材を切り出し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、300ppmであった。ガラス体中の泡と異物の含有量は、100cm3当りの投影面積で20mm2で、可視光線の内部透過率が80%/cmであった。
【0031】
また、同じ成形体から切り出したサンプルで室温から1000℃までの温度領域で放出ガスの定性と定量をしたところ、CO、H2O、O2、H2のガスが総量で、0.4mol/m3発生した。
【0032】
同様に切り出したサンプルのAlとSm濃度を蛍光X線分析で測定するとそれぞれ2.5wt%と2.3wt%であった。同様に、30mmφ×3mmに切り出し、表面粗さをRa3.0μmに研削したサンプルで、50sccm、CF4+O2(20%)のプラズマガス中で、30mtorr、1kw、10HRのエッチング試験を行った。試験前後の質量変化からエッチング速度を算出し、30nm/minの結果を得た。
【0033】
また、パーティクルの発生量については、エッチング後、サンプルのプラズマ照射面に同面積のSiウェーハを載せ、ウェーハの接触面の凹凸をレーザー散乱で検出し、パーティクルカウンターにて0.3μm以上のパーティクル個数を計測した。パーティクル個数は、10個であった。
【0034】
(実施例2)
粒径が100〜500μmの石英粒子6750gと、粒径が0.01〜4μmの熱分解シリカ粒子1800gと硝酸アルミニウム5100gと硝酸サマリウム1200gと純水13500gを混合し、スラリーを作成する。このスラリーを40℃の大気中で8日間乾燥させ固体とした後、大気炉中500℃に保持し、有機物を燃焼除去し、真空雰囲気において、1800℃、1HRの加熱処理を行い、380mmφ×25mmの透明ガラス体を得た。
【0035】
得られたガラス体から350mmφ×20mm(厚さ)の円盤を切り出し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は300ppmであった。同様に切り出したサンプルのAlとSm濃度を蛍光X線分析で測定するとそれぞれ2.5wt%と2.3wt%であった。その他の結果は、実施例1と同じであった。
【0036】
(比較例1)
粒径100〜500μmの石英粒子30000gを混合し、カーボン鋳型に充填し、真空雰囲気において、1800℃、1HRの加熱処理を行い、400mmφ×100mmの透明ガラス体を作成した。切り出したサンプルのAl濃度を蛍光X線分析で測定すると0.0wt%であった。また、実施例1と同様のサンプルを作成し、プラズマエッチングテストを行ったところ、エッチング速度は、120nm/minであった。その他の評価結果は実施例1と同じであった。
【0037】
(比較例2)
石英粒子29000gと、Sm23粉1000gを混合し、酸水素火炎中に50g/minの速度で、1rpmで回転するターゲットインゴット上に溶融落下させ、200mmφ×400mmの石英インゴットを作成した。使用するガス条件は、H2が300l/min、O2が100l/minとした。作成されたインゴットを加熱処理炉中にセットして、N2雰囲気中にて1kgの圧力下で、1800℃に1HR保持して、400mmφ×100mmに成形した。
【0038】
得られたガラス成形体は全体に白濁し、可視光線の透過率は0%/cmであった。そこから350mmφ×20mm(厚さ)の円盤を切り出し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、300ppmであった。Sm濃度を蛍光X線分析で測定すると2.5wt%であった。
【0039】
また、同じ成形体から切り出したサンプルで室温から1000℃までの温度領域で放出ガスの定性と定量をしたところ、CO、H2O、O2、H2のガスが総量で、0.4mol/m3発生した。
【0040】
同様に切り出したサンプルを、同様に30mmφ×3mmに切り出し、表面粗さをRa3.0μmに研削したサンプルで、50sccm、CF4+O2(20%)のプラズマガス中で、30mtorr、1kw、10HRのエッチング試験を行った。試験前後の質量変化からエッチング速度を算出し、50nm/minの結果を得た。
【0041】
また、パーティクルの発生量については、エッチング後、サンプルのプラズマ照射面に同面積のSiウェーハを載せ、ウェーハの接触面の凹凸をレーザー散乱で検出し、パーティクルカウンターにて0.3μm以上のパーティクル個数を計測した。パーティクル個数は、100個であった。
【0042】
(比較例3)
粒径が100〜500μmの石英粒子6750gと、粒径が0.01〜4μmの熱分解シリカ粒子1800gと硝酸サマリウム1000gと純水7500gを混合し、スラリーを作成する。このスラリーを40℃の大気中で8日間乾燥させ固体とした後、大気炉中に500℃に保持し有機物を燃焼除去し、真空雰囲気において、1800℃、1HRの加熱処理を行い、380mmφ×25mmのガラス体を得た。
【0043】
得られたガラス成形体は、全体に白濁し、可視光線の内部透過率は0%/cmであった。得られたガラス体から350mmφ×20mm(厚さ)の円盤を切り出し、上下面を研削加工した。表面のRa値は3.0μmで、円盤のOH濃度は、300ppmであった。同様に切り出したサンプルのSm濃度を蛍光X線分析で測定すると2.1wt%であった。その他は、比較例2と同じであった。
【0044】
(比較例4)
粒径100〜500μmの石英粒17000gとAl23粉10000gとSm23粉3000gを混合し、比較例2と同様な方法でガラス体を作成した。ガラス体は、白濁し、可視光線の内部透過率は0%/cmであった。切り出したサンプルのAlとSm濃度を蛍光X線分析で測定するとそれぞれ15.0wt%と7.0wt%であった。また、実施例1と同様のサンプルを作成し、同様の評価を行ったところ、エッチング速度は、40nm/minであったが、パーティクルの発生は800個に達した。
【0045】
(実施例3)
400mmφ×20mm(厚さ)の石英ガラス治具の表面上に、硝酸アルミニウムと硝酸サマリウムを15wt%ずつ溶解し、合計溶解量が30wt%である溶液を塗布し、この塗布された面を酸水素火炎によって加熱溶融し、滑らかな透明溶融面を形成した。表面のRa値は0.1μmで、治具のOH濃度は、300ppmであった。治具中の泡と異物の含有量は、100cm3当たりの投影面積で20mm2未満で、可視光線の内部透過率が80%/cmであった。
【0046】
また、この治具の室温から1000℃までの温度領域で放出ガスの定性と定量をしたところ、CO、H2O、O2、H2のガスが総量で、0.4mol/m3発生した。治具表面のAlとSm濃度を蛍光X線分析で測定するとそれぞれ3.5wt%と3.3wt%であった。表面を含んだ30mmφ×3mmのサンプルを切り出し、表面をファイアポリッシュしてRa3.0μmとし、50sccm、CF4+O2(20%)のプラズマガス中で、30mtorr、1kw、10HRのエッチング試験を行った。試験前後の質量変化からエッチング速度を算出し、50nm/minの結果を得た。
【0047】
また、パーティクルの発生量については、エッチング後、サンプルのプラズマ照射面に同面積のSiウェーハを載せ、ウェーハの接触面の凹凸をレーザー散乱で検出し、パーティクルカウンターにて0.3μm以上のパーティクル個数を計測した。パーティクル個数は、10個であった。
【0048】
(比較例5)
400mmφ×20mm(厚さ)の石英ガラス治具の表面を酸水素火炎によって加熱溶融し、滑らかな透明溶融面を形成した。表面のRa値は0.1μmで、円盤のOH濃度は、300ppmであった。サンプルを蛍光X線分析で測定すると何も検出されなかった。プラズマガス試験前後の質量変化からエッチング速度を算出し、120nm/minの結果を得た。また、パーティクルの発生量については、60個であった。その他の評価結果は、実施例3と同様であった。
【0049】
(比較例6)
400mmφ×20mm(厚さ)の石英ガラス治具の表面上に、硝酸サマリウムを15wt%溶解した溶液を塗布し、この塗布された面を酸水素火炎によって加熱溶融したが、溶融面上に白濁部分と泡状部分と透明溶融部分を形成した。表面のRa値は11.0μmで、OH濃度は、300ppmであった。サンプルの表面Sm濃度を蛍光X線分析で測定すると7.5wt%であった。また、パーティクルの発生個数は300個であった。その他の評価結果は、実施例3と同様であった。
【0050】
(比較例7)
400mmφ×20mm(厚さ)の石英ガラス治具の表面上に、硝酸アルミニウムと硝酸サマリウムをそれぞれ15wt%ずつ溶解し、合計30wt%の溶液を塗布し、この塗布された面を酸水素火炎によって加熱溶融した。この処理を3回繰り返したところ、溶融面上に白濁部分と泡状部分を形成した。表面のRa値は11.0μmで、円盤のOH濃度は、300ppmであった。サンプルのAlとSm濃度を蛍光X線分析で測定するとそれぞれ10wt%と11wt%であった。また、パーティクルの発生個数は300個であった。その他の評価結果は、実施例1と同様であった。
【0051】
各実施例、比較例において、パーティクル発生量は、50個以下の場合Siウェーハの使用可能部分は、90%以上であり、200個を超えると、50%以下となり収率が低下した。またエッチング速度が、100nm/min以上のときは、100HR程度の使用時間で、0.6mmのエッチング深さまで達し、部材として使用できないが、50nm/min以下になると、使用時間が2倍となり効果が確認され、特に20nm/min以下となれば、非常に経済効果が大きくなった。
【0052】
【発明の効果】
上述したごとく、本発明の石英ガラス及び石英ガラス治具は、半導体製造に用いられるプラズマ反応用治具材料として、プラズマ耐食性、特にF系プラズマガスに対する耐食性に優れているという効果を有している。また、本発明方法は、プラズマ耐食性に優れた石英ガラス及び石英ガラス治具を効率よく製造できるという利点を有している。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quartz glass and a quartz glass jig that are used in semiconductor manufacturing and have excellent plasma corrosion resistance, and a method for manufacturing the same.
[0002]
[Related technologies]
In the manufacture of semiconductors, for example, the manufacture of semiconductor wafers, the processing efficiency is improved by using a plasma reactor in an etching process or the like as the diameter increases in recent years. For example, in a semiconductor wafer etching process, an etching process using a plasma gas, for example, a fluorine (F) plasma gas is performed.
[0003]
However, when conventional quartz glass is placed in, for example, an F-based plasma gas atmosphere, SiO 2 and F-based plasma gas react on the quartz glass surface to produce SiF 4 , which has a boiling point of −86 ° C. Therefore, it sublimated easily, and quartz glass was corroded in large quantities, resulting in thinning and surface roughness, and was not suitable for use as a jig in an F-based plasma gas atmosphere.
[0004]
As described above, the conventional quartz glass has a large problem in the corrosion resistance, that is, the plasma corrosion resistance, with respect to the plasma reaction in the semiconductor manufacturing, particularly the etching process using the F-based plasma gas. Therefore, a proposal for improving the plasma corrosion resistance by coating the surface of a quartz glass member with aluminum or an aluminum compound (JP-A-9-95777, JP-A-9-95777, JP-A-10-139480) or quartz glass There has been proposed a plasma corrosion-resistant glass whose plasma corrosion resistance is improved by incorporating aluminum (Japanese Patent Laid-Open No. 11-228172).
[0005]
[Problems to be solved by the invention]
The present inventor has been carrying out various studies to further improve the plasma corrosion resistance of quartz glass. As part of this, quartz glass powder in which 5 wt% of alumina powder is mixed with quartz glass is heated and melted under vacuum to produce quartz glass. The plasma corrosion resistance was investigated. Then, the etching rate was reduced by 40% to 50% as compared with the quartz glass member which was not doped at all.
[0006]
However, micro bubbles are observed inside and on the surface of the quartz glass body, and in particular, the difference between the corroded portion and the non-corroded portion is increased in the surface portion, the surface roughness increases, and a minute crystal portion is generated, resulting in time. At the same time, peeling occurred frequently from the portion, and with the formation of micro-dents, the generation of particles increased and adhered to the wafer surface, resulting in increased wafer defects. In addition, since these bubbles and dents promote etching, even when the concentration of the doped metal is increased, the etching corrosion resistance is not relatively improved.
[0007]
Because in F-based boiling point 1290 ° C. of AlF 3 that reacts with the plasma gas, since it is much hotter than the SiF 4, while the SiF 4 portion is a large amount of corrosion, AlF 3 portion surface This is presumed to be due to the fact that the difference in etching amount has increased due to less sublimation. In addition, when the doped aluminum is locally concentrated, the energy state is clearly different from the adjacent SiO 2 part, so the balance is lost and the SiO 2 is more easily transformed into a low energy crystalline state than there. .
[0008]
This crystal portion is visually confirmed as a fine white foreign substance. Since the formed crystal part has a thermal expansion degree different from that of quartz glass, it easily peels off due to a temperature change. Furthermore, locally concentrated metal element, in itself, since the boiling point is lower than SiO 2, at the time of melting heat of the SiO 2 to form the foam is a gas. The bubble portion in the vicinity of the surface is easily ruptured by temperature change. All of the above-mentioned causes of particle generation. Further, since the bubbles and the concave portions are likely to increase the etching rate due to the concentration of the plasma gas, the etching amount of the entire quartz glass also increases, and the usable time decreases.
[0009]
The present invention has been made on the basis of the above-described knowledge. As a jig for plasma reaction used in semiconductor manufacturing, quartz glass and a quartz glass jig excellent in plasma corrosion resistance, particularly corrosion resistance against F-based plasma gas, and those It aims at providing the manufacturing method of.
[0010]
In order to solve the above problems, the quartz glass of the present invention is at least one selected from the group consisting of a first metal element which is one type of Group 3B of the periodic table and Zr, Y, lanthanoids and actinoids. 2 to 2 wt% of the second metal element and 0.1 to 20 wt% in combination, and the Bernoulli method is used to mix the two or more metal element powders or their compound powder into the quartz powder. The quartz glass ingot is produced by heating and melting and dropping to heat the surface temperature of the quartz glass ingot to 1800 ° C. or higher .
[0011]
The first and second metal elements contained in the quartz glass of the present invention have a higher boiling point when they are fluoride than Si, and are not etched. For example, the boiling point of SmF is 2427 ° C.
[0012]
However, when these metal elements are contained alone, the quartz glass body becomes cloudy or generates a large amount of bubbles and foreign matters even if it becomes transparent. Cloudy, each metal element is quartz glass body during, and SiO 2 present as lumps of different oxides refractive index is caused by scattering light at the interface between SiO 2, also it bubbles and foreign substances, The cause is that the oxide becomes a large mass and is unevenly distributed.
[0013]
Among these metal elements, the second metal elements such as Zr, Y, lanthanoids, and actinoids tend to be positive oxides and become oxides in the quartz glass body, and light scattering is also strong.
[0014]
Therefore, when the second metal element is contained together with Al as the first metal element, not alone, the Al is incorporated into the quartz network to generate a negative charge, and the second metal holding a positive charge. They attract each other and relax each other's electric charge, and the metal element is suppressed from becoming an oxide and solidifying. As the first metal element which is likely to have a negative charge like Al, a metal element belonging to Group 3B in the periodic table can be selected. However, Al is an element which is not particularly problematic in the semiconductor manufacturing process and is most preferable as the first metal element. . Further, Nd or Sm is suitable as the second metal element.
[0015]
The total concentration of the above metal elements is 0.1 to 20 wt%. However, if it is 0.1 wt% or less, there is no improvement in etching resistance, and if it is 20 wt% or more, bubbles are often generated and used as a glass body. Can not.
[0016]
The blend ratio of the first metal element (M1) and the sum of one or more of the second metal elements (M2) is (M1) / (M2) = 0.1 to 10 in weight ratio. It is preferable to do this. When the blending ratio is less than 0.1, the above-described relaxation effect is not achieved, and when it exceeds 10, bubbles and foreign matters are frequently generated in the transparent glass body. Nd or Sm is preferable as the second metal element.
[0017]
In the quartz glass of the present invention, it is preferable that the content of bubbles and foreign matters is less than 100 mm 2 in projected area per 100 cm 3 and the internal transmittance of visible light is 50% / cm or more.
[0018]
The first aspect of the method for manufacturing a silica glass of the present invention, per to create an excellent quartz glass ingot into a plasma corrosion resistance from quartz powder by the Verneuil method, two or more kinds of metal elements powder or their compounds powder, quartz powder The quartz glass ingot is heated and melted and dropped to produce a quartz glass ingot, and the surface temperature of the quartz glass ingot is heated to 1800 ° C. or higher. At least selected from the group consisting of Zr, Y, lanthanoids and actinoids, the first metal element containing 0.1-20 wt% of the elements together and the metal element is one of Group 3B of the periodic table It consists of the 2nd metal element which is 1 type .
[0019]
A second aspect of the method for manufacturing a silica glass of the present invention, per to create an excellent quartz glass ingot into a plasma corrosion resistance from quartz powder by the Verneuil method, creating a quartz glass ingot by heating and melting drop the silica powder at the same time, 2 A method for producing quartz glass in which a solution prepared by dissolving at least two kinds of metal elements or their compounds in pure water, an acidic solution, a basic solution or an organic solvent is continuously dropped onto the growth surface of the quartz glass ingot. The quartz glass ingot contains 0.1 to 20 wt% of the two or more metal elements in combination, and the metal element is a first metal element of Group 3B of the periodic table; , Y, a lanthanoid, and an actinoid, at least one second metal element selected from the group consisting of actinides .
[0020]
In the third aspect of the method for producing quartz glass of the present invention, the overall particle size distribution is in the range of 0.01 to 1000 μm, and the weight ratio of the particles in the range of 0.01 to 5 μm is 1 ˜50 wt% of quartz glass powder and at least two kinds of metal elements or their compounds that can be dissolved in pure water, acidic solution, basic solution or organic solvent, pure water, acidic solution, basic solution or organic A method for producing a quartz glass ingot by mixing and dissolving in a solvent to prepare a slurry, and drying and individualizing the slurry, followed by heating and melting under vacuum, wherein the quartz glass ingot comprises: A first metal element containing 0.1 to 20 wt% of two or more metal elements in combination, the metal element being one type of Group 3B of the periodic table, Zr, Y, lanthanoid and actinoy It consists of the 2nd metal element which is at least 1 type chosen from the group which consists of 2nd . The metal compound in this method is preferably a nitric acid compound and pure as the solvent. This method is generally referred to as a slip casting method.
[0021]
As a conventional method for producing quartz glass, a method in which quartz powder and a metal compound are mixed and heated and melted in a vacuum atmosphere is generally used. However, in such a method, the pressure distribution differs between the outer periphery of the molded body and the inside. , Quality variations and bubbles, foreign materials, and granular structures were likely to occur inside.
[0022]
The above problem does not occur in the Bernoulli method in which particles are melted and deposited while applying uniform thermal energy to each particle, or in the slip casting method in which uniform dispersion is possible in advance by solution mixing. These will be described in detail in Examples described later.
[0023]
The quartz glass jig of the present invention is made of the quartz glass of the present invention, and has a metal element-containing layer having a thickness from the surface to a predetermined depth and containing 0.1 to 20 wt% of the metal element. It is characterized by. The thickness of the metal element-containing layer is preferably at least 5 mm.
[0024]
The method for producing a quartz glass jig of the present invention comprises pure water, an acidic solution, a basic solution, or an organic solution containing at least two kinds of metal elements that can be dissolved in pure water, an acidic solution, a basic solution, or an organic solvent. A method for producing a quartz glass jig in which a solution prepared by mixing and dissolving in a solvent is applied to a surface of a prepared quartz glass jig, and then the surface is heated and melted. A quartz glass ingot, which is a material of the above, contains 0.1 to 20 wt% of two or more kinds of metal elements, and the metal element is one kind of Group 3B of the periodic table, Zr, It is characterized by comprising at least one second metal element selected from the group consisting of Y, lanthanoid and actinoid .
[0025]
In this method, as the solution containing a metal element, an organometallic compound solution containing at least two kinds of metal elements or a solution prepared by dissolving it in an organic solvent is used.
[0026]
In the quartz glass jig and the manufacturing method thereof according to the present invention, the problem of white turbidity of the quartz glass body and generation of bubbles and foreign matters due to the inclusion of the metal element described above can be uniformly applied to the surface by applying as a metal solution from the outside. This was solved by adhering a metal element to the surface and further heat-melting the surface to uniformly diffuse it to a predetermined depth from the surface, preferably about 5 mm, and to make it uniformly contained. Since the depth to which the quartz member is etched by the etching process is 1 to 2 mm, a sufficient effect can be obtained if the plasma resistance is improved to a depth of at least about 5 mm.
[0027]
As an aspect of the inclusion of the metal element in the present invention, it may be doped in quartz glass or a quartz glass jig, and / or may be heated and diffused after coating on the surface, and a metal element having a predetermined concentration may be added. Of course, as long as it contains, the aspect is not ask | required.
[0028]
【Example】
Examples of the present invention will be described below, but it is needless to say that these examples are illustrative and should not be construed in a limited manner.
[0029]
(Example 1)
A mixture of 27500 g of quartz particles, 1500 g of Al 2 O 3 powder and 1000 g of Sm 2 O 3 powder, melted and dropped onto a target ingot rotating at 1 rpm at a speed of 50 g / min in an oxyhydrogen flame, and 200 mmφ × 400 mm quartz Created an ingot. The gas conditions used were H 2 of 300 l / min and O 2 of 100 l / min. The prepared ingot was set in a heat treatment furnace, held at 1800 ° C. for 1 HR under a pressure of 1 kg / cm 2 in an N 2 atmosphere, and molded into 400 mmφ × 100 mm.
[0030]
A disc-shaped plate material of 350 mmφ × 20 mm (thickness) was cut out from the obtained glass molded body, and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. The content of bubbles and foreign matters in the glass body was 20 mm 2 in a projected area per 100 cm 3 , and the internal transmittance of visible light was 80% / cm.
[0031]
Further, when the qualitative and quantitative determination of the released gas was performed in the temperature range from room temperature to 1000 ° C. with a sample cut out from the same molded body, the total amount of CO, H 2 O, O 2 , and H 2 gases was 0.4 mol / m 3 occurred.
[0032]
Similarly, the Al and Sm concentrations of the sample cut out were measured by fluorescent X-ray analysis and found to be 2.5 wt% and 2.3 wt%, respectively. Similarly, a sample cut to 30 mmφ × 3 mm and ground to a surface roughness of Ra 3.0 μm was subjected to an etching test of 30 mtorr, 1 kw, and 10 HR in a plasma gas of 50 sccm and CF 4 + O 2 (20%). The etching rate was calculated from the mass change before and after the test, and a result of 30 nm / min was obtained.
[0033]
As for the amount of particles generated, after etching, an Si wafer of the same area is placed on the plasma irradiation surface of the sample, the unevenness of the contact surface of the wafer is detected by laser scattering, and the number of particles of 0.3 μm or more is detected by a particle counter Was measured. The number of particles was 10.
[0034]
(Example 2)
A slurry is prepared by mixing 6750 g of quartz particles having a particle size of 100 to 500 μm, 1800 g of pyrolytic silica particles having a particle size of 0.01 to 4 μm, 5100 g of aluminum nitrate, 1200 g of samarium nitrate, and 13500 g of pure water. The slurry was dried in an atmosphere of 40 ° C. for 8 days to form a solid, and then kept at 500 ° C. in an atmospheric furnace to burn off organic substances. In a vacuum atmosphere, heat treatment was performed at 1800 ° C. and 1 HR, 380 mmφ × 25 mm A transparent glass body was obtained.
[0035]
A disc of 350 mmφ × 20 mm (thickness) was cut out from the obtained glass body, and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. Similarly, the Al and Sm concentrations of the sample cut out were measured by fluorescent X-ray analysis and found to be 2.5 wt% and 2.3 wt%, respectively. The other results were the same as in Example 1.
[0036]
(Comparative Example 1)
30000 g of quartz particles having a particle size of 100 to 500 μm were mixed, filled in a carbon mold, and subjected to heat treatment at 1800 ° C. and 1 HR in a vacuum atmosphere to produce a transparent glass body of 400 mmφ × 100 mm. When the Al concentration of the cut sample was measured by fluorescent X-ray analysis, it was 0.0 wt%. Moreover, when the same sample as Example 1 was created and the plasma etching test was done, the etching rate was 120 nm / min. The other evaluation results were the same as in Example 1.
[0037]
(Comparative Example 2)
29000 g of quartz particles and 1000 g of Sm 2 O 3 powder were mixed and melted and dropped onto a target ingot rotating at 1 rpm in an oxyhydrogen flame at a speed of 50 g / min to prepare a 200 mmφ × 400 mm quartz ingot. The gas conditions used were H 2 of 300 l / min and O 2 of 100 l / min. The prepared ingot was set in a heat treatment furnace, held at 1800 ° C. for 1 HR under a pressure of 1 kg in an N 2 atmosphere, and molded into 400 mmφ × 100 mm.
[0038]
The obtained glass molded product was clouded as a whole, and the visible light transmittance was 0% / cm. From there, a 350 mmφ × 20 mm (thickness) disk was cut out and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. When the Sm concentration was measured by fluorescent X-ray analysis, it was 2.5 wt%.
[0039]
Further, when the qualitative and quantitative determination of the released gas was performed in the temperature range from room temperature to 1000 ° C. with a sample cut out from the same molded body, the total amount of CO, H 2 O, O 2 , and H 2 gases was 0.4 mol / m 3 occurred.
[0040]
Similarly, the sample cut out was cut into 30 mmφ × 3 mm, and the surface roughness was ground to Ra 3.0 μm. In a plasma gas of 50 sccm, CF 4 + O 2 (20%), 30 mtorr, 1 kw, 10 HR An etching test was performed. The etching rate was calculated from the mass change before and after the test, and a result of 50 nm / min was obtained.
[0041]
As for the amount of particles generated, after etching, an Si wafer of the same area is placed on the plasma irradiation surface of the sample, the unevenness of the contact surface of the wafer is detected by laser scattering, and the number of particles of 0.3 μm or more is detected by a particle counter Was measured. The number of particles was 100.
[0042]
(Comparative Example 3)
A slurry is prepared by mixing 6750 g of quartz particles having a particle diameter of 100 to 500 μm, 1800 g of pyrolytic silica particles having a particle diameter of 0.01 to 4 μm, 1000 g of samarium nitrate, and 7500 g of pure water. The slurry is dried in a 40 ° C. atmosphere for 8 days to form a solid, and then held in an atmospheric furnace at 500 ° C. to burn off organic substances. In a vacuum atmosphere, heat treatment is performed at 1800 ° C. and 1 HR, 380 mmφ × 25 mm A glass body was obtained.
[0043]
The obtained glass molded product was clouded as a whole, and the internal transmittance of visible light was 0% / cm. A disc of 350 mmφ × 20 mm (thickness) was cut out from the obtained glass body, and the upper and lower surfaces were ground. The Ra value on the surface was 3.0 μm, and the OH concentration of the disk was 300 ppm. Similarly, when the Sm concentration of the sample cut out was measured by fluorescent X-ray analysis, it was 2.1 wt%. Others were the same as those in Comparative Example 2.
[0044]
(Comparative Example 4)
A glass body was prepared in the same manner as in Comparative Example 2 by mixing 17000 g of quartz particles having a particle size of 100 to 500 μm, 10,000 g of Al 2 O 3 powder and 3000 g of Sm 2 O 3 powder. The glass body became cloudy and the internal transmittance of visible light was 0% / cm. When the Al and Sm concentrations of the cut sample were measured by fluorescent X-ray analysis, they were 15.0 wt% and 7.0 wt%, respectively. Moreover, when the same sample as Example 1 was produced and the same evaluation was performed, although the etching rate was 40 nm / min, generation | occurrence | production of the particle reached to 800 pieces.
[0045]
(Example 3)
On the surface of a quartz glass jig of 400 mmφ × 20 mm (thickness), 15 wt% of aluminum nitrate and samarium nitrate are dissolved, and a solution having a total dissolution amount of 30 wt% is applied. It was melted by heating with a flame to form a smooth transparent melt surface. The Ra value on the surface was 0.1 μm, and the OH concentration of the jig was 300 ppm. The content of bubbles and foreign matters in the jig was less than 20 mm 2 in a projected area per 100 cm 3 , and the visible light internal transmittance was 80% / cm.
[0046]
Further, when the qualitative and quantitative determination of the released gas was performed in the temperature range from room temperature to 1000 ° C. of this jig, a total amount of CO, H 2 O, O 2 , and H 2 gases was generated at 0.4 mol / m 3 . . When the Al and Sm concentrations on the jig surface were measured by fluorescent X-ray analysis, they were 3.5 wt% and 3.3 wt%, respectively. A 30 mmφ × 3 mm sample including the surface was cut out, the surface was fire polished to Ra 3.0 μm, and an etching test of 30 mtorr, 1 kw, 10 HR was performed in a plasma gas of 50 sccm and CF 4 + O 2 (20%). . The etching rate was calculated from the mass change before and after the test, and a result of 50 nm / min was obtained.
[0047]
As for the amount of particles generated, after etching, an Si wafer of the same area is placed on the plasma irradiation surface of the sample, the unevenness of the contact surface of the wafer is detected by laser scattering, and the number of particles of 0.3 μm or more is detected by a particle counter Was measured. The number of particles was 10.
[0048]
(Comparative Example 5)
The surface of a 400 mmφ × 20 mm (thickness) quartz glass jig was heated and melted with an oxyhydrogen flame to form a smooth transparent molten surface. The Ra value on the surface was 0.1 μm, and the OH concentration of the disk was 300 ppm. When the sample was measured by fluorescent X-ray analysis, nothing was detected. The etching rate was calculated from the mass change before and after the plasma gas test, and a result of 120 nm / min was obtained. Further, the number of generated particles was 60. Other evaluation results were the same as those in Example 3.
[0049]
(Comparative Example 6)
A surface of a quartz glass jig having a diameter of 400 mmφ × 20 mm (thickness) was coated with a solution of 15 wt% samarium nitrate, and the coated surface was heated and melted with an oxyhydrogen flame. A foamy part and a transparent melted part were formed. The Ra value on the surface was 11.0 μm, and the OH concentration was 300 ppm. The surface Sm concentration of the sample was measured by fluorescent X-ray analysis and found to be 7.5 wt%. The number of generated particles was 300. Other evaluation results were the same as those in Example 3.
[0050]
(Comparative Example 7)
On the surface of a quartz glass jig of 400 mmφ × 20 mm (thickness), 15 wt% each of aluminum nitrate and samarium nitrate are dissolved, and a total of 30 wt% solution is applied, and the applied surface is heated by an oxyhydrogen flame. Melted. When this treatment was repeated three times, a cloudy part and a foamy part were formed on the melt surface. The Ra value on the surface was 11.0 μm, and the OH concentration of the disk was 300 ppm. When the Al and Sm concentrations of the sample were measured by fluorescent X-ray analysis, they were 10 wt% and 11 wt%, respectively. The number of generated particles was 300. Other evaluation results were the same as those in Example 1.
[0051]
In each example and comparative example, when the amount of generated particles was 50 or less, the usable portion of the Si wafer was 90% or more, and when it exceeded 200, the yield was reduced to 50% or less. When the etching rate is 100 nm / min or more, the etching depth reaches 0.6 mm in about 100 HR usage time and cannot be used as a member. However, when the etching rate is 50 nm / min or less, the usage time is doubled and the effect is increased. It was confirmed that the economic effect became very large especially at 20 nm / min or less.
[0052]
【The invention's effect】
As described above, the quartz glass and the quartz glass jig of the present invention have an effect of being excellent in plasma corrosion resistance, particularly corrosion resistance against F-based plasma gas, as a plasma reaction jig material used in semiconductor manufacturing. . Further, the method of the present invention has an advantage that quartz glass and quartz glass jig having excellent plasma corrosion resistance can be efficiently produced.

Claims (12)

周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなる2種類以上の金属元素を併わせて0.1〜20wt%含有しかつベルヌイ法を用い前記2種類以上の金属元素粉或いはそれらの化合物粉を石英粉に混合し、加熱溶融落下させ石英ガラスインゴットを作成する際、該石英ガラスインゴット表面温度を、1800℃以上に加熱することによって作成されたことを特徴とするプラズマ耐食性に優れた石英ガラス。 Two or more metal elements comprising a first metal element that is one kind of Group 3B of the periodic table and at least one second metal element that is selected from the group consisting of Zr, Y, lanthanoids and actinoids When the quartz glass ingot is prepared by mixing the two or more kinds of metal element powders or their compound powders into quartz powder using a Bernoulli method, and by heating, melting and dropping, A quartz glass excellent in plasma corrosion resistance, which is produced by heating the surface temperature of a quartz glass ingot to 1800 ° C. or higher . 前記第1の金属元素(M1)と、第2の金属元素の1種類又は2種類以上の総和(M2)の配合比は、重量比率で(M1)/(M2)=0.1〜10の範囲である請求項1記載の石英ガラス。    The blending ratio of the first metal element (M1) and the sum of one or more of the second metal elements (M2) is (M1) / (M2) = 0.1-10 in weight ratio. The quartz glass according to claim 1, which is in a range. 前記第1の金属元素がAlで、前記第2の金属元素がNd又はSmである請求項1又は2記載の石英ガラス。    The quartz glass according to claim 1 or 2, wherein the first metal element is Al and the second metal element is Nd or Sm. 泡と異物の含有量が100cm当たりの投影面積で100mm未満で、可視光線の内部透過率が50%/cm以上である請求項1〜3のいずれか1項記載の石英ガラス。4. The quartz glass according to claim 1, wherein the content of bubbles and foreign matters is less than 100 mm 2 in a projected area per 100 cm 3 , and the internal transmittance of visible light is 50% / cm or more. ベルヌイ法で石英粉からプラズマ耐食性に優れた石英ガラスインゴットを作成するにあたり、2種類以上の金属元素粉或いはそれらの化合物粉を、石英粉に混合し、加熱溶融落下させ石英ガラスインゴットを作成する際、該石英ガラスインゴット表面温度を、1800℃以上に加熱する石英ガラスの製造方法であって、該石英ガラスインゴットが前記2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とするプラズマ耐食性に優れた石英ガラスの製造方法。 Per To create an excellent quartz glass ingot of quartz powder to the plasma corrosion resistance Verneuil method, two or more kinds of metal elements powder or their compounds flour, mixed quartz powder, when creating a quartz glass ingot is heated and melted drop A method for producing quartz glass, wherein the surface temperature of the quartz glass ingot is heated to 1800 ° C. or higher, wherein the quartz glass ingot contains 0.1 to 20 wt% of the two or more metal elements in combination and the metal The element is composed of a first metal element which is one kind of Group 3B of the periodic table and a second metal element which is at least one kind selected from the group consisting of Zr, Y, lanthanoid and actinoid A method for producing quartz glass having excellent plasma corrosion resistance . ベルヌイ法で石英粉からプラズマ耐食性に優れた石英ガラスインゴットを作成するにあたり、石英粉を加熱溶融落下させ石英ガラスインゴットを作成すると同時に、2種類以上の金属元素或いはそれらの化合物を純水、酸性溶液、塩基性溶液または有機溶媒に溶解させ作成した溶液を、該石英ガラスインゴットの成長表面に連続的に滴下する石英ガラスの製造方法であって、該石英ガラスインゴットが、前記2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とするプラズマ耐食性に優れた石英ガラスの製造方法。 Per To create an excellent quartz glass ingot of quartz powder to the plasma corrosion resistance Verneuil method, and at the same time create a quartz glass ingot by heating and melting falls silica powder, two or more kinds of metal elements or pure compounds thereof, acid solution A method for producing quartz glass, in which a solution prepared by dissolving in a basic solution or an organic solvent is continuously dropped onto the growth surface of the quartz glass ingot, wherein the quartz glass ingot comprises the two or more metal elements. And at least one selected from the group consisting of Zr, Y, lanthanoids and actinoids, a first metal element containing 0.1 to 20 wt% of the metal element, and the metal element being one type of Group 3B of the periodic table A method for producing quartz glass excellent in plasma corrosion resistance, characterized by comprising a second metal element of a kind . 全体の粒径分布が、0.01〜1000μmの範囲にあり、且つ、そのうち0.01〜5μmの範囲の粒子群の重量比が1〜50wt%である石英ガラス粉体と、純水、酸性溶液、塩基性溶液または有機溶媒に溶解可能な少なくとも2種類の金属元素或いはそれらの化合物を、純水、酸性溶液、塩基性溶液または有機溶媒中で混合溶解してスラリーを作成し、該スラリーを乾燥個化させた後に、真空下で加熱溶融することによって石英ガラスインゴットを作成する石英ガラスの製造方法であって、該石英ガラスインゴットが、2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とするプラズマ耐食性に優れた石英ガラスの製造方法。Quartz glass powder having an overall particle size distribution in the range of 0.01 to 1000 μm, and the weight ratio of particles in the range of 0.01 to 5 μm is 1 to 50 wt%, pure water, and acidic A slurry is prepared by mixing and dissolving at least two kinds of metal elements or compounds thereof soluble in a solution, a basic solution or an organic solvent in pure water, an acidic solution, a basic solution or an organic solvent. A quartz glass production method for producing a quartz glass ingot by heating and melting under vacuum after drying and individualization , wherein the quartz glass ingot is composed of 0.1 to 20 wt% of two or more kinds of metal elements. And at least one selected from the group consisting of Zr, Y, lanthanoids and actinoids, and a first metal element which is one type of Group 3B of the periodic table A method for producing quartz glass excellent in plasma corrosion resistance, characterized by comprising a second metal element . 前記金属化合物が硝酸化合物であり、溶媒が、純水である請求項7記載の石英ガラスの製造方法。    The method for producing quartz glass according to claim 7, wherein the metal compound is a nitric acid compound and the solvent is pure water. 請求項1〜4のいずれか1項に記載された石英ガラスにより作成され、表面から所定の深さまでの厚さを有するとともに前記金属元素を0.1〜20wt%含有する金属元素含有層を形成したことを特徴とするプラズマ耐食性に優れた石英ガラス治具。A metal element-containing layer made of the quartz glass according to any one of claims 1 to 4 having a thickness from the surface to a predetermined depth and containing 0.1 to 20 wt% of the metal element is formed. A quartz glass jig with excellent plasma corrosion resistance . 前記金属元素含有量層の厚さが少なくとも5mmである請求項9記載の石英ガラス治具。    The quartz glass jig according to claim 9, wherein the metal element content layer has a thickness of at least 5 mm. 純水、酸性溶液、塩基性溶液または有機溶媒に溶解可能な少なくとも2種類の金属元素或いはそれらの化合物を純水、酸性溶液、塩基性溶液または有機溶媒中で混合溶解して作成された溶液を、予め用意された石英ガラス治具表面に塗布し、その後、その表面を加熱溶融する石英ガラス治具の製造方法であって、該石英ガラス治具の材料である石英ガラスインゴットが2種類以上の金属元素を併せて0.1〜20wt%含有しかつ該金属元素が周期律表第3B族の1種類である第1の金属元素と、Zr、Y、ランタノイド及びアクチノイドからなる群から選ばれた少なくとも1種類である第2の金属元素からなることを特徴とするプラズマ耐食性に優れた石英ガラス治具の製造方法。A solution prepared by mixing and dissolving in pure water, an acidic solution, a basic solution or an organic solvent at least two kinds of metal elements or compounds thereof that can be dissolved in pure water, acidic solution, basic solution or organic solvent A method for producing a quartz glass jig, which is applied to the surface of a quartz glass jig prepared in advance and then heated and melted on the surface, and the quartz glass ingot which is a material of the quartz glass jig has two or more types The metal element was selected from the group consisting of the first metal element containing 0.1 to 20 wt% of the metal element and the metal element being one type of Group 3B of the periodic table, and Zr, Y, lanthanoid and actinoid A method for producing a quartz glass jig excellent in plasma corrosion resistance, comprising at least one second metal element . 前記金属元素を含む溶液が、少なくとも2種類の金属元素を含む有機金属化合物液或いはそれを有機溶媒に溶解して作成した溶液である請求項11記載の石英ガラス治具の製造方法。The method for producing a quartz glass jig according to claim 11, wherein the solution containing the metal element is an organometallic compound solution containing at least two kinds of metal elements or a solution prepared by dissolving the solution in an organic solvent.
JP2001008081A 2000-12-22 2001-01-16 Quartz glass, quartz glass jig and manufacturing method thereof Expired - Lifetime JP3656956B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001008081A JP3656956B2 (en) 2001-01-16 2001-01-16 Quartz glass, quartz glass jig and manufacturing method thereof
TW90125703A TW534896B (en) 2000-12-22 2001-10-17 Quartz glass, quartz glass jig and method for production thereof
KR10-2001-0071762A KR100458414B1 (en) 2000-12-22 2001-11-19 Quartz glass and quartz glass jig, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001008081A JP3656956B2 (en) 2001-01-16 2001-01-16 Quartz glass, quartz glass jig and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002220257A JP2002220257A (en) 2002-08-09
JP3656956B2 true JP3656956B2 (en) 2005-06-08

Family

ID=18875734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001008081A Expired - Lifetime JP3656956B2 (en) 2000-12-22 2001-01-16 Quartz glass, quartz glass jig and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3656956B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356346A (en) * 2001-03-26 2002-12-13 Tosoh Corp Quarts glass having high durability and member and apparatus using the same
TWI293947B (en) * 2001-03-26 2008-03-01 Tosoh Corp
JP2002356345A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing quarts glass having corrosion resistance and member and apparatus using the quarts glass
US7365037B2 (en) 2004-09-30 2008-04-29 Shin-Etsu Quartz Products Co., Ltd. Quartz glass having excellent resistance against plasma corrosion and method for producing the same
WO2009017020A1 (en) 2007-08-02 2009-02-05 Shin-Etsu Quartz Products Co., Ltd. Quartz glass member for plasma etching

Also Published As

Publication number Publication date
JP2002220257A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
JP4391529B2 (en) Quartz glass with excellent plasma corrosion resistance and method for producing the same
Barry et al. The structure of a glass-io nomer cement and its relationship to the setting process
USRE41249E1 (en) Quartz glass body having improved resistance against plasma corrosion, and method for production thereof
JP2011121811A (en) Silica vessel and method for producing the same
TW200821275A (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
JP2011084428A (en) Silica powder, silica container and method for manufacturing them
JP3656956B2 (en) Quartz glass, quartz glass jig and manufacturing method thereof
JP4132685B2 (en) Quartz glass and method for producing the same
JP2840195B2 (en) Method for producing quartz glass crucible for single crystal pulling
EP3224213A1 (en) Doped silica-titania glass having low expansivity and methods of making the same
US7015163B2 (en) Glass member resistant to plasma corrosion
JP2008056533A (en) Quartz glass and method of manufacturing the same
KR100458414B1 (en) Quartz glass and quartz glass jig, and method for producing the same
JP4148643B2 (en) Quartz glass having excellent plasma corrosion resistance, quartz glass jig and manufacturing method thereof
JPS63236723A (en) Quartz glass products for semiconductor industry
JP4148650B2 (en) Method for producing quartz glass
JP2002193634A (en) Quartz glass having excellent resistance to plasma corrosion and quartz glass jig
JP2002220252A (en) Quartz glass and method of manufacturing it
JPH01319932A (en) Method of forming solid diffusion source of compound cd oxide/p205 and silicon wafer
JP4943755B2 (en) Quartz glass material
JP2002308649A (en) Frost treating liquid for quartz glass surface, method for using the same, and quartz glass treated by this treating liquid
JP6547633B2 (en) Process for producing filmy free carbon from carbon oxides
TWI414503B (en) Quartz glass member for plasma etching
JP5553454B2 (en) Method for producing doped quartz glass
TW534896B (en) Quartz glass, quartz glass jig and method for production thereof

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040218

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3656956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term